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Abstract. In the paper PT-symmetric Schrodinger operator on the lasso
graph is considered. The spectral properties of this operator are investigated
and related inverse problem is solved. An effective algorithm for solving the
inverse problem is given and the uniqueness theorem is proved.
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1. Introduction

The main purpose of the present work is to solve the inverse problem for the PT-
symmetric Hill operator on the lasso graph where the P-symmetry transformation
(reflection of spatial coordinates) consists, for example, in changing the sign in
front of the coordinate operator, and the T-symmetry transformation (time re-
versal) consists in changing the sign of the impulse (but not the coordinate), as
well as replacing i on −i . By lasso graph, half-line attached to a loop is to be
understood.

Let there be given the non-compact graph G where an edge is attached to a
loop. The non-compact part of the graph is a ray γ0 = {x| 0 < x < ∞} , compact
part is the loop γ1 = {z| 0 < z < 2π} whose length we take equal to 2π and with
γ2 = {{x = 0} = {z = 0} = {z = 2π}} corresponding to the attachment point.
We investigate the spectral problem describing the one-dimensional scattering of
a quantum particle on G. Namely, we consider the problem

−Y ′′ + {q(X)− λ2}Y = 0, X ∈ G\{γ2}
Y (x = 0) = Y (z = 0) = Y (z = 2π),
Y ′(x = 0 + 0) + Y ′(z = 0 + 0)− Y ′(z = 2π − 0) = 0

(1.1)

In (1.1) differentiation with respect to the variable X is understood as differen-
tiation with respect to x, when X ∈ γ0, and as differentiation with respect to z,
when X ∈ γ1. Differentiation is not defined at the vertices.

We assume that the potential

q(X) =





q1(x) =
∞∑

n=1
q1neinx, X ∈ γ0

q2(z) =
∞∑

n=1
q2neinz, X ∈ γ1

(1.2)
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is defined as a complex valued function on the G with
∞∑

n=1
|qkn| < ∞, k = 1, 2;

and λ is a spectral parameter.
Then the resulting Hill operator will be as follows

Y ′′(X) + q(X)Y (X), X ∈ G.

More precisely, on the Hilbert space L2(G) with norm

‖f‖L2(G) = {‖f‖2L2(γ0)
+ ‖f‖2L2(γ1)

}1/2
we introduce the operator L with domain

D(L) =



Y (X), X ∈ G|

Y (X) ∈ H2(γ0) ∪H2(γ1)
Y (x = 0) = Y (z = 0) = Y (z = 2π)

Y ′(x = 0 + 0) + Y ′(z = 0 + 0)− Y ′(z = 2π − 0) = 0





where Hk(k = 1, 2, ..) are the usual Sobolev spaces.
The potentials considered in the paper have the form

q(x) =
∞∑

n=1

qneinx,

where, in particular, for the numbers qn = qn the potential will be PT-
symmetric, i.e. q(x) = q(−x).

Spectral analysis of operator with the potential of type (1.2) firstly was studied
by M.G.Gasymov [13], where he proved the existence of the solution f(x, λ) for
the equation

−y′′(x) + q(x)y(x) = λ2y (x)
in L2(−∞, +∞) of the form

f (x, λ) = eiλx

(
1 +

∞∑
n=1

1
n + 2λ

∞∑
α=n

Vnαeiαx

)
,

where the series

∞∑
n=1

1
n

∞∑
α=n+1

α (α− n) |Vnα|;
∞∑

n=1

n |Vnn|

converge.
He also discussed the corresponding inverse spectral problem of finding the

potential q(x) for given so-called ”normalizing” numbers Vnn, where the key role
played the relation

lim
λ→n

2

(n− 2λ) f (x,−λ) = Vnnf
(
x,

n

2

)
. (1.3)

As a final remark relating to the potential of the type (1.2), we mention the
works K.Shin [21], R.Carlson [5,6],Guillemin and V., Uribe A [15], L.Pastur and
V. Tkachenko [20] and [3,7-19,16]. More information about the potentials can be
found in [13].

Let us to mention some close results.
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Without a claim of completeness of investigation of inverse problems on graphs
with loop here are listed the works of Akhyamov A.M, Trooshin I.Y [1], Gomilko
A.M. and Pivovarchik V.N[14], Exner P. [11], Berkolaiko G.[2], Kurasov P [17],
Mochizuki K. and Trooshin I.Yu. [19] .

Moreover, the potential on graphs with loop (including the potential on loop
edge) can be constructed by reflection coefficients and two spectra. In order to
solve the inverse problem effective algorithm is given.

Let us review briefly the contents of the paper. The Hamiltonian of the model
is introduced in Section 1. Next, its spectral properties are derived in Section
2. In Section 3 we give a formulation of the inverse problem, prove the unique-
ness theorem and provide a constructive procedure for the solution of the inverse
problem.

2. General solution

Suppose that f(x, λ), x ∈ γ0 is the Jost solution for equation

−Y ′′ + {q(X)− λ2}Y = 0 (2.1)

which satisfies the asymptotic condition f(x, λ) → eiλx (x →∞). Then it can be
constructed analogously [13], by the following theorem

Theorem 2.1. Let q(X) be in the form of (1.2). Then equation (2.1) has on γ0

linearly independent solutions of the form

f(x,±λ) = eiλx(1 +
∞∑

n=1

1
n± 2λ

∞∑
α=n

V γ0
nαeiαx), x ∈ γ0, (2.2)

where the numbers V γ0
nα are determined by the following recurrent relations





α(α− n)V γ0
nα +

α−1∑
s=n

q1α−sV
γ0
ns = 0, 1 ≤ n < α

α
α∑

n=1
V γ0

nα + q1α = 0;
(2.3)

the series

∞∑
n=1

1
n

∞∑
α=n+1

α (α− n) |V γ0
nα|;

∞∑
n=1

n |V γ0
nn |

are converged and fulfilled the relation

lim
λ→∓n

2

(n± 2λ)f(x,±λ) = V γ0
nnf(x,∓n

2
) (2.4)

or that the same

V γ0
mα+m = V γ0

mm

α∑
n=1

V γ0
nn

n + m
, α = 1, 2, ...; (2.5)
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The proof of the theorem is similar to one from [13] and therefore we do not
give it here.

For any real λ 6= 0 the Wronskian of the functions f(x, λ), f(x,−λ) is

W [f(x, λ), f(x,−λ)] = f(x, λ)f ′(x,−λ)− f ′(x, λ)f(x,−λ) = 2iλ.

This implies that these two functions form a fundamental system of solutions
of equation (2.1) in γ0 = {x| 0 < x < ∞}, and thus, if y(x, λ) satisfies (2.1) for
any real λ 6= 0 then we have some constants C(λ), D(λ) such that

y(x, λ) = C(λ)f(x, λ) + D(λ)f(x,−λ), x ∈ γ0

Then, easy to see that, we can seek the solution to the spectral problem on
γ0 = {x| 0 < x < ∞} in the form

y(x, λ) = f(x,−λ) + R11(λ)f(x, λ), x ∈ γ0

where R11(λ) baseing on Marchenko [20] we call as reflection coefficients.
The general solution u(z, λ) for z ∈ γ1 = {z| 0 < z < 2π} of equation (2.1) we

will attempt to find via its Green function.
Let ϕ(z, λ), θ(z, λ) be linear independent solutions of equation (2.1) on the loop

γ1 , satisfying the initial conditions

ϕ(0, λ) = θ′(0, λ) = 1
ϕ′(0, λ) = θ(0, λ) = 0 .

Note that their Wronskian is W [ϕ(z, λ), θ(z, λ)] = 1.
The Green’s function on the loop γ1 = {z| 0 < z < 2π} can be constructed

by means of the fundamental solutions ϕ(z, λ), θ(z, λ) taking into account the
following boundary conditions

G(0, t, λ) = G(2π, t, λ)
G′(0, t, λ) = G′(2π, t, λ)
G′z(t + 0, t, λ)−G′z(t− 0, t, λ) = −1
lim

z→t+0
G(z, t, λ) = lim

z→t−0
G(z, t, λ).

(2.6)

Then by virtue of (2.6), we have

G(z, t, λ) = θ(t,λ)+ϕ(t,λ)θ(2π,λ)−θ(t,λ)ϕ(2π,λ)
ϕ(2π,λ)+θ′(2π,λ)−2 ϕ (z, λ)+

+ϕ(t,λ)θ′(2π,λ)−θ(t,λ)ϕ′(2π,λ)−ϕ(t,λ)
ϕ(2π,λ)+θ′(2π,λ)−2 θ(z, λ), t ≥ z

G(z, t, λ) = ϕ(t,λ)θ(2π,λ)+θ′(2π,λ)ϕ(t,λ)−θ(,λ)
ϕ(2π,λ)+θ′(2π,λ)−2 ϕ (z, λ)+

+ϕ(y,λ)−ϕ(y,λ)ϕ(2π,λ)−θ(y,λ)ϕ′(2π,λ)
ϕ(2π,λ)+θ′(2π,λ)−2 θ(z, λ), t ≤ z.

Then easy to see that the function

G(z, 0, λ) = G(z, 2π, λ) = θ(2π,λ)
ϕ(2π,λ)+θ′(2π,λ)−2ϕ (z, λ)+

+ 1−ϕ(2π,λ)
ϕ(2π,λ)+θ′(2π,λ)−2θ(z, λ).

(2.7)

is a solution of equation (2.1) on the loop γ1 = {z| 0 < z < 2π} up to constant .
So, we can take as a solution on the loop γ1 the function
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u(z, λ) = αG(z, 0, λ) (2.8)

where α is any constant. So, the following theorem is proved.

Theorem 2.2. For any real λ 6= 0 problem (1.1-1.2) on the non-compact graph
G has a solution of the form

Y (X, λ) =
{

y(x, λ = f(x,−λ) + R11(λ)f(x, λ), X ∈ γ0

u(z, λ) = αG(z, 0, λ) X ∈ γ1
(2.9)

Let us find R11(λ) on such way that the solution of the form (2.9) would satisfy
boundary conditions in (1.1)
From the the boundary conditions in (1.1) we have

f (0,−λ) + R11(λ)f (0, λ) = αG(0, 0, λ) = αG(2π, 0, λ)
f ′ (0,−λ) + R11(λ)f ′ (0, λ) + α[G′z(0 + 0, 0, λ)−G′z(0− 0, 0, λ]) = 0.

Taking into account the boundary conditions (2.6) for the Green function on the
loop, we obtain

f (0,−λ) + R11(λ)f (0, λ) = αG(0, 0, λ)
f ′ (0,−λ) + R11(λ)f ′ (0, λ) = α.

(2.10)

Thus

f (0,−λ) + R11(λ)f (0, λ) = [f ′ (0,−λ) + R11(λ)f ′ (0, λ)]G(0, 0, λ).

So, we get the following relations that will be used in future

G(0, 0, λ) =
f(0,−λ) + R11(λ)f(0, λ)
f ′(0,−λ) + R11(λ)f ′(0, λ)

(2.11)

and

R11 (λ) =
α− f ′(0,−λ)

f ′(0, λ)
= −f(0,−λ)−G(0, 0, λ)f ′(0,−λ)

f(0, λ)−G(0, 0, λ)f ′(0, λ)
. (2.12)

3. The Inverse Spectral Problem On Lasso Graph

If the graph has at least one loop, then the potential on the loop cannot be
reconstructed using local methods: calculation of the potential requires consider-
ation of the whole loop at once.

The main idea of the solution of the inverse problem for the considered system is
its reduction two independent problems of reconstruction of the potential q(X) =
[q1(x), q2(z)], to recover q1(x) on the edge γ0 and to recover q2(z) on the edge γ1.
Since the coefficients R11(λ) can be found by using matching conditions

y (0) = u (0) = u (2π)

and
y′ (0 + 0) + u′ (0 + 0)− u′ (2π − 0) = 0
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at the central vertex, it is natural to formulate inverse problem - recovering of
the potential q(X) at non-compact graph G by reflection coefficient, the set of
eigenvalues of Dirichlet problems

−u′′(z, λ) + q2(z)u(z, λ) = λ2u(z, λ), z ∈ [0, 2π]
u(0, λ) = u(2π, λ) = 0 (3.1)

and the spectrum of Neumann boundary value problem

−u′′(z, λ) + q2(z)u(z, λ) = λ2u(z, λ), z ∈ [0, 2π]
u′(0, λ) = u′(2π, λ) = 0 (3.2)

Inverse problem: Given the spectral data: {λn} - the spectrum of the Dirichlet
problem (3.1), {µn}- the spectrum of Neumann boundary value problem (3.2) and
reflection coefficient R11(λ), construct the potential q(X).

Lemma 3.1. All numbers V γ0
nn can be determined by specifying the reflection co-

efficients R11(λ) as

lim
λ→n

2

(n− 2λ)R11(λ) = −V γ0
nn

Proof. Indeed , from relation (2.12), we get

R11 (λ) =
α− f ′(0,−λ)

f ′(0, λ)

Then by using (2.4), we have

lim
λ→n

2

(n− 2λ)R11 (λ) = lim
λ→n

2

(n− 2λ)α−f ′(0,−λ)
f ′(0,λ) =

= lim
λ→n

2

(n−2λ)α−(n−2λ)f ′(0,−λ)
f ′(0,λ) = − lim

λ→n
2

(n−2λ)f ′(0,−λ)
f ′(0,λ) = −V γ0

nn

.
Note that

V γ0
m,α+m = V γ0

m,m

α∑
n=1

V γ0
n,α

n + m
, α = 1, 2, ..

are fundamental equations for defining q1n from V γ0
nn . In fact, if V γ0

nn are known,
then (2.3) gives recurrent formulas for defining V γ0

nα . Thus, for the numbers V γ0
nn

the function q1(x) may be reconstructed uniquely and effectively. ¤
Theorem 3.2. The specification of spectral data uniquely determines the potential
q(X).

Proof. All numbers q1n can be determined from (2.3) by using the ”normalizing”
numbers V γ0

nn and the potential q1(x) may be reconstructed using above given
algorithm uniquely and effectively on the edge γ0.

Since specifying numbers V γ0
nn makes possible to construct the function f (x, λ),

then knowing the reflection coefficient R11(k), we can find values of the spectral
parameter λ that are roots of the equation

f ′ (0,−λ) + R11(λ)f ′ (0, λ) = 0. (3.3)
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Then from (2.10) we directly see that for these λ , α = 0 and from (2.8) obtain
that the solution to the spectral problem on the loop must satisfy the boundary
conditions

u(0, λ) = u(2π, λ) = 0,
u′(0, λ) = u′(2π, λ) = 0.

Let us consider the problem of reconstruction of the potential q2(z) on the loop
γ1. As initial data, we take the sequences {λn} and {µn} where the first of which
coincides with eigenvalues of the spectral problem (3.1) and the second determines
the eigenvalue of problem (3.2). Then it is noticeable that {λn} and {µn} coincide
with the zeros of

Φ1(λ) = θ(2π, λ),
Φ2(µ) = ϕ′(2π, µ)

that means that the functions θ(2π, λ) and ϕ′(2π, µ) can be recovered by using
{λn} - eigenvalues of spectral problem (3.1) and {µn}-the eigenvalue of problem
(3.2) respectively.

Let us introduce the function

S (λ) =
g′(0, λ) + iλg(0, λ)

g′(0,−λ) + iλg(0,−λ)
which will play an important role in solving the inverse problem on the loop.
Here the function g(z, λ) is a solution of the problem

−u′′(z, λ) + q(z)u(z, λ) = λ2u(z, λ) (3.4)
in the space L2[0,∞) with the potential

q (z) =
{

q2(z) on z ∈ [0, 2π]
0 on z > 2π

with the boundary condition u′(0) = 0 and moreover fulfilling the condition

lim
Imz→∞

g(z, λ)e−iλz = 1.

Then, from [13] follows that, g(z, λ) can be represented as

g(z, λ) =
{

f̃(z, λ) on z ∈ [0, 2π]
eiλz on z > 2π,

where

f̃(z, λ) = eiλz(1 +
∞∑

n=1

∞∑
α=n

V γ1
nα

n + 2λ
eiαz).

The numbers V γ1
nα are determined by the following recurrent relations




α(α− n)V γ1
nα +

α−1∑
s=n

q2α−sV
γ1
ns = 0, 1 ≤ n < α

α
α∑

n=1
V γ1

nα + q2α = 0,
(3.5)

where the series
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∞∑
n=1

1
n

∞∑
α=n+1

α (α− n) |V γ1
nα|;

∞∑
n=1

n |V γ1
nn |

converge and the relation

lim
λ→∓n

2

(n± 2λ)f̃(z,±λ) = V γ1
nn f̃(z,∓n

2
) (3.6)

is fulfilled.
¤

Lemma 3.3. For the solution g(x, λ) of equation (19), the relation

g(z, λ) = e2iλπ[θ′(2π, λ)− iλθ(2π, λ)]ϕ(z, λ) + e2iλπ[iλϕ(2π, λ)− ϕ′(2π, λ)]θ(z, λ)

is fulfilled.

From the Lemma 2 we have

g(0, λ) = e2iλπ[θ′(2π, λ)− iλθ(2π, λ)]
g′(0, λ) = e2iλπ[iλϕ(2π, λ)− ϕ′(2π, λ)]

or

g′(0, λ) + iλg(0, λ) = e2iλπ[iλ(θ′(2π, λ) + ϕ(2π, λ)) + λ2θ(2π, λ)− ϕ′(2π, λ)] =
= e2iλπ[iλF (λ) + λ2θ(2π, λ)− ϕ′(2π, λ)]

where F (λ) = θ′(2π, λ) + ϕ(2π, λ) is a Lyapunov function (Hill discriminant).
Taking into account formulas (10) and (14) we have

G(0, 0, λ) =
θ(2π, λ)

ϕ(2π, λ) + θ′(2π, λ)− 2
=

f(0,−λ) + R11 (λ) f(0, λ)
f ′(0,−λ) + R11 (λ) f ′(0, λ)

Lemma 3.4. Zeros of the functions f(0,−λ) + R11 (λ) f(0, λ) and f ′(0,−λ) +
R11 (λ) f ′(0, λ) do not coincide.

Proof. Let us assume contrary. Let λ∗ be a common root for both functions. Then

f(0,−λ∗) + R11 (λ∗) f(0, λ∗) = 0,

f ′(0,−λ∗) + R11 (λ∗) f ′(0, λ∗) = 0,

from that we have

R11 (λ∗) = −f(0,−λ∗)
f(0, λ∗)

= −f ′(0,−λ∗)
f ′(0, λ∗)

or

f(0,−λ∗)f ′(0, λ∗)− f ′(0,−λ∗)f(0, λ∗) = 0

which cannot take place since these solutions are linearly independent.
The Lemma is proved. ¤
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It turns out that the roots of equation (3.3) are eigenvalues of the periodic
boundary-value problem, at the same time, are roots of the dispersion relation
F (λ) = 2. Therefore, the Lyapunov function F (λ) can be recovered by the roots
of the equation (3.3).

Since θ(2π, λ) and ϕ′(2π, λ) can be recovered by using {λn} - eigenvalues of
spectral problem (3.1) and {µn}-the eigenvalue of problem (3.2), respectively we
find out that the function

g′(0, λ) + iλg(0, λ) = e2iλπ[iλF (λ) + λ2θ(2π, λ)− ϕ′(2π, λ)]

can be reconstructed specifying spectral data.
Thus, indentifying the spectral data uniquely determines the function

S (λ) =
g′(0, λ) + iλg(0, λ)

g′(0,−λ) + iλg(0,−λ)
.

Then taking into account (21), we can find

lim
λ→−n

2

(n + 2λ)S (λ) = V γ1
nn

By using the results obtained above, we obtain the following procedure for
the solution of the inverse problem recovering the potential q2(z) uniquely and
effectively on the edge γ1:

1. Taking into account (3.6), we get

V γ1
mα+m = V γ1

mm

α∑
n=1

V γ1
nn

n + m
, α = 1, 2, ...;

from which all the numbers V γ1
nα are defined.

2. From recurrent formula (3.5), we find all numbers q2n.
So, the inverse problem has a unique solution, and the numbers q2n are defined

constructively by the spectral data on the edge γ1.
The theorem is proved.
Using the results obtained above we arrive at the following procedure for the

solution of the Inverse Problem.
Algoritm:
Let the spectral data {λn} - the spectrum of the Dirichlet problem (3.1), {µn}-

the spectrum of Neumann boundary value problem (3.2) and reflection coefficient
R11(λ) are given.

To construct the potential q1(x) on γ0, one have to:
1. Use R11(λ) to find V γ0

nn by Lemma 1, calculate all numbers V γ0
nα from (2.5).

2. Use recurrent relation (6) find all numbers q1α to recover potential q1(x).
To construct potential q2(x) on γ1, one have to:
3. Use the {λn}- spectrum of the Dirichlet problem given by (3.1) and the {µn}

- spectrum of Neumann boundary value problem given by (3.2) to construct the
functions θ(2π, λ) and ϕ′(2π, λ) correspondingly .

4. Use roots of (3.3) to construct dispersion relation F (λ) = θ′(2π, λ)+ϕ(2π, λ)
in order to construct the function

g′(0, λ) + iλg(0, λ) = e2iλπ[iλF (λ) + λ2θ(2π, λ)− ϕ′(2π, λ)]

together with functions θ(2π, λ) and ϕ′(2π, λ).
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5. Construct

S (λ) =
g′(0, λ) + iλg(0, λ)

g′(0,−λ) + iλg(0,−λ)
6. Use relation

lim
λ→−n

2

(n + 2λ)S (λ) = V γ1
nn

to find the numbers V γ1
nn .

7. Find all numbers V γ1
nα by using

V γ1
mα+m = V γ1

mm

α∑
n=1

V γ1
nn

n + m
, α = 1, 2, ...;

and use (3.5) for finding the numbers q2α to recover potential q2(x) on γ1.
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