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Abstract. The major factors for the transmission of various infectious dis-
eases such as tuberculosis, typhoid fever, etc. are poor and improper sanita-

tion, lack of hygiene and unclean drinking water. To understand the dynam-

ics of the spread of infectious diseases, we propose a nonlinear mathematical
model to study the spread and control of bacterial diseases due to environ-

mental degradation by applying suitable sanitation effort. In the modeling

process, the density of the bacteria population is assumed to be governed by
a logistic model and is dependent on environmental factors conducive to the

growth of the bacterial population. A suitable sanitation effort is applied

to mitigate the bacterial population present in the environment. Numeri-
cal simulations are also performed to support the analytical findings. The

analysis of the model reveals that by increasing the rate of sanitation effort,
the bacteria population present in the environment declines which ultimately

decreases the infective population.

1. Introduction

Sanitation refers to proper management of human excreta, solid and animal
waste. It aims to protect human health by providing a clean environment that
reduces the transmission of diseases. Inadequate sanitation is an important factor
for the spread of infectious diseases such as Cholera, Typhoid, etc. worldwide.
It also contributes to malnutrition, as many people consume food irrigated by
wastewater. WHO [29] estimated that inadequate drinking water and poor san-
itation facilities cause 502000 and 280000 diarrhea deaths . Improved sanitation
is crucial for public health. Access to safe sanitation systems including household
discharges, schools, and workplaces is very important in reducing the infectious dis-
eases, improving nutritional outcomes, enhancing safety and educational projects,
for women and girls and contributing to overall well-being. Since 1990, the number
of people who are gaining the facilities of improved sanitation has raised from 54%
to 68% but still, billions of people do not have proper toilets or latrines. In some
places, people still defecate in open. The countries where this open defecation is
widespread have a large number of deaths of children aged below 5 years as well as
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malnutrition and poverty are at a high level stated by WHO [30]. The UN Gen-
eral Assembly [31] has recognized access to sanitation and safe and clean drinking
water as a human right in 2010. They have also asked for international efforts to
help other countries in providing them safe, clean drinking water and sanitation.

Bacterial diseases such as Tuberculosis, Typhoid, Meningitis, etc., spread di-
rectly through direct transfer of bacteria from one person to another, as an indi-
vidual with the bacterium touches or coughs or sneezes on someone who is not
infected, and it also spread indirectly by touching some objects which are touched
by someone ill with a cold or flu. After coming in contact with that object, if a
person touches his/her eyes, nose or mouth without washing his/her hands may
become infected.

The dynamics of the spread of the bacterial disease has been studied by many
mathematician in the past, for instance Anderson and May [1], Gonzalez-Guzman
[10], Hethcote [11], Kiss et al. [12], Ugwa et al. [28] and Nadjafikhah and Shagholi
[18], considering the direct transmission of disease from one person to another.
But the harmful bacteria present in the environment plays a vital role in spreading
bacterial diseases, which was later taken into account by many researchers (Naresh
and Pandey [19], Shukla et al. [25], Agarwal and Verma [3] and Nthiiri et al. [23]).
For example, Naresh and Pandey [19] proposed a nonlinear model to study the
cumulative effect of ecological factors in the habitat on the spread of tuberculosis.
Their study reveals that an increase in conducive ecological factors and bacteria in
the habitat increases the spread of TB. The poor environmental condition is one
of the crucial factors in increasing the bacteria population. Due to an increase in
pollution, household discharges and many other activities of humans, degradation
of the environment increases. The harmful bacteria grow with a rapid rate in this
degraded environment resulting in the spread of infectious diseases at a high level
(Ghosh et al. [8], Ghosh et al. [9], Naresh and Pandey [20], Mwasa and Tchuenche
[17], Naresh and Pandey [21] and Nitu and Sharma [22]). In particular, Ghosh et
al. [8] proposed an SIS model to analyze the spread of bacterial diseases. They
have extended their model for a socially structured population assuming that the
bacteria population only affects the poor class who live in a degraded environment
and does not survive in the clean environment of the rich class. They concluded
that the increase in the degradation of the environment increases the spread of
infectious diseases.

The first measure taken to control the spread of infectious diseases was vacci-
nation. It is the most effective method to prevent the spread of infectious disease
(Cui et al. [5], Li and Cui [14], Zhou and Cui [32], and Baafi et al. [4]). But in
most cases, it is not much effective and the people who are vaccinated can also
get infected. In such cases, the media plays a vital role in controlling the spread
of disease by making people aware of the disease. Awareness through media not
only influences the people behavior but also makes the government take effective
measures on the spread of disease. Keeping, this aspect in view, many researchers
like, Cui et al. [5], Misra et al. [15], Samanta et al. [26], Sharma and Misra [27],
Dubey et al. [7], Agaba et al. [2], Misra et al. [16] proposed a mathematical model
to control the spread of infectious diseases. In particular, Dubey et al. [7] depicted
by their nonlinear model that the awareness and treatment both are important to
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eliminate the disease. Their analysis shows that if awareness is high and proper
treatment is available, the infection can be eliminated. Also a nonlinear model
was analyzed by Rai et al. [24] considering the importance of sanitation and the
awareness programs. Their study reveals that the epidemic can be reduced by
the sanitation and awareness programs and thus the spread of infection can be
controlled.

To control the spread of infectious diseases several measures such as vaccination,
treatment and awareness program among people are taken, but as discussed above
proper sanitation plays an important role in curtailing the disease. If our environ-
ment is clean, the growth of harmful bacteria will decrease, which consequently de-
creases the spread of bacterial diseases and hence the infective population. Thus,
keeping this aspect, we propose a nonlinear mathematical model to control the
spread of bacterial diseases due to environmental degradation by applying proper
sanitation effort. In the modeling process, sanitation effort is modeled logistically
and assumed to be applied in direct proportion to the environmental degradation.

2. Mathematical Model

The formulation of our mathematical model to control the spread of bacterial
diseases due to environmental degradation by applying suitable sanitation effort is
done in this section. We assume that the diseases not only spread by direct contact
of infectives with susceptibles but also by indirect contact of bacteria present in
the environment, and the bacteria population density is controlled by applying
proper sanitation effort.

Let us consider a region, at any time ‘t’, in which the total human population
N(t) is divided into two subclasses, susceptible population X(t) and infective
population Y (t). We assume that the diseases spread through bacteria with density
B(t) due to the increase in the cumulative density of environmental degradation
Em(t). Further, we assume that this increase in the spread of bacterial diseases
can be controlled by keeping the environment clean by applying suitable sanitation
effort Fs(t). The nonlinear mathematical model is proposed as follows,

dX

dt
= A− βXY − λBX − dX + νY

dY

dt
= βXY + λBX − dY − αY − νY

dB

dt
= s(Em)

(
1− B

L(Em)

)
B + s1Y − s0B

dEm
dt

= Q0 − θ0Em + θ1(A− dN)− θ2EmFs
dFs
dt

= φEmFs − φ0F 2
s − φ1EmFs + φsFs

(2.1)

where, φs= (ψ1 − ψ2) > 0 and X(0) > 0, Y (0) ≥ 0, B(0) > 0, Em(0) ≥ 0 and
Fs(0) > 0.

Let us consider that the human population increases, either by birth or immi-
gration at a constant rate A. The parameters β and λ represent the transmission
rate of bacterial diseases through direct and indirect contact of susceptibles with
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infectives and the bacteria present in the environment respectively. The natural
mortality rate of the human population is represented by a constant rate d. The
parameter ν and α denote the recovery rate and disease-induced death rate of the
human population respectively. The intrinsic growth rate and the carrying capac-
ity of bacteria population density are represented by s(Em) and L(Em) respec-
tively, which are assumed to be dependent on cumulative density of environmental
degradation Em, s1 is the rate of release of bacteria from infective population and
s0 is the decay of bacteria population naturally or due to some control measures
applied. Since we have assumed that the intrinsic growth rate and the carrying
capacity of bacteria population density are dependent on the cumulative density
of environmental degradation, we have,

s(0) = s and s′(Em) ≥ 0 & L(0) = l and L′(Em) ≥ 0 (2.2)

where, s and l are the value of s(Em) and L(Em) at Em=0 respectively, and
s′(Em) and L′(Em) denotes the derivative of the function with respect to its
argument. The cumulative density of environmental degradation conducive to
the growth of the bacteria population is assumed to increase at a constant rate
Q0. The parameter θ1 is the rate of increment of degradation of the environment
due to human population-related factors, θ2 and θ0 are the rate coefficients of
depletion of environmental degradation due to sanitation effort applied and some
other natural factors respectively. It is assumed in the model that the sanitation
effort is applied in the direct proportion to the environmental degradation (φ), φs

φ0

is its carrying capacity and φ1 is the depletion rate coefficient of sanitation effort
due to environmental degradation. The parameter ψ1 and ψ2 represent the rate of
sanitation effort applied and decrease in sanitation effort due to some other factors
respectively.

Since N(t) = X(t) + Y (t), the above model system (2.1) can be rewritten as
follows,

dY

dt
= β(N − Y )Y + λB(N − Y )− (d+ α+ ν)Y

dN

dt
= A− dN − αY

dB

dt
= s(Em)

(
1− B

L(Em)

)
B + s1Y − s0B

dEm
dt

= Q0 − θ0Em + θ1(A− dN)− θ2EmFs
dFs
dt

= φEmFs − φ0F 2
s − φ1EmFs + φsFs

(2.3)

3. Region of attraction

The region of attraction for the solution of the model system (2.3) is given as
follows:
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Ω = {(Y (t), N(t), B(t), Em(t), Fs(t)) ∈ R5
+ : 0 ≤ Y < N ≤ A

d
, 0 ≤ B ≤ Bm,

0 ≤ Em ≤ (Em)m, 0 < Fs ≤ (Fs)m},
where,

Bm =
L(Em)m
2s(Em)m

[
(s(Em)m − s0) +

√
(s(Em)m − s0)2 +

4s(Em)m
L(Em)m

s1A

d

]
,

(Em)m =
Q0

θ0
and (Fs)m =

(φ− φ1)(Em)m + φs
φ0

which is positively invariant and all solutions stay in Ω.

Proof. From system (2.3), we have,

dN

dt
= A− dN − αY

=⇒ dN

dt
≤ A− dN

=⇒ lim
t→∞

supN(t) ≤ A

d
From the third equation of model system (2.3), and using the fact that Y (t)≤

A
d for large t > 0, we have

dB

dt
≤ s((Em)m)

(
1− B

L((Em)m)

)
B + s1

A

d
− s0B

From the theory of differential inequality [13], we obtain

lim
t→∞

supB(t) ≤ L(Em)m
2s(Em)m

[
(s(Em)m − s0) +

√
(s(Em)m − s0)2 +

4s(Em)m
L(Em)m

s1A

d

]
= Bm(say).

This implies that 0 ≤ B(t) ≤ Bm for large t > 0.
Further, from the fourth equation of model system (2.3), we obtain

dEm(t)

dt
≤ Q0 − θ0Em

From the theory of differential inequality, we have

lim
t→∞

supEm(t) ≤ Q0

θ0
= (Em)m(say).

From the fifth equation of model system (2.3), we have

dFs
dt
≤ (φ− φ1)(Em)mFs − φ0F 2

s + φsFs

From the theory of differential inequality, we have
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lim
t→∞

supFs(t) ≤
(φ− φ1)(Em)m + φs

φ0
= (Fs)m(say).

�

4. Equilibrium analysis

Here, in this section, we analyze the qualitative behavior of the model system
(2.3) and we obtain four feasible equilibrium points of the model system (2.3) by
equating the rate of change of all dynamical variables to zero. Four non-negative
equilibria are:
1. E0 (0, A

d , 0 , Q0

θ0
, 0 ). This is disease-free equilibrium.

2. E1 (0, N , 0, Em, F s). Here, N = A
d

Em =
−(φ0θ0+θ2φs)+

√
(φ0θ0+θ2φs)2+4Q0φ0θ2(φ−φ1)

2θ2(φ−φ1)
and

F s = (φ−φ1)Em+φs

φ0

3. E2 (Y , N , B, Em, 0). This is equilibrium without sanitation effort.
4. E3 (Y ∗, N∗, B∗, E∗m, F ∗s ). This is endemic equilibrium.

4.1. Existence of equilibrium E2 (Y , N , B, Em, 0). The values of Y , N , B

and Em are obtained by solving the following set of algebraic equations,

β(N − Y )Y + λB(N − Y )− (d+ α+ ν)Y = 0 (4.1)

A− dN − αY = 0 (4.2)

s(Em)

(
1− B

L(Em)

)
B + s1Y − s0B = 0 (4.3)

Q0 − θ0Em + θ1(A− dN) = 0 (4.4)

From equation (4.2) we have,

N =
A− αY

d
(4.5)

From equation (4.4) and (4.2) we get,

Em =
Q0 + θ1αY

θ0
(4.6)

Now, using equation (4.5) in equation (4.1) we get,

(α+ d)βY 2 − (βA− d(d+ α+ ν))Y − λAB + (α+ d)λBY = 0 (4.7)

From equation (4.3) we get,

Y =
1

s1

[
s(Em)

L(Em)
B2 − (s(Em)− s0)B

]
(4.8)
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Now we show the existence of Y and B from equations (4.7) and (4.8), and

the corresponding values of N and Em can be obtained from equations (4.5) and
(4.6).
From equation (4.7), we have
(i) For B = 0,

Y = 0 and Y =
βA− d(d+ α+ ν)

β(α+ d)
= Ỹ (say),

which is positive, if βA > d(d+ α+ ν) and negative otherwise.
(ii) At (0, 0), the slope of equation (4.7) is given by,

dY

dB
= − λA

βA− d(d+ α+ ν)

which is positive or negative depending upon Ỹ being negative or positive, respec-
tively.
(iii) At (0, Ỹ ), the slope of equation (4.7) is given by,

dY

dB
=

λd(d+ α+ ν)

β(βA− d(d+ α+ ν))

which is positive or negative depending upon Ỹ being positive or negative, respec-
tively.
From equation (4.8), we observe the following points,
(i) When Y = 0,

B = 0 and B =
L(Em)

s(Em)
(s(Em)− s0) = B̃ (say)

(ii) At (0, 0), the slope of equation (4.8) is given by,

dY

dB
= − 1

s1
(s(Em)− s0) < 0

(iii) At (B̃, 0), the slope of equation (4.8) is given by,

dY

dB
=

L2(Em)θ0(s(Em)− s0)

s1θ0L2(Em) + θ1αB̃

[
L(Em)
s(Em)

s0(L(Em)s′(Em)−s(Em)L′(Em))

+s(Em)L(Em)L′(Em)

] > 0

provided s′(Em)
s(Em) >

L′(Em)
L(Em)

Thus, after plotting Y and B corresponding to equations (4.7) and (4.8) in

Figure 1 and 2, we see that there are two intersecting points (0, 0) and (B, Y ).

After finding Y and B , we can calculate N and Em using equations (4.5) and
(4.6).

4.2. Existence of equilibrium E3 (Y ∗, N∗, B∗, E∗m, F ∗s ). We prove the
existence of equilibrium E3 by setting right hand side of equations in the model
system (2.3) to zero and by solving the resulting algebraic equations, as given
below,

β(N − Y )Y + λB(N − Y )− (d+ α+ ν)Y = 0 (4.9)
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Figure 1. Existence of the equilibrium E2 when Ỹ > 0

Figure 2. Existence of the equilibrium E2 when Ỹ < 0

A− dN − αY = 0 (4.10)

s(Em)

(
1− B

L(Em)

)
B + s1Y − s0B = 0 (4.11)

Q0 − θ0Em + θ1(A− dN)− θ2EmFs = 0 (4.12)
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φEmFs − φ0F 2
s − φ1EmFs + φsFs = 0 (4.13)

From equation (4.10) and (4.13) we have,

N =
A− αY

d
(4.14)

Fs =
(φ− φ1)Em + φs

φ0
(4.15)

Now using equations (4.10) and (4.15) in equation (4.12) we have,

Em =
−(θ0φ0 + θ2φs) +

√
(θ0φ0 + θ2φs)2 + 4θ2φ0(φ− φ1)(Q0 + θ1αY )

2θ2(φ− φ1)
= f(y)

(4.16)
Using the value of N from equation (4.14) in equation (4.9) we get,

(α+ d)βY 2 − (βA− d(d+ α+ ν))Y − λAB + (α+ d)λBY = 0 (4.17)

From equation (4.11) we get,

Y =
1

s1

[
s(Em)

L(Em)
B2 − (s(Em)− s0)B

]
(4.18)

From equation (4.17), we have
(i) For B = 0,

Y = 0 and Y =
βA− d(d+ α+ ν)

β(α+ d)
= Y1 (say),

which is positive, if βA > d(d+ α+ ν) and negative otherwise.
(ii) At (0, 0), the slope of equation (4.17) is given by,

dY

dB
= − λA

βA− d(d+ α+ ν)

which is positive or negative depending upon Y1 being negative or positive, re-
spectively.
(iii) At (0, Y1), the slope of equation (4.17) is given by,

dY

dB
=

λd(d+ α+ ν)

β(βA− d(d+ α+ ν))

which is positive or negative depending upon Y1 being positive or negative, re-
spectively.
From eq. (4.18), we observe the following points,
(i) When Y = 0,

B = 0 and B =
L(Em) (s(Em)− s0)

s(Em)
= B1 (say)

(ii) At (0, 0), the slope of equation (4.18) is given by,

dY

dB
= − 1

s1
(s(Em)− s0) < 0
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Figure 3. Existence of endemic equilibrium E3 when Y1 > 0

(iii) At (B1, 0), the slope of equation (4.18) is given by,

dY

dB
=

L2(Em)(s(Em)− s0)

s1L2(Em) +B1f ′(y)

[
L(Em)
s(Em)

s0(L(Em)s′(Em)−s(Em)L′(Em))

+s(Em)L(Em)L′(Em)

] > 0

provided s′(Em)
s(Em) >

L′(Em)
L(Em)

Thus, after plotting Y and B corresponding to equation (4.17) and (4.18) in
Figure 3 and 4, we see that there are two intersecting points (0, 0) and (B∗, Y ∗).
After finding Y ∗ and B∗ , we can calculate N∗, E∗m and F ∗s using equation (4.14),
(4.16) and (4.15) respectively.

5. Stability Analysis

The stability behavior of equilibrium points E0, E1, E2 and E3 is presented
here. The stability behavior of E0, E1 and E2 is analyzed by computing variational
matrix and that of E3 is analyzed by Lyapunov method.

Theorem 5.1. The equilibria E0, E1 and E2 are unstable and the endemic equi-
librium E3 is locally asymptotically stable provided the following conditions are
satisfied,

(λ(N∗ − Y ∗) + s1)
2
<

(
βY ∗ +

λB∗N∗

Y ∗

)(
s1Y

∗

B∗
+
s(E∗m)

L(E∗m)
B∗
)

(5.1)

θ21(φ− φ1)dF ∗s <
2

3

(βY ∗ + λB∗)

α
(θ0 + θ2F

∗
s )θ2E

∗
m (5.2)
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Figure 4. Existence of endemic equilibrium E3 when Y1 < 0

θ2E
∗
m

(
s′(E∗m)B∗ − (L(E∗m)s′(E∗m)−s(E∗m)L′(E∗m))

L2(E∗m) B∗2
)2

< 2
3 (φ− φ1)F ∗s (θ0 + θ2F

∗
s )

∗
(
s1Y ∗

B∗ +
s(E∗m)
L(E∗m)B

∗
)

(5.3)

Proof. The variational matrix M0 of model system (2.3) corresponding to the

equilibrium point E0(0, Ad , 0,
Q0

θ0
, 0) is given by,

M0 =


βA
d − (d+ α+ ν) 0 λA

d 0 0
−α −d 0 0 0

s1 0 s(Q0

θ0
)− s0 0 0

0 −θ1d 0 −θ0 −θ2Q0

θ0

0 0 0 0 (φ− φ1)Q0

θ0
+ φs


The characteristic equation corresponding to the above matrix is given by,

(d+ µ)(θ0 + µ)((φ− φ1)
Q0

θ0
+ φs − µ)(µ2 − h1µ− h2) = 0

where,
h1 =(βA− (d+ α+ ν)) + (s(Q0

θ0
)− s0)

h2 =(βA− (d+ α+ ν))(s(Q0

θ0
)− s0)− λAs1

d

From the above, it can be seen that one of the root of the characteristic equation
is positive ((φ− φ1)Q0

θ0
+ φs), therefore the equilibrium E0 is unstable.

The variational matrix M1 of model system (2.3) corresponding to the equilibrium
point E1(0, N , 0, Em, F s) is given by,
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M1 =


βN − (d+ α+ ν) 0 λN 0 0

−α −d 0 0 0
s1 0 s(Em)− s0 0 0
0 −θ1d 0 −(θ0 + θ2F s) −θ2Em
0 0 0 (φ− φ1)F s ω


where, ω = (φ− φ1)Em − 2φ0F s + φs
The characteristic equation corresponding to the above matrix is given by,

(µ2 + l1µ+ l2)(µ2 −m1µ−m2) = 0

where,
l1 = θ0 + θ2F s − (φ− φ1)Em + 2φ0F s − φs
l2 = θ2(φ− φ1)EmF s − (θ0 + θ2F s)((φ− φ1)Em − 2φ0F s + φs)
m1=(βN − (d+ α+ ν)) + (s(Em)− s0)
m2=λNs1 − (βN − (d+ α+ ν))(s(Em)− s0)
By Descarte’s rule of sign, it is found that the equilibrium E1 is unstable.

The variational matrix M2 of model (2.3) corresponding to E2(Y , N , B, Em, 0)
is given by,

M2 =


v βY + λB λ(N − Y ) 0 0
−α −d 0 0 0

s1 0 ξ s′(Em)B −B
2
p 0

0 −θ1d 0 θ0 −θ2Em
0 0 0 0 (φ− φ1)Em + φs


where, v=βN − 2βY − λB − (d+ α+ ν), ξ=s(Em)− 2s(Em)

L(Em)
B − s0 and

p=

(
L(Em)s′(Em)− s(Em)L′(Em)

L2(Em)

)
Since, one of the root of the characteristic equation corresponding to the above

matrix ((φ− φ1)Em + φs) > 0 therefore, the equilibrium E2 is unstable.
To compute the local stability of endemic equilibrium E3, we linearize the model
system (2.3) using small perturbations y, n, b, em and fs about E3, defined as

Y = y + Y ∗, N = n+N∗, B = b+B∗, Em = em + E∗m and Fs = fs + F ∗s .

Consider the following positive definite function:

U1 =
1

2
(m0y

2 +m1n
2 +m2b

2 +m3e
2
m +m4f

2
s ),

where, mi (i = 0, 1, 2, 3, 4) are positive constants to be chosen appropriately.
Differentiating above equation w.r.t t and using linearized system of model (2.3)

82



ROLE OF ENVIRONMENTAL DEGRADATION ON THE SPREAD OF BACTERIAL..... 13

corresponding to E3, we get,

dU1

dt
= −m0

(
λB∗N∗

Y ∗
+ βY ∗

)
y2 −m1dn

2 −m2

(
s1Y

∗

B∗
+
s(E∗m)

L(E∗m)
B∗
)
b2

−m3(θ0 + θ2F
∗
s )e2m −m4φ0F

∗
s f

2
s

+ [m0(βY ∗ + λB∗)−m1α]ny + [m0λ(N∗ − Y ∗) +m2s1]by

+m2

(
s′(E∗m)B∗ − L(E∗m)s′(E∗m)− L′(E∗m)s(E∗m)

L2(E∗m)
B∗2

)
bem

−m3θ1dnem + (−m3θ2E
∗
m +m4(φ− φ1)F ∗s ) fsem

After choosing m0 = 1, m1 =
βY ∗ + λB∗

α
, m2 = 1, m3=

(φ− φ1)F ∗s
θ2E∗m

and m4=1.

we get
dU1

dt
to be negative definite showing that U1 is a Lyapunov function and

hence E3 is locally asymptotically stable provided the conditions (5.1)-(5.3) are
satisfied. �

Theorem 5.2. The endemic equilibrium E3 is nonlinearly asymptotically stable
in the region Ω provided the following conditions are satisfied.

4α

(
β +

λBm
Y ∗

)
< βd (5.4)

(
λ(N∗ − Y ∗)

Y ∗
+
s1
B∗

)2

<
βs(E∗m)

L(E∗m)
(5.5)

((
1− Bm

L(E∗m)

)
p+ s((Em)m)Bm

q

L2
0

)2

<
2

3

(φ− φ1)

θ2(Em)m

s(E∗m)

L(E∗m)
(θ0 + θ2F

∗
s ) (5.6)

(φ− φ1)θ21αd <
2

3

(
β +

λBm
Y ∗

)
(θ0 + θ2F

∗
s )θ2(Em)m (5.7)

θ2(Em)m(φ− φ1) <
1

3
φ0(θ0 + θ2F

∗
s ) (5.8)

Proof. Consider the following positive definite function, corresponding to the model
system (3) about E3,

U2 = k0

(
Y − Y ∗ − Y ∗ln Y

Y ∗

)
+
k1
2

(N −N∗)2 + k2(B −B∗ −B∗ln B
B∗

)+

k3
2

(Em − E∗m)2 + k4(Fs − F ∗s − F ∗s ln
Fs
F ∗s

)
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where, ki (i = 0, 1, 2, 3, 4) are positive constants to be chosen appropriately.
Differentiating the above equation w.r.t t and using system (3), we get,

dU2

dt
= −k0

(
β +

λBN

Y Y ∗

)
(Y − Y ∗)2 − k1d(N −N∗)2

− k2
(
s(E∗m)

L(E∗m)
+
s1Y

BB∗

)
(B −B∗)2 − k3(θ0 + θ2Fs)(Em − E∗m)2

− k4φ0(Fs − F ∗s )2 +

[
k0(β +

λB

Y ∗
)− k1α

]
(Y − Y ∗)(N −N∗)

+

[
k0λ

(
N∗ − Y ∗

Y ∗

)
+ k2

s1
B∗

]
(Y − Y ∗)(B −B∗)

+ k2

[(
1− B

L(E∗m)

)
f(Em) +Bs(Em)g(Em)

]
(Em − E∗m)(B −B∗)

− k3θ1d(N −N∗)(Em − E∗m)

+ [−k3θ2E∗m + k4(φ− φ1)] (Em − E∗m)(Fs − F ∗s )

where f(Em) and g(Em) are defined as follows,

f(Em) =


s(Em)− s(E∗m)

Em − E∗m
, Em 6= E∗m

ds

dEm
, Em = E∗m

g(Em) =


L(Em)− L(E∗m)

L(Em)L(E∗m)(Em − E∗m)
, Em 6= E∗m

1

L2
0

dL

dEm
, Em = E∗m

By considering the assumptions of the theorem and the mean value theorem, we
have,

|f(Em)| ≤ p, |g(Em)| ≤ q

L2
0

After choosing k0 = 1, k1 = 1
α

(
β + λBm

Y ∗

)
, k2 = 1, k3= (φ−φ1)

θ2(Em)m
and k4=1

we get dU2

dt to be negative definite showing that U2 is a Lyapunov function and
hence E∗ is nonlinearly asymptotically stable provided the conditions (5.4)-(5.8)
are satisfied. �

6. Numerical Simulation

In this section, the numerical simulation of the model system (2.3) using MAT-
LAB is performed. In our model, it is considered that the intrinsic growth rate
(s(Em)) and the carrying capacity (L(Em)) of bacteria population density are the
functions of cumulative density of environmental degradation Em. Thus, for nu-
merical simulation (s(Em)) and (L(Em)) are assumed to be linear function of Em
i.e., s(Em)= s + aEm and L(Em)= l + bEm satisfying condition (2.2).

The following set of parameter values are used in numerical simulation.
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A = 100, β = 0.002, λ = 0.000005, ν = 0.02, d = 0.15, α = 0.2, s = 0.85, s0
= 0.3, s1 = 0.0001, Q0 = 25, θ1 = 0.001, θ2=0.0004, θ0=0.1, a=0.001, l=10000,
b=0.01, φ = 0.5, φ0 = 0.26, φ1 = 0.004 ψ1 = 0.3, ψ2 = 0.003.

The equilibrium values of endemic equilibrium E3 for the above set of parameter
values are obtain as,
Y ∗ = 212.408, N∗ = 383.456, B∗ = 6930.038, E∗m = 126.921 and F ∗s = 243.269
The eigenvalues corresponding to the Jacobian matrix of endemic equilibrium

E3 are:
-63.1528, -0.3209 ± 0.2538i , -0.2879 and -0.6792
It is noted here that three eigenvalues are negative and two eigenvalues have

a negative real part, therefore, for the above set of parameter values the endemic
equilibrium E3 is locally asymptotically stable. The results of the model analysis
are displayed graphically in Figs. 5-12. In Fig. 5, four different values of the total
human population (N), infective population (Y ) and bacteria population density
(B) are considered. It is seen from the figure that all trajectories starting from
different initial values approach to the equilibrium point. This shows that the
endemic equilibrium E3 is nonlinearly asymptotically stable. The initial starts of
all trajectories to reach the equilibrium point are given below :
(1) Y (0) = 100 N(0) = 300 B(0) = 7000 Em = 120 Fs(0) = 250
(2) Y (0) = 300 N(0) = 600 B(0) = 5500 Em = 120 Fs(0) = 250
(3) Y (0) = 300 N(0) = 350 B(0) = 5000 Em = 120 Fs(0) = 250
(4) Y (0) = 100 N(0) = 550 B(0) = 4000 Em = 120 Fs(0) = 250

The variation of density of bacteria population and the infective human pop-
ulation with time is shown in Fig. 6 and 7 respectively for different values of s1,
the rate of release of bacteria from infective human population. It is seen that
the density of bacteria population increases with increase in the rate of release
of bacteria from infective human population (Fig.6). This increase in the density
of bacterial population in the environment further increases the infective human
population (Fig.7). Moreover, the increase in infective human population is more
visible if the contact rate of susceptibles with bacteria population present in the
environment is slightly enhanced.

Fig. 8 shows the variation of infective human population with time for distinct
values of λ, the transmission rate of bacterial diseases due to indirect contact of
susceptibles with bacteria present in the environment. It is seen from this figure
that with increase in the contact rate of susceptibles with bacteria population,
the infective human population increases. This increase in infective population is
due to increased cumulative density of environmental degradation which provides
conducive atmosphere for the growth of bacterial population. Thus, the spread
of bacterial diseases can be controlled if some suitable sanitation strategies are
applied to keep the environment clean thereby reducing the density of bacteria
population.

In Figs.9 and 10, the variation of bacteria population density and infective
human population is presented with time for different values of θ2, the rate of
depletion of environmental degradation due to applied sanitation effort. It is found
that the density of bacteria population declines with increase in the depletion rate
coefficient of environmental degradation due to sanitation effort applied (Fig.9).
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Figure 5. Variation of total human population with infective
population and bacteria population

Figure 6. Variation of bacteria population with time for distinct
values of s1

This reduction in the density of bacteria population, as a result of sanitation effort
applied, ultimately decreases the infective human population (Fig.10).

The effect of sanitation effort is explicitly shown in Fig. 11 and 12 on bacteria
population density and infective human population with time, respectively, for
different values of φ, the rate of sanitation effort applied which is assumed to be in
direct proportion to density of environmental degradation. It is seen from Fig.11
that the bacteria population density decreases with increase in the rate of sanita-
tion effort applied. This decreased bacteria population density due to increased
sanitation effort ultimately reduces the infective human population (Fig.12). Since
the degraded environmental conditions provide conducive breeding ground for the
growth of bacteria population density, a suitable sanitation effort is to be applied
to keep the environment clean and to curtail the bacterial population density.
Thus, the role of sanitation effort can be of vital importance to keep the spread of
bacterial diseases under control.

7. Conclusion

In this paper, we have proposed and analyzed a nonlinear mathematical model
to study the role of sanitation in a human habitat to control the spread of bacte-
rial diseases caused due to environmental degradation. In the modeling process,
both direct and indirect transmission of the disease is considered and the growth
rate of bacteria population density is modeled logistically, its intrinsic growth rate
and carrying capacity are assumed to be dependent on conducive environmental
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Figure 7. Variation of infective population with time for distinct
values of s1 and λ

Figure 8. Variation of infective population with time for distinct
values of λ

Figure 9. Variation of bacteria population with time for distinct
values of θ2

Figure 10. Variation of infective population with time for dis-
tinct values of θ2 and λ
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Figure 11. Variation of bacteria population with time for dis-
tinct values of φ

Figure 12. Variation of infective population with time for dis-
tinct values of φ and λ

degradation. The growth rate of bacteria population density is also assumed to
be directly proportional to the infective population. The cumulative density of
environmental degradation depends upon human population-related factors. To
decline the growth of the bacterial population present in the environment, san-
itation effort is applied which is modeled logistically. The proposed model has
been analyzed qualitatively using stability theory. The model exhibits four non-
negative equilibria whose stability is studied. The endemic equilibrium is found
to be locally and nonlinearly asymptotically stable under certain conditions. The
model has also been studied numerically. It has been found that if the transmis-
sion rate of bacterial diseases through indirect contact of susceptibles with bacteria
present in the degraded environment increases, the infective human population in-
creases. However, if a suitable sanitation effort is applied to keep the environment
clean, the density of bacteria population declines leading to control the spread of
bacterial diseases.
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