
THE PROBABILITIES OF FUZZY EVENTS IN THE STUDY OF

THE STRUCTURE OF SEDIMENTARY ROCKS

V.YU. ITKIN AND V.M. SINITSYNA

Abstract. A problem of automatic classification of rock fragments is inves-
tigated. A rock fragment image is characterized by two numeric indicators,
elongation and form-factor, which make it possible to assign this fragment
to one of the 9 categories (groups). The debris formation in the process of
destruction of rocks and accumulation of sediment is of a random nature,
therefore the problem of calculating of probabilities of getting a sample into
a certain group arises. However, there are no crisp boundaries between the
categories of fragments, allowing to unambiguously assign the sample to one
or another group. Therefore, to solve classification problems and calculate
probabilities the methods of fuzzy logic and mathematical statistics were
jointly applied.

The probability of a fuzzy event can be characterized by either a single
number or a function. The functional probabilistic characteristic is defined
as the dependence of the crisp probabilities of α-cuts on the degree of mem-
bership α. To calculate the numerical probabilistic characteristics, two ap-
proaches are considered, similar to two defuzzification methods: centroid and
bisector. The first method is correct if the linguistic variable is consistent, i.e.
it satisfies the normalization condition. The second one is correct for vari-
ables that admit a partition of the universe by α-cuts into nonintersecting
domains.

The application of the described methods to the problems of classification
of fragments made it possible to obtain different probabilistic characteristics
of all fuzzy groups. The probabilities obtained by different methods turned
out to be similar. As a result of the analysis, the most probably categories
for the considered samples were identified. They turned out to be groups of
semi-rounded isometric and elongated rock fragments.

The proposed approach makes it possible to compare rock samples for
different areas of a field and identify areas with the greatest similarity or
difference in rock structure.

Introduction

Uncertainty of statistical information can be caused by various reasons. If
knowledge about a phenomenon is not enough to describe it reliably, models of
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random events and variables are used. Statistical information is a data for estimat-
ing of probabilities of random events and distribution laws of random variables.
Another reason for uncertainty is the fuzziness of intuitive qualitative ideas about
the subject of research. In lithology, when studying the structure of sedimentary
rocks, the concepts of roundness and elongation of fragments are used. When
classifying, the shape of a fragment is compared with the intuitive standard, an
example of which is shown in Fig. 1.
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Figure 1. The shapes of rock fragments [5] (1 – isometric, 2 –
elongated, 3 – sharply elongated, 4 – rounded, 5 – semi-rounded,
6 – non-rounded).

However, it is impossible to draw crisp boundaries between the categories of
rock fragments, therefore, for classification, it is natural to use the apparatus of
fuzzy sets [9], which is successfully applied in various geological studies [2, 10, 12].

Fuzziness and randomness are different types of uncertainty. Although the
properties of fuzzy sets can be obtained from the properties of random sets [7],
in applied research these types of uncertainty have different interpretations [1]
and can be used together [14]. A detail review of various methods of uncertainty
modelling in geology is given in [4].

Fuzzy events and their probabilities are first considered by the founder of fuzzy
logic L. Zadeh [13]. Various mathematical aspects of the theory of fuzzy random
events have been studied by many authors [3, 6, 11]. The probabilities of fuzzy
events are also calculated in engineering papers [8].

In this paper, a new approach to the calculating of fuzzy probabilities is pro-
posed, illustrated with examples related to the classification of rock fragments.

1. Fuzzy event probability

According to the generally accepted approach, a fuzzy event A is characterized
by one indicator – a probability, which is calculated as the mathematical expecta-
tion of the membership function µ(x) of the corresponding fuzzy set A, all elements
of which are assigned some probabilities. Let a random variable X , determined
by the cumulative distribution function F (x), can take all possible values of the
universe Ω. Then the probability (or mean probability) of a fuzzy event is equal to

P = P(A) = E(µ(X)) =

∫

Ω

µ(x) dF (x). (1.1)
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This calculation method is similar to the centroid method of defuzzification of
a fuzzy set.

Averaging leads (except for trivial cases) to the loss of information, therefore,
along with probability (1.1) it is convenient also to have a functional characteristic
of a fuzzy event, showing probabilities for all degrees of membership of a fuzzy set
– an analogue of the cumulative distribution function F (x) or the survival function
R(x) = 1− F (x) for classical (crisp) random variables.

Let us set some degree of membership α ∈ [0, 1] and construct the α-cut

Aα = {x ∈ A : µ(x) ≥ α}.

Its crisp probability is equal to

P (α) = P(Aα) =

∫

Aα

dF (x) =

∫

Ω

1{µA(x) ≥ α} dF (x). (1.2)

The expression (1.2) gives a functional probabilistic characteristic of a fuzzy
set.

Let a collection of fuzzy sets {Ak} with membership functions µk(x) determine
a linguistic variable a in the universe Ω, i.e. {Ak} is a term collection. Then it is
naturally to require the normalization condition for the mean probabilities (1.1),

∑

k

P k = 1, (1.3)

where P k = P(Ak) are probabilities of the terms Ak.
This condition is true if the variable a is consistent, i.e. for all fixed x ∈ Ω the

equality
∑

k

µk(x) = 1 (1.4)

is satisfied.
The definition (1.2) allows us to introduce another numerical characteristic of

the probability of a fuzzy event, similar to the bisector defuzzification method
of a fuzzy set. Let us denote the term probabilities calculated by formula (1.2)
as Pk(α). For a fixed α, the total probability

∑

k

Pk(α) can be either greater or

less than 1. However, if α = q exists, for which a collection of α-cuts {Ak
q} is a

partition of universe Ω into nonintersecting domains, i.e.

∪
k
Ak

q = Ω, (1.5)

Ai
q ∩ Aj

q = ∅, i 6= j, (1.6)

then the normalization condition is satisfied for Pk(q),
∑

k

Pk(q) = 1. (1.7)

For symmetry, it is recommended to construct membership functions so that
q = 0.5.

Thus, it is possible to calculate the mean probabilities P k for the consistent lin-
guistic variables. For variables, allowing some partition with α-cuts, it is possible
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to calculate the probabilities Pk(q). The linguistic variables with both qualities
have although similar, but different numerical characteristics of probabilities.

2. Classification of rock fragments in a thin section of sandstone

As an example we present the results of processing statistical information on
the shape of rock fragments and grains in a thin section of sandstone, some of
them have already been described in [9].

Plane images of rock fragments have random characteristics, for instance, form-
factor f (ratio of area to perimeter squared) and elongation l (ratio of length to
width). These characteristics make it possible to classify the fragments by shape
and assign them to one of the groups schematically shown in Fig. 1.

Elongation and form-factor, as established in [9], are distributed according to
the lognormal law. These random variables can be considered independent, be-
cause the correlation of their logarithms is insignificant according to the Students
test,

ρ̂(ln f, ln l) = 0.08,

p = 0.16.

However, variables f and l can be considered also as linguistic variables with
one-dimensional membership functions µif (f) for form-factor and µjl(l) for elon-
gation, i, j = 1, 3 (for details see [9]).

3. One-dimensional problem of calculating probabilities

On the one hand, elongation l and form-factor f are linguistic variables that
are described by the terms membership functions low, average and high. They
are shown in Fig. 2 in solid lines; their ordinate axes are on the left. However,
on the other hand, l and f are random variables that are described by lognormal
probability density functions. They are shown in Fig. 2 in dash lines, their ordinate
axes are on the right.
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Figure 2. Membership functions and probability density func-
tions of elongation and form-factor
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THE PROBABILITIES OF FUZZY EVENTS 5

A collection of membership functions is a fuzzy description of a variable formed
by an expert. The statistical data influences expert opinion, but does not com-
pletely determine it. It depends on personal experience, the meanings of the
concepts “low”, “average” and “high” in natural language, the ability to visualize,
and other subjective factors.

Fig. 2a shows that the mode of the probability density function of the elongation
is located significantly to the left of the core of the average term. Moreover, Fig. 2b
shows that these indicators for the form-factor are almost equal. That is, the
statistical data is close to intuitive ideas about the average form-factor and differ
significantly from them for the average elongation.

For the considered fuzzy sets, α-cuts are intervals of the form
[

a(α), b(α)
]

,
therefore, the probabilities of getting into them can be found analytically,

P (α) = F
(

b(α)
)

− F
(

a(α)
)

, (3.1)

where F (x) is a cumulative distribution function of a random variable.
The same probabilities can be estimated from empirical data,

P̂ (α) =
N{µ(xi) ≥ α}

n
, (3.2)

where n is the sample size, N{µ(xi) ≥ α} is the count of observations xi in the
α-cut.

The figures 3 and 4 show the plots of the probabilities of the terms for the
elongation and the form-factor.
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Figure 3. Probabilities of the elongation’s terms

The considered linguistic variables are consistent, and if α = 0.5 then their
terms α-cuts partition the universe into nonintersecting domains. Therefore, both
indicators, P and P (0.5), are correct numerical probabilistic characteristics of
fuzzy sets. Table 1 shows these indicators, calculated both by analytical formulas
(

P , P (0.5)
)

and by empirical data
(

P̂ , P̂ (0.5)
)

.
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Figure 4. Probabilities of the form-factor’s terms

Table 1. Probabilities of the terms for the elongation and the
form-factor.

Variable Elongation l Form-factor f
Term low average high low average high

P 0.419 0.514 0.067 0.072 0.749 0.179

P̂ 0.432 0.490 0.078 0.074 0.743 0.183
P (0.5) 0.417 0.525 0.058 0.008 0.883 0.109

P̂ (0.5) 0.440 0.493 0.067 0 0.889 0.111

Table 1 shows that all the methods give close results, moreover:

• the probabilities of average and low elongation are high enough;
• the average is the most probably value of form-factor;
• the probabilities of the low elongation and the low form-factor are negli-
gible;

• the probability of the high form-factor is nonzero but not too large.

4. Two-dimensional problem of calculating of probabilities

Solving the problem of the rock fragments classification, we use both the elon-
gation and form-factor, and therefore, it is necessary to consider two-dimensional
fuzzy sets. Depending on values of the elongation and the form-factor, a rock
fragment can be assigned with different degrees of membership to each of the 9
groups (Fig. 1), which are denoted by Gk, k = 1, 9.

Lets calculate the probabilities of getting a rock fragment into each group. For
this, we will:

• consider each group Gk as a two-dimensional fuzzy set and construct the
membership function µk(f, l) for it; all these functions will determine the
linguistic variable g = l∧ f , which is the disjunction of the elongation and
the form-factor;

• find α-cuts Gk
α of the groups Gk;
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THE PROBABILITIES OF FUZZY EVENTS 7

• calculate the probabilities of getting of the pair (f, l) into each α-cut Gk
α

for a fixed α.

Lets consider the stages of this algorithm in more details.
To assign a rock fragment into some group Gk it is necessary the form-factor

and the elongation were elements of the terms determined by the membership
functions µif and µjl accordingly. That’s why the two-dimensional membership
functions of the group Gk should be constructed with the fuzzy disjunction of the
one-dimensional membership functions of variables f and l,

µk(f, l) = µif (f) · µjl(l) (4.1)

or

µk(f, l) = min
(

µif (f), µjl(l)
)

, k = 1, 9. (4.2)

Both linguistic variables, f and l, are consistent, therefore if the disjunction is
calculated through the product by the formula (4.1), then the variable g is also
consistent (Fig. 6),

∑

k

µk(f, l) =
∑

i

∑

j

(

µif (f) · µjl(l)
)

=
∑

i



µif (f)
∑

j

µjl(l)



 = 1. (4.3)

However, α-cuts collection is not a partition of the universe for any α (Fig. 7a):
if α = 0.5 (shown in Fig. 7a in red dash lines), then some α-cuts have the common
borders, but there are some domains located outside any α-cuts. If α = 0.4 then
there are both α-cuts intersections (dark green areas in Fig. 7a) and domains
outside any α-cuts (white areas in Fig. 7a).

If the operation of minimum by formula (4.2) is used for the disjunction calcu-
lation then the variable g is inconsistent (Fig. 5),

∑

k

µk(f, l) =
∑

i

∑

j

min
(

µif (f), µjl(l)
)

6= 1, (4.4)

but if α = 0.5 then the α-cuts of the terms Gk are a partition of the universe into
nonintersecting domains (red dash lines in Fig. 7b).

Therefore, every method of disjunction calculation allows obtaining only one
numerical characteristic of a fuzzy event probability.

Lets calculate the probabilities of a two-dimensional fuzzy event obtained by
the minimum operation (4.2). In this case α-cuts Gk

α are rectangles (Fig. 7b),

Gk
α =

[

fk
min(α), f

k
max(α)

]

×
[

lkmin(α), l
k
max(α)

]

(4.5)

As the variables f and l are independent, the probability of getting into an
α-cut can be obtained by a product of the probabilities of getting of the values
f and l into corresponding intervals. The lognormal law parameters for random
variables f and l can be estimated by statistical data, thats why the cumulative
distribution functions Ff (f) and Fl(l) are known. Therefore, the probability of
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8 V.YU. ITKIN AND V.M. SINITSYNA

Figure 5. Membership functions obtained by the product oper-
ation (4.1).

Figure 6. Membership functions obtained by the minimum op-
eration (4.2).

getting into α-cut Gk
α is equal to

Pk(α) =

[

Ff

(

fk
max(α)

)

− Ff

(

fk
min(α)

)

]

·

[

Fl

(

lkmax(α)
)

− Fl

(

lkmin(α)
)

]

. (4.6)

The same probability can be estimated by experimental data. Lets determine
the count of the rock fragments, the membership function of which µk(f, l) is
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THE PROBABILITIES OF FUZZY EVENTS 9

Figure 7. α-cuts obtained by two methods of disjunction calcu-
lation: product (a) and minimum (b).

greater or equal α, and divide it by the total rock fragments count n,

P̂k(α) =
N{µk(f, l) ≥ α}

n
. (4.7)

Fig. 8 shows the results of calculation of probabilities by (4.6) and (4.7).
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Figure 8. Probabilities of getting rock fragments into fuzzy groups

For α = 0.5, α-cuts Gk
0.5 obtained by the minimum operation (red dash lines in

Fig. 7b) do not intersect and their union is equal to the universe. Therefore, for
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α = 0.5 the normalization condition is satisfied, and Pk(0.5) is a correct numerical
probabilistic indicator of the term Gk.

In Table 2, the values of this indicator are compared with the mean probabilities
calculating both by analytical formulas

(

P k

)

and empirical data
(

P̂k

)

. In the first
case the formula (1.1) was used and in the second one the following from it formula

P̂k =
1

n

∑

i

µk(fi, li) (4.8)

was used.
The mean probabilities were calculated by the membership functions obtained

by the product operation (4.1), as just in this case, the linguistic variable g is
consistent and the normalization condition (4.3) is satisfied.

Table 2. Probabilities of getting into fuzzy groups

k 1 2 3 4 5 6 7 8 9

P k 0.030 0.037 0.005 0.314 0.385 0.050 0.075 0.092 0.012

P̂k 0.034 0.036 0.004 0.320 0.372 0.051 0.078 0.083 0.022
Pk(0.5) 0.003 0.004 0 0.366 0.455 0.049 0.053 0.054 0.016

P̂k(0.5) 0 0 0 0.386 0.453 0.050 0.054 0.040 0.017

Table 2 shows that the probabilities calculated by various methods are close
enough, whereby the groups 4 (semi-roundness isometric fragments) and 5 (semi-
roundness elongated fragments) are most probably.

Conclusion

A rock fragment shape is characterized by two parameters: the elongation and
the form-factor. After measuring them the fragment can be assigned to one of the
9 groups. The groups have no crisp borders, thats why the fuzzy logic methods
should be used for the classification, and it is necessary to combine fuzzy logic
with probability theory and mathematical statistics for calculating probabilities
of getting a fragment into one of the groups.

Getting a fragment into a group is a fuzzy event, which can be described both by
numerical and functional probability characteristics. The functional characteristics
are defined by calculating of the crisp probabilities for a sequence of the α-cuts.
The numerical probabilities can be obtained by both the methods:

• calculating of the mean of a membership function;
• calculating of the crisp probabilities for α-cuts with a fixed degree of mem-
bership providing a partition of the universe into nonintersecting domains.

The first method is correct for consistent linguistic variables, and the second
method is only prospered for variables allowing a partition of the universe into
nonintersecting domains.

Applying of the described methods to the problems of the rock fragments clas-
sification has allowed to obtain the probabilistic characteristics of the fragment
groups both for one-dimensional and two-dimensional cases. The analysis of the
available thin rock section has showed:
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THE PROBABILITIES OF FUZZY EVENTS 11

• the average and low elongation have the probabilities close to 0.5;
• the high elongation is improbable;
• the average form-factor is most probably;
• the groups of semi-roundness isometric and elongated fragments are most
probably.

The proposed method can be applied to compare rock samples at different
field areas and identifying areas with the greatest similarity or difference in rock
structure.
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