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Abstract. In this article, by utilizing the monotone iterative strategy cou-
pled with the strategy of upper and lower solutions, we get the existence of

extremal iteration solution to generalized differential equations under bound-
ary conditions of type Riemann-Stieltjes, which at the same time provides

the principle of comparison for these solutions. The results obtained are

illustrated with appropriate examples.

♣ Note to author: Use 2000 Mathematics Subject Classification.

1. Preliminaries

The notion of derivative is in the very essence of Ordinary Calculus, and it
has attracted attention of many researchers and mathematicians such as New-
ton, L’Hospital, Leibniz, Abel, Euler, Riemann, etc. Later, several types of frac-
tional derivatives, what will we denote Dα, have been introduced to date Eu-
ler, Riemann–Liouville, Abel, Fourier, Caputo, Hadamard, Grunwald–Letnikov,
Miller–Ross, Riesz among others, extended the derivative concept to fractional
order derivative (see [10], [13] and [14]).

In recent years, Fractional and Generalized Calculus has received a lot of the
attention, not only in Pure Mathematics, but in multiple fields of applied science.
Between its own theoretical development and the multiplicity of applications, the
field has grown rapidly in recent years, in such a way that a single definition of
the fractional derivative or integral does not exist, or at least is not unanimously
accepted, in [2] suggests and justifies the idea of a fairly complete classification
of the known operators of the Generalized and Fractional Calculus, we can also
point out that in the work the authors study this phenomenon and support the
appearance of various operators, both in theoretical and practical research. Let
us point out that these developments have been obtained in different contexts,
and not with a single starting point, that is, they are taken as a basis, from the
Riemann-Liouville integral, to that of Katugampola, through other formulations
such as Weyl’s, Hadamard, or Erdelyi-Kober, in this way various authors have
defined different integral operators, even from different notions of generalized local
derivatives, this last point of view is the one present in our work.
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We believe that it is convenient to take into account the historical route that
is presented in Chapter 1 of [1] where a historic route of differential operators,
whether local or global, is made, starting from Newton’s classical formulation and
arriving at Caputo’s Definition, which serves as the basis for presenting a differen-
tial operator, with a new parameter, and providing a great variety of applications,
taking into account the difference between both types of differential operators,
global and local. A seminal question is addressed in 1.5.1 (p.24), where sentence
“We can therefore conclude that both the Riemann-Liouville and Caputo opera-
tors are not derivatives, and then they are not fractional derivatives, but fractional
operators. We agree with the result [15] that, the local fractional operator is not a
fractional derivative” (p.24). For all the above, we can affirm that there is a great
variety of integral operators, which have proven their usefulness in solving a great
variety of applications and in successive theoretical developments.

Classical fractional differential operators have a group of known deficiencies,
although local operators appeared in the 60s, it was not until 2014 that these
disadvantages were overcome when Khalil et al. [9], defined and formalized the
operators using the classic idea of the limit of a certain incremental quotient and
obtained a derivative that was called conformable, in 2018, a new work direction
was opened when what was called non-conformable was introduced (see [6] and
[11]). These differential (local) operators have proven their usefulness in multiple
applications, for example [2, 3, 8, 4, 5, 12, 7].

Motivated by the above works, we consider the existence of solutions for the
following nonlinear conformable fractional differential equation involving integral
boundary condition, using the method of upper and lower solutions and its asso-
ciated monotone iterative technique

Nα
1 u(t) = f(t, u(t)), t ∈ (0, 1)

u(0) =

∫ 1

0

u(t)dµ(t)
(1.1)

where f ∈ C((0, 1)× R,R),
∫ 1

0
x(t)dµ(t) denotes the Riemann-Stieltjes integral

with positive Stieltjes measure of µ, and Nα
1 f(t) stands for the N -derivative.

Definition 1.1. Let f : [0,+∞) → R a function. Then the N -derivative of f of

order α is defined by Nα
1 f(t) = lim

h→0

f
(
t+ het

−α
)
− f(t)

h
for all t > 0, α ∈ (0, 1).

If f is α−differentiable in some (0, a), and limt→0+ N (α)
1 f(t) exists, then define

N (α)
1 f(0) = lim

t→0+
N (α)

1 f(t)

Lemma 1.2. Let f : [0,+∞)→ R be differentiable, then

Nα
1 f(t) = et

−α
f ′(t)

Theorem 1.3 (Mean value theorem). Let [a, b] ⊂ [0,+∞), and let f : [0,+∞)→
R. Suppose that Let f be a continuous on [a, b] and suppose that f is differentiable
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(a) Graphics f(x) = sin(x), Nα
1 f(x) for

α = 1, 2, 4, 6, 8, 10 and f ′(x).
(b) Graphics absolute error between
f ′(x) and Nα

1 f(x).

Figure 1. Graphics of comparison between f ′(x) and Nα
1 f(x).

on [a, b]. Then there exists a constant ξ ∈ (a, b), such that

e−ξ
−α
Nα

1 f(ξ) =
f(b)− f(a)

b− a

Proof. By the lemma 1.2 we know that Nα
1 f(t) = et

−α
f ′(t), so

f(t) =

∫ t

0

Nα
1 f(τ)e−τ

−α
dτ

∴
f(b)− f(a)

b− a
= Nα

1 f(ξ)e−ξ
−α

�

Definition 1.4. Let f : [0,+∞) → R be differentiable, the inverse of the N -
derivative is defined as

Nα
−1F (s) =

∫ s

0

e−τ
−α
F (τ)dτ

Lemma 1.5. Let f : [0,+∞)→ R be differentiable and 0 < α < 1. Then, for all
t > 0 we have

Nα
−1Nα

1 f(t) = f(t)− f(0) (1.2)

Nα
1 Nα
−1f(s) = f(s) (1.3)

1.1. Properties. Let f and g be N -differentiable at a point t > 0 and α ∈ (0, 1].
Then

(1) Nα
1 (af + bg)(t) = aNα

1 (f)(t) + bNα
1 (g)(t)

(2) Nα
1 (tq) = et

−α
qtq−1, q ∈ R.

(3) Nα
1 (C) = 0, C constant.

(4) Nα
1 (fg)(t) = fNα

1 (g)(t) + gNα
1 (f)(t)

(5) Nα
1

(
f
g

)
(t) =

gNα1 (f)(t)−fNα1 (g)(t)
g2(t)
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Figure 2. Graphics f(x) = sin(x), Nα
−1f(x) for α =

1, 2, 4, 6, 8, 1000 and
∫ x

0
f(s)ds.

(6) If, in addition, f is differentiable then Nα
1 (f) = et

−α
f ′(t).

(7) Being f differentiable and α = n integer, we have Nn
1 (f)(t) = et

−n
f ′(t).

Remark 1.6. with observation 6 we can obtain properties for the trigonetric, ex-
ponential and logarithmic functions, so in this way we can try to solve differential
equations using this method.

Definition 1.7. A function u ∈ C((0, 1),R) is known as a lower solution of (1.1),
if it satisfies

Nα
1 u(t) ≤f(t, u(t)), t ∈ (0, 1)

u(0) ≤
∫ 1

0

u(t)dµ(t)
(1.4)

If inequalities (1.4) are reversed, then u is an upper solution of problem (1.1) .

Lemma 1.8. Let 0 < α < 1, a ∈ R and A,B ∈ C((0, 1),R). Next, we present the
following existence and uniqueness results for linear equations.

Nα
1 u(t) =−A(t)u(t) +B(t), t ∈ (0, 1)

u(0) =

∫ 1

0

u(t)dµ(t) + a
(1.5)
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If Γα = 1−
∫ 1

0

e−N
α
−1A(t)dµ(t) 6= 0 then the equation has a unique solution

u(t) = e−N
α
−1A(t)

[
u(0) +Nα

−1

(
B(t)eN

α
−1A(t)

)]
(1.6)

Proof. Multiplying both sides of the first equation of the problem (1.5) by eN
α
−1A(t)

and using Lemma 1.2, we can get

eN
α
−1A(t)N a

1 u(t) +A(t)u(t)eN
α
−1A(t) = B(t)eN

α
−1A(t)

In other words, by means of the product rule (item 4 of the properties above ),
equality turns to

Nα
1

[
eN

α
−1A(t)u(t)

]
= B(t)eN

α
−1A(t) (1.7)

Applying Nα
−1 to both and (1.2) side of (1.7), we have

eN
α
−1A(t)u(t)− u(0) = Nα

−1

(
B(t)eN

α
−1A(t)

)
(1.8)

u(t)− u(0)e−N
α
−1A(t) = e−N

α
−1A(t)Nα

−1

(
B(t)eN

α
−1A(t)

)
(1.9)

Then

u(t) = e−
∫ t
0
e−τ

−α
A(τ)dτ

(
u(0) +

∫ t

0

e−τ
−α
B(τ)eN

α
−1A(τ)dτ

)
(1.10)

From the equation (1.9) we obtain:∫ 1

0

[
u(t)− u(0)e−N

α
−1A(t)

]
dµ(t) =

∫ 1

0

[
e−N

α
−1A(t)Nα

−1

(
B(t)eN

α
−1A(t)

)]
dµ(t)∫ 1

0

u(t)dµ(t)− u(0)

∫ 1

0

e−N
α
−1A(t)dµ(t) =

∫ 1

0

[
e−N

α
−1A(t)Nα

−1

(
B(t)eN

α
−1A(t)

)]
dµ(t)

From the hypothesis (1.5) we obtain:

u(0)

(
1−

∫ 1

0

e−N
α
−1A(t)dµ(t)

)
= a+

∫ 1

0

[
e−N

α
−1A(t)Nα

−1

(
B(t)eN

α
−1A(t)

)]
dµ(t)

If Γα =
(

1−
∫ 1

0
e−N

α
−1A(t)dµ(t)

)
6= 0 then problem (1.5) has a unique solution,

beside

u(0) =

a+

∫ 1

0

[
e−N

α
−1A(t)Nα

−1

(
B(t)eN

α
−1A(t)

)]
dµ(t)

1−
∫ 1

0

e−N
α
−1A(t)dµ(t)

(1.11)

�

Example 1.9. Consider the differential equation

N 1
1 u = −

(
e

1
t sin (t)

)
u+ t2ecos (t)−1+ 1

t , u(0) = 1 (1.12)
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Here A(t) = e
1
t sin (t) and B(t) = t2ecos (t)−1+ 1

t . So by (1.6) we obtain:

u(t) =

(
t3

3
+ 1

)
ecos (t)−1

Figure 3. Flux of the equation (1.12).

Lemma 1.10. Let 0 < α < 1. Suppose that A, u ∈ C((0, 1),R) satisfies
Nα

1 u(t) ≤ −A(t)u(t) +B(t), t ∈ (0, 1)

u(0) ≤
∫ 1

0

u(t)dµ(t) + a

Then u(t) ≤ 0 on (0, 1) provided Γα > 0.

Proof. Let B(t) = Nα
1 u(t) +A(t)u(t) and a = u(0)−

∫ 1

0

u(t)dµ(t), we know that

B(t) ≤ 0, a ≤ 0 and
Nα

1 u(t) = −A(t)u(t) +B(t), t ∈ (0, 1)

u(0) =

∫ 1

0

u(t)dµ(t) + a

Using Γα > 0, we have then by (1.10), we can conclude that

u(t) ≤ u(0)e−N
α
−1A(t) ≤ 0
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The proof is complete. �

2. Main Results

In this section, we prove the existence of extremal solutions for conformable
fractional differential equations involving integral boundary condition. For conve-
nience, we list some assumptions.

H1: f : (0, 1)× R→ R is continuous.
H2: Assume that ν0, ω0 ∈ E = C(0, 1) is lower and upper solution of prob-

lem (1.1), and ν0(t) ≤ ω0(t)
H3: There exists a function A ∈ E with Γα > 0 which satisfies.

f(t, x)− f(t, x) ≤ A(t)(x̄− x)

for ν0(t) ≤ x ≤ x ≤ ω0(t)

Theorem 2.1. Assume that H1, H2 and H3 hold. Then there exist monotone
iterative sequences {νn}∞n=0 , {ωn}

∞
i=0 ⊂ E such that

lim
n→∞

νn = v, lim
n→∞

ωn = w

uniformly on (0, 1), and v, w are the extremal solutions of problem (1.1) in the
sector [ν0, ω0] = {g ∈ E : ν0(t) ≤ g(t) ≤ ω0(t), 0 < t < 1}

Proof. For all νm, ωn ∈ E, let
Nα

1 νn+1(t) = f (t, νn(t))−A(t) (νn+1(t)− νn(t)) , t ∈ (0, 1)

Nα
1 ωn+1(t) = f (t, ωn(t))−A(t) (ωn+1(t)− ωn(t)) , t ∈ (0, 1)

νn+1(0) =

∫ 1

0

νn+1(t)dµ(t), ωn+1(0) =

∫ 1

0

ωn+1(t)dµ(t)

(2.1)

Thus, the iterative sequences {νn} and {ωn} can be constructed by Lemma 1.8.
Firstly, we shall prove that

νn ≤ νn+1 ≤ ωn+1 ≤ ωn, n = 0, 1, 2, . . .

Let p = ν0 − ν1. According to (2.1) and definition 1.7, we have{
Nα

1 p(t) = Nα
1 ν0(t)−Nα

1 ν1(t) ≤ f (t, ν0(t))− f (t, ν0(t)) +A(t) (ν1(t)− ν0(t)) , t ∈ (0, 1)

p(0) ≤
∫ 1

0
ν0(t)dµ(t)−

∫ 1

0
ν1(t)dµ(t)

i.e., 
Nα

1 p(t) ≤ −A(t)p(t), t ∈ (0, 1)

p(0) ≤
∫ 1

0

p(t)dµ(t)

Therefore, by lemma 1.10 we have ν0(t) ≤ ν1(t). Similarly, we can prove that
ω1(t) ≤ w0(t), t ∈ (0, 1) Now, let r = ν1 − ω1, according to (2.1) and (H3), we
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have

Nα
1 r(t) = f (t, ν0(t))− f (t, tu0(t))−A(t) (ν1(t)− ν0(t)− ω1(t) + ω0(t))

≤ A(t) (ω0(t)− ν0(t))−A(t) (ν1(t)− ν0(t)− ω1(t) + ω0(t))

= −A(t)r(t)

r(0) =

∫ 1

0

r(t)dµ(t).

By lemma 1.10, we have ν1(t) ≤ ω1(t), t ∈ (0, 1).
Secondly, we show that ν1, ω1 are lower and upper solutions of (1.1), respec-

tively.

Nα
1 ν1(t) = f (t, ν0(t))−A(t) (ν1(t)− ν0(t))− f (t, ν1(t)) + f (t, ν1(t))

≤ A(t) (ν1(t)− ν0(t))−A(t) (ν1(t)− ν0(t)) + f (t, ν1(t))

= f (t, ν1(t))

ν1(0) =

∫ 1

0

ν1(t)dµ(t)

According to (H3) and definition 1.7, we deduce that ν1 is a lower solution of
(1.1). Similarly, ω1 is a upper solutions of (1.1). By the above arguments and
mathematical induction, it is clear that

ν0 ≤ · · · ≤ νn ≤ νn+1 ≤ ωn+1 ≤ ωn ≤ · · · ≤ ω0, n = 0, 1, 2, . . . (2.2)

Thirdly, we show that limn→∞ νn = v, limu→∞ ωn = w. Hence, we need to
conclude that νn, ωn are uniformly bounded and equicontinuous on (0, 1). Ob-
viously, the uniform boundedness of sequences νn, ωn follows from (2.2). Thus,
there exists L > 0 such that

|f (t, νn(t))−A(t) (νn+1(t)− νn(t))| ≤ L
and

|f (t, ωn(t))−A(t) (ωn+1(t)− ωn(t))| ≤ L
Using Theorem 1.3, we get

|νn (t1)− νn (t2)| = 1

α
|Dανn(ξ)| |tα1 − tα2 |

=
1

α
|f (ξ, νn−1(ξ))−M(ξ) (νn(ξ)− νn−1(ξ))| |tα1 − tα2 |

Therefore, {νn} are equicontinuous. Similarly, we obtain that {ωn} are equicon-
tinuous too. By Arzela-Ascoli Theorems, we conclude that {νn} , {ωn} have sub-
sequences {νnk} , {ωnk} such that {νnk} → v, and {ωnk} → w when k →∞. This
together with the monotonicity of sequences {νn} and {ωn} implies

lim
n→∞

νn(t) = v(t), lim
n→∞

ωn(t) = w(t)

uniformly on (0, 1). Please note that the sequence {νn} satisfies
νn(t) = e−N

α
−1A(t) [νn−1(0) +Rνn−1(t)] , t ∈ (0, 1)

νn(0) =

∫ 1

0

νn(t)dµ(t), n = 1, 2, . . .
(2.3)
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where

Rνn−1(t) = Nα
−1

[
(f (t, νn−1(s)) +A(s)νn−1(s)) eN

α
−1A(t)

]
Let n→∞ in (9) . We have{

v(t) = e−N
α
−1A(t)[v(0) +Rv(t)], t ∈ (0, 1)

v(0) =
∫ 1

0
v(t)dµ(t)

This shows that v is a solution of the nonlinear problem (1). Similarly, we obtain
to is a solution of the nonlinear problem (1) too. And

ν0(t) ≤ v(t) ≤ w(t) ≤ ω0(t), t ∈ (0, 1)

Finally, we are going to prove that v, to are minimal and maximal solutions of (1.1)
in the sector [ν0, ω0]. In the following, we show this using induction arguments.
Suppose that g(t) is any solution of (1.1) in the [ν0, ω0] that is

ν0(t) ≤ g(t) ≤ ω0(t), t ∈ (0, 1)

Assume that νn(t) ≤ g(t) ≤ ωn(t) hold. Let p(t) = νn+1(t)− g(t), we have

Nα
1 p(t) = Nα

1 νm+1(t)−Nα
1 g(t)

= f (t, νn(t))−A(t) (νn+1(t)− νn(t))− f(t, g(t))

≤ A(t) (g(t)− νn(t))−A(t) (νn+1(t)− νn(t))

= −A(t)p(t)

p(0) =

∫ 1

0

p(t)dµ(t)

Then, by lemma 1.10, we have νn+1(t) ≤ g(t), t ∈ (0, 1). By similar method, we
can show that g(t) ≤ ωn+1(t), t ∈ (0, 1). Therefore,

νn ≤ g ≤ ωn, n = 1, 2, . . .

By taking n → ∞ in the above inequalities, we get that v ≤ g ≤ w. That is v, w
are extremal solutions of problem (1.1) in [ν0, ω0]. Thus, the proof is finished.

�

3. Conclusions

In this article, using the monotone iterative technique we investigate the exis-
tence results for extremal solutions of some generalized differential equations. A
fundamental detail is that almost all the results derived in the paper are more-
or-less straightforward extensions of well-known results from the theory of the
first-order ordinary differential equations, since the generalized derivative is a ver-
sion of the first-order derivative.
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