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Abstract. The purpose of this work is to supply a general purpose set of

algorithms for analysis of singularities applicable to all types of equations.
We present basic ideas and algorithms of Power Geometry and give a survey

of some of its applications. Here we present a procedure enabling us to dis-

tinguish all branches of a space curve near the singular point and to compute
of them parametric with any degree of accuracy. Here for a specific example

we show how this algorithm works.

1. Introduction and Main Part

Many problems in mathematics, physics, biology, economics and other sciences
are reduced to nonlinear equations or to systems of such equations. The equations
may be algebraic, ordinary differential or partial differential, and systems may
comprise the equations of one type, but may include equations of different types.
The solutions of these equations and systems subdivide into regular and singular
ones. Near a regular solution the implicit function theorem or its analogs are
applicable, which gives a description of all neighboring solutions. Near a singular
solution the implicit function theorem is inapplicable, and until recently there
had been no general appro-ach to analysis of solutions neighboring the singular
one. Although different methods of such analysis were suggested for some special
problems.

We develop a new calculus based on Power Geometry [1, 2, 3, 4]. Here we will
consider only to compute local and asymptotic expansions of solutions to nonlinear
equations of algebraic, classes. As well as to systems of such equations. But it can
also be extended to other classes of nonlinear equations for such as differential,
functional, integral, integro-differential, and so on.

Ideas and algorithms are common for all classes of equations. Computa-tion of
asymptotic expansions of solutions consists of 3 following steps (we describe them
for one equation f = 0).

1. Isolation of truncated equations f̂
(d)
j = 0 by means of generalized faces of

the convex polyhedron Γ(f) which is a generalization of the Newton polyhedron.
The first term of the expansion of a solution to the initial equation f = 0 is a

solution to the corresponding truncated equation f̂
(d)
j = 0.
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2 AKHMADJON SOLEEV

2. Finding solutions to a truncated equation f̂
(d)
j = 0 which is quasi homoge-

nous. Using power and logarithmic transformations of coordinates we can reduce

the equation f̂
(d)
j = 0 to such simple form that can be solved. Among the solutions

found we must select appropriate ones which give the first terms of asymptotic
expansions.

3. Computation of the tail of the asymptotic expansion. Each term in the
expansion is a solution of a linear equation which can be written down and solved.

Elements of plane Power Geometry were proposed by Newton for algebra-ic
equation (1670). Space Power Geometry for a nonlinear autonomous system of
ODEs were proposed by Bruno (1962) [1]. Thus, now there is exactly 50 years of
the Newton polyhedron.

It is clear that this calculus cannot be mastered during this paper. We will try
to summarize our ideas and in the next paper, we will consider this problem and
give algorithms for nonlinear systems of algebraic equations.

2. Algebraic equations [2, 3]

In this paper we consider a polynomial depending on three variables near its
singular point where the polynomial vanishes with all its first partial derivatives.
We propose a method of computation of asymptotic expansions of all branches of
the set of roots of the polynomial near the mentioned singular point. Now there
are 3 types of expansions. The method of computation Is based on the space
Power Geometry. All examples are for polynomials in two variables.

Let X = (x1, x2, x3) ⊂ R3 or C3 and f(X) be a polynomial. X0 is called to be
singular for the set F = {X : f(X) = 0} if all the partial derivatives of the first
order of the polynomial f vanish at the point X0 and f(X0) = 0.

Consider the following problem. Near the singular point X0 for each branch of
the set F , find a parameter expansion of one of the following three types [6].
Type 1

x1 =

∞∑
k=1

bkv
k, x2 =

∞∑
k=1

ckv
k, x3 =

∞∑
k=1

dkv
k,

where bk, ck, dk are constans.

Type 2

x1 =
∑

bpqu
pvq, x2 =

∑
cpqu

pvq, x3 =
∑

dpqu
pvq,

where bpq, cpq, dpq are constants and integer points (p,q) are in a sector with the
angle less than π.
Type 3

x1 =

∞∑
k=0

βk(u)v
k
, x2 =

∞∑
k=0

γk(u)v
k
, x3 =

∞∑
k=0

δk(u)v
k
,

where βk(u), γk(u), δk(u) are rational functions of u and
√
ψ(u), and ψ(u) is a

polynomial in u.
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3. Objects and algorithms of Power Geometry

Let a finite sum be given (for example, a polynomial)

f (X) =
∑

fQX
Q over Q ε S, (3.1)

where X = (x1, x2, x3) ε R3, Q = (q1, q2, q3) ε R3 and XQ = xq11 x
q2
2 x

q3
3 , fQ =

const ε R.
To each of the summand of f the sum (3.1), we assign it vector power exponent

Q, and to the whole sum (3.1), we assign the set of all vector power exponents
of its terms, which is called the support of the sum (3.1) or of the polynomial
f(X), and it is denoted by S(f). The convex hull of the support S(f) is called the
Newton polyhedron of the sum f(X) and it is denoted by Γ(f).

The boundary ∂Γ of the polyhedron Γ(f) consists of generalized faces Γ
(d)
j of

various dimensions d=0, 1, 2. Here j is the number of a face. To each generalized

face Γ
(d)
j , we assign the truncated sum f̂

(d)
j (X) =

∑
fQX

Q over Q ε Γ
(d)
j ∩ S(f).

Example 1. We consider the polynomial f (x,y) = x5 + y5 − xy2. Support
S(f ) consists from points Q1=(5,0), Q2=(0,5), Q3=(1,2).

The Newton polygon Γ(f ) is the triangle Q1Q2Q3 (figure 1). Edges and corres-
ponding truncated polynomials are

Γ
(1)
1 : f̂

(1)
1 = x5 − xy2, Γ

(1)
2 : f̂

(1)
2 = y5 − xy2, Γ

(1)
3 : f̂

(1)
3 = x5 + y5,

Let R3
∗ be a space dual to the space R3 and S = (s1, s2, s3) be points of this

dual space. The scalar product

〈Q,S〉 = q1s1 + q2s2 + q3s3 (3.2)

is defined for the points Q ε R3 and S ε R3
∗ . Specifically, the external normal Nk

to the generalized face Γ
(d)
k is a point in R3

∗.

The scalar product 〈Q,Nk〉 reaches the maximum value at the points Q ε Γ
(d)
k ∩ S,

i.e. at the points of the generalized face Γ
(d)
k . Moreover, set of all points S ε R3

∗,
at which the scalar product (3.2) reaches the maximum over Q ε S(f) exactly at

points Q ε Γ
(d)
k , is called normal cone of the generalized face Γ

(d)
k and is denoted

by U
(d)
k .

Example 2: (cont. of Example 1). For faces Γ
(d)
k of the Newton polygon Γ(f)

of Figure.1, normal cones are shown in Figure.2.

For edge Γ
(1)
j j = 1, 2, 3 normal cone U

(1)
j is a ray orthogonal to its edge.

For vertex Γ
(0)
j = Qj = Rj , j = 1, 2, 3 normal cone is open sector between rays

orthogonal to edges Γ
(1)
j adjacent to vertex Rj .

Theorem 3.1. If for t→ ∞ the curve

x1 = bts1 (1 + (o)) , x2 = cts2 (1 + (o)) , x3 = dts3 (1 + (o)) (3.3)

where b, c, d and si are constants, belongs to the set Ω, and the vector S =

(s1, s2, s3) ε U
(d)
k , then the first approximation x1 = bts1 , x2 = cts2 , x3 = dts3 of

the curve (3.3) satisfies the truncated equation f̂
(d)
k (X) = 0.
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Figure 1. *
Figure 1

Figure 2. *
Figure 2

See the proof of the theorem in the paper [2, 3].

The truncated sum f̂
(0)
j corresponding to the vertex Γ

(0)
j is //a monomial.

Such truncations are of no interest and will not be considered. We will consider
truncated sums corresponding to edges Γ

(1)
j and faces Γ

(2)
j only.

Power transformations have the form

logX = αlogY , (3.4)

where logX = (logx1, logx2, logx3)
T

, logY = (logy1, logy2, logy3)
T
, α is a nonde-

generate square 3 × 3 matrix (αij) with rational elements αij (they are often
integer).

The monomial XQ is transformed to the monomial Y Q1 by the power trans-
formation (3.4), where QT

1 = αTQT . Power transformations and multi-plications
of poly-nomial by monomial generate the affine geometry in space R3 of vector
power exponents of polynomial monomials . The matrix α with integer elements
and det α = ±1 is called unimodular.

Theorem 3.2. For the face Γ
(d)
j , there exists a power transformations (3.4) with

an unimodular matrix α which transforms the truncated sum f̂
(d)
j (X) into the

sum in d coordinates, i.e. f̂
(d)
j (X) = Y Q‘

h(Y ), where h (Y ) = h (y1) if d = 0,

h(Y ) = h(y2, y3) if d = 2. Here Q‘ =
(
q‘1, q

‘
2, q

‘
3

)
ε R3 and other coordinates y2, y3

for d = 1, y1 for d = 2 are small. For the polynomial f̂
(d)
j (X) the sum h (Y ) is

also polynomial.

The proof of this theorem is similar to the proof of theorem 3 in the paper [2].
The cone of the problem K is a set of such vectors S = (s1, s2, s3) εR3

∗ that
curves of the form (3.3) fill the part of the space (x1, x2, x3) which must be
studied. So, our initial problem corresponds to the cone of the problem K =
{S = (s1, s2, s3) : S < 0} in R3

∗, because x1, x2, x3→0. If x1→∞ then s1>0 in the
cone of the problem K.
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NEWTON POLYHEDRON IN LOCAL RESOLUTION 5

Example 3. For variables x, y near origin x = y = 0 cone of the problem is
the quadrant III: K3 = s1, s2 > 0}. In Figure 2 some cones of the problem Ki

intersects several normal cones U
(2)
j . E.g. K3 intersects U

(1)
1 , U

(1)
2 and U

(0)
1 ,

U
(0)
2 , U

(0)
3 . K1 intersects U

(1)
3 , U

(0)
1 , U

(0)
2 .

Let’s give a step-by-step algorithm for solving the problem.
1. We compute the support S(f), the Newton polyhedron Γ(f), its two-dimensi-

onal faces Γ
(2)
j and their external normal Nj . Using normal Nj we compute the

normal cones U1
k to edges Γ

(1)
k .

2. We select all the edges Γ
(1)
k and faces Γ

(2)
j , which normal cones intersect the

cone of the problem K. It is enough to select all the faces Γ
(2)
j , which external

normal Nj intersect the cone of the problem K, and then add all the edges Γ
(1)
k

of these faces
a) For each of the selected edge Γ

(1)
k , we fulfill a power transformation X → Y

of Theorem 2 and we get the truncated equation in a form h (y1) = 0.
b) We find its roots. Let y01 be one of its roots.
c) We fulfill the power transformation X → Y in the whole polynomial f(X)

and we get the polynomial f1 (Y ).
d) We make the shift z1 = y1− y01 , z2 = y2, z3 = y3 in the polynomial f1(Y )

and get the polynomial f2 (Z).
3. If y0

1 is a simple root of the equation h (y1) = 0 then, according to Implicit
Function Theorem, it corresponds to an expansion of the form y2 =

∑
apqy

p
1y

q
3

where apq are constants. It gives an expansion of type 2 in coordinates Y .

4. For each of the selected face Γ
(1)
k , we fulfill a power transformation X → Y

of Theorem 2 and we get a truncated equation in the form ĥ (y1,y2) = 0. We

factorize ĥ (y1,y2) = 0 into prime factors. Let h̃ (y1, y2)
= 0 be one of such factors and its algebraic curve has genus ρ.

5. If ρ = 0 then there exists birational uniformization y1 = ξ (z2) , y2 = η(z2)
of this curve. We change variables y1 = ξ (z2) + z1, y2 = η(z2) and then h is
divided by z1. We change variables in the whole polynomial f(X) and get the

polynomial f2(Z)
def
= f1(Y ) = f(X)

If h̃ (y1, y2) is simple factor of h(y1, y2) then roots of the polynomial f2(Z)
are expanded into series of the form

z1 =

∞∑
k=1

ak (z2) zk3 , (3.5)

where ak (z2) are rational functions of z2. It gives an expansion of type 3 in original
coordinates X.

If h̃ (y1, y2) is a multiple factor of h(y1, y2) then we compute the Newton
polyhedron of the polynomial f2(Z), compute the cone of problem
K2 = {S : s2, s3 < 0} and continue computations.

6. If ρ = 1 (elliptic curve), there exists the birational change of variables

y1, y2 → z1, z2, transforming h̃ (y1, y2) = 0 into the normal form z21 − ψ(y2),
where ψ is a polynomial of order 3 or 4.
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If ρ > 1, we distinguish hyper-elliptic and non hyper-elliptic curves. The hyper-
elliptic curve is birationally equivalent y1, y2 → z1, z2 to its normal form z21 −
ψ(y2), where ψ is a polynomial of order 2ρ+ 1 or 2ρ+ 2.

If factor h̃ of h is simple we get expansions of solutions of equation f2(Z) = 0

into series (3.5), where ak are rational functions ofz2 and
√
ψ(z2). We get the

expansion of type 3 in original coordinates X.
If h̃ (y1, y2) is a multiple factor of h(y1, y2) then we continue computation for

f2(Z) as above.
In this procedure we distinguish two cases:

(1) Truncated polynomial contains linear part of one of the variables. The
generalization of Implicit Function Theorem is applicable and it is possible
to compute parametric expansion of set of roots of full polynomial.

(2) Truncated polynomial does not contain linear part of any variable. Then
the Newton polyhedron for full polynomial must be built and we must
consider new truncated polynomials taking into account the new cone of
the problem K.

Example 4 (cont. of Examples 1-3).

(1) For edge Γ
(1)
1 , we get truncated equation x5 − xy2 = 0 i.e y = ±x2. It

is case 1, and this asymptotic form is continued into power expansion of
branch y = ±x2 +

∑∞
k=2 bkx

2k near the origin x = y = 0 (figure 3).

(2) For edge Γ
(1)
2 , we get truncated equation y5 − xy2 = 0i.ey = ±x1/3. It

is case 1, and these asymptotic forms are continued into power expansion

branches y = ± 3
√
x+

∑∞
k=2 bkx

k
3 near the origin x = y = 0 (figure 4).

Figure 3. *
Figure 3

Figure 4. *
Figure 4

(3) For edge Γ
(1)
3 , we get truncated equation x3 + y3 = 0 . It has the simple

factor x + y = 0, i.e y = −x. It is case 1, and the power expansion at
infinity is y = −x+

∑∞
k=1 bkx

−k.
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Figure 5. Figure 5

Figure 5 shows a general view of the equation f (x,y) = x5 + y5 − xy2. in the
neighborhood of a singular point.

Asymptotic description of a subset of singular points of Ω can be obtained by
the same procedure, but we have to select only singular points in each truncated
equation. As result we obtain expansions of type1.

So we got the following result: If we perform calculations for 1-4 using this
procedure , then at each step we find all the roots of the corresponding truncated
equations , and find all the curves of the roots of the truncated equations with a
positive native elliptic or hyperelliptic, we get a local descri-ption of each compo-
nent of the set Ω adjacent to the starting point X0, in the form of expansions of
types 1-3.
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