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Abstract. This article provides an effective technique to solve stochastic
Abel’s integral equations using Boubaker wavelets. These equations can be

reduced to a system of algebraic equations with unknown Boubaker coeffi-

cients, by using Boubaker wavelets, and these equations can be solved nu-
merically by using well-known numerical methods. Convergence and error

analysis of the proposed method is studied. Moreover, the results obtained

by the method proposed are compared to the exact solution and the Bernoulli
polynomials solution with the number of numerical examples to show that

the method described is precise and accurate.

1. Introduction

Various types of integral equations like Fredholm integral equations [3, 5, 21],
Volterra integral equations [6,15,17], Volterra-Fredholm integral equations [18,19,
22], integro-differential equations [1, 4, 31], and many other type of integral equa-
tions are of great importance in mathematical physics. It has become evident in
recent years that certain types of stochatic integral equations, such as stochatic
Volterra integral equations [8–11, 14, 16, 26], multidimensional stochastic integral
equations [13,29,30], stochastic Volterra-Fredholm integral equations [12,23], sto-
chastic integro-differential equations [2], and many other kind of stochastic integral
equations can model various problems more efficiently than by deterministic in-
tegral equations. In many cases obtaining the solution of integral and stochastic
integral equations is quite difficult and time consuming, therefore, some highly
accurate numerical schemes are essential. Therefore several numerical schemes
to solve integral and stochastic integral equations were developed in the last few
decades [1–6,8–19,21–23,26,29–31].

The most important type of integral equations, the singular integral equations,
arise in many aspects of science and engineering. Since it is hard to find the an-
alytic solution of these kind of equations, the numerical approximation to these
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equations become necessary. Various methods are found in literature to solve
these kind of integral equations [7, 20, 25]. Though we find various methods to
solve deterministic singular integral equations in literature, even today, very few
articles are found related to singular stochastic integral equations. Recently, Nas-
rin Samadyar and Farshid Mirzaee employed Orthonormal Bernoulli polynomials
collocation approach for solving stochastic Itô-Volterra integral equations of Abel’s
type [27]. Also, Boubaker wavelets operational matrix of integration was intro-
duced by Sarhan et al. [28] in 2020.

Encouraged by most of these works, in this article we have made an attempt for
solving stochastic Abel’s integral equations using stochastic operational matrix of
integration of Boubaker wavelets (SOMIBW).

In this article, we consider the following stochastic Itô-Volterra integral equa-
tions of Abel’s type:

y(x) = f(x) +

∫ x

0

y(t)√
x− t

dt+

∫ x

0

k(x, t)y(t)dW (t), x ∈ [0, 1), (1.1)

where f(x) and k(x, t) are the stochastic processes defined on the probability space
(Ω, F , P ), W (x) denotes the Brownian motion process defined on the probability
space (Ω, F , P ), and y(x) is the unknown to be determined.

The article is organized as follows. In section 2, the definition of Boubaker
wavelets and its function approximation is given. In section 3, a new stochastic
operational matrix of integration of Boubaker wavelets is derived. A new Boubaker
wavelets stochastic operational matrix method for solving stochastic Abel’s inte-
gral equation is given in section 4. Convergence and error analysis of the proposed
method is discussed in section 5. In section 6, some computational experiments are
carried out to show the efficiency and reliability of the proposed method. Finally
conclusion is drawn in section 7.

2. Boubaker wavelets and Function approximation

2.1. Boubaker wavelets. Boubaker wavelets [28] are defined as follows:

ψn,m(x) =

{√
2m+ 1 (2m)!

(m!)2 2
k+1
2 Bm(2k+1x− 2n+ 1), n−1

2k−1 ≤ x < n
2k−1 ,

0, otherwise,
(2.1)

where, k is any positive integer, n = 1, 2, ..., 2k−1 is an argument and m =
0, 1, ...,M − 1 is the order of Boubaker functions [28]:

B0(x) = 1,

B1(x) =
1

2
(2x− 1),

B2(x) =
1

6
(6x2 − 6x+ 1),

B3(x) =
1

20
(20x3 − 30x2 + 12x− 1),
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and so on. For instance, for k = 1 and M = 4, we get the Boubaker wavelet bases
as follows:

ψ1,0(x) = 2,

ψ1,1(x) = 2
√

3(8x− 3),

ψ1,2(x) = 2
√

5(96x2 − 72x+ 13),

ψ1,3(x) = 2
√

7(1280x3 − 1440x2 + 528x− 63).

 0 ≤ x < 1.

2.2. Function approximation. Suppose f(x) ∈ L2[0, 1) is expanded in terms
of the Boubaker wavelets as:

f(x) =

∞∑
n=1

∞∑
m=0

cn,mψn,m(x). (2.2)

Truncating the above infinite series, we get

f(x) =

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x) = CTψ(x) = fm̂(x), (2.3)

where, C and ψ(x) are m̂× 1 (m̂ = 2k−1M) matrices given by

C =
[
c1,0, c1,1, ..., c1,M−1, c2,0, c2,1, ..., c2,M−1, c2k−1,0, c2k−1,1, ..., c2k−1,M−1

]
,

(2.4)
and

ψ(x) = [ψ1,0(x), ψ1,1(x), ..., ψ1,M−1(x), ψ2,0(x), ψ2,1(x), ..., ψ2,M−1(x),

ψ2k−1,0(x), ψ2k−1,1(x), ..., ψ2k−1,M−1(x)]. (2.5)

3. Stochastic operational matrix of integration of Boubaker wavelets

The SOMIBW PS is a m̂× m̂ matrix defined as:∫ x

0

ψ(t)dW (t) = PSψ(x). (3.1)

In particular, for k = 1 and M = 4, the matrix PS is derived as follows:∫ x

0

ψ1,0(t)dW (t) = 2W (x), 0 ≤ x < 1

' 2W

(
1

2

)
ψ1,0(x), (3.2)

∫ x

0

ψ1,1(t)dW (t) = 2
√

3

(
(8x− 3)W (x)−

∫ x

0

W (x)dx

)
, 0 ≤ x < 1

' −
(√

3

∫ x

0

W (t)dt

)
ψ1,0(x) +W

(
1

2

)
ψ1,1(x), (3.3)

∫ x

0

ψ1,2(t)dW (t) = 2
√
5

((
96x2 − 72x+ 13

)
W (x)−

∫ x

0

(2t+ 1)W (t)dt

)
, 0 ≤ x < 1

' −
(√

5

∫ x

0

(2t+ 1)W (t)dt

)
ψ1,0(x) +W

(
1

2

)
ψ1,2(x), (3.4)
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∫ x

0

ψ1,3(t)dW (t) = 2
√

7(
(
1280x3 − 1440x2 + 528x− 63

)
−
∫ x

0

(
3840t2 − 2880t+ 528

)
W (t)dt), 0 ≤ x < 1

' −
(√

7

∫ x

0

(3840t2 − 2880t+ 528)W (t)dt

)
ψ1,0(x)

+W

(
1

2

)
ψ1,2(x). (3.5)

Using equations (3.2) to (3.5), we get

∫ x

0

ψ(t)dW (t) =


∫ x

0
ψ1,0(t)dW (t)∫ x

0
ψ1,1(t)dW (t)∫ x

0
ψ1,2(t)dW (t)∫ x

0
ψ1,3(t)dW (t)

 .
Therefore,∫ x

0

ψ(t)dW (t) =


2W

(
1
2

)
0 0 0

−
(√

3
∫ x
0

W (t)dt
)

W
(
1
2

)
0 0

−
(√

5
∫ x
0
(2t + 1)W (t)dt

)
0 W

(
1
2

)
0

−
(√

7
∫ x
0
(3840t2 − 2880t + 528)W (t)dt

)
0 0 W

(
1
2

)


︸ ︷︷ ︸

PS

ψ(x).

The SOMIBW are derived here for k = 1 and M = 4 i.e. for m̂ = 4 and the same
can be extended for different values of k and M i.e. for different values of m̂.

Remark 3.1. If F is a m̂ vector, then

ψ(x)ψT (x)F = F̃ψ(x), (3.6)

where, ψ(x) is the Boubaker wavelets coefficient matrix for the collocation point

xj = j−0.5
m̂ and F̃ is a m̂× m̂ matrix given by

F̃ = ψ(x)F̄ψ−1(x), (3.7)

where F̄ = diag(ψ−1(x)F ). Also, for a m̂× m̂ matrix C,

ψT (x)Cψ(x) = ĈTψ(x), (3.8)

where ĈT = Xψ−1(x), in which X = diag(ψT (x)Cψ(x)).

4. Boubaker wavelets stochastic operational matrix method for the
numerical solution of stochastic Abel’s integral equations

Let us consider equation (1.1). Approximating f(x), k(x, t), and y(x) with
respect to Boubaker wavelets as follows:

y(x) ' CTψ(x), (4.1)

where C is given in equation (2.4) and is the unknown to be determined.

f(x) ' FTψ(x), (4.2)

k(x, t) ' ψT (x)Kψ(t) = ψT (t)KTψ(x), (4.3)
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Substituting equations (4.1), (4.2), and (4.3) in (1.1), we get

CTψ(x) = FTψ(x) +

∫ x

0

CTψ(t)√
x− t

dt+ ψT (x)KT

(∫ x

0

ψ(t)ψT (t)CdW (t)

)
. (4.4)

From section 2 we see that the bases of Boubaker wavelets are polynomials, and
hence we can calculate

∫ x

0
tn√
x−tdt. In [32] it is given as:∫ x

0

tn√
x− t

dt =

√
πx( 1

2+n)Γ(n+ 1)

Γ
(
n+ 3

2

) . (4.5)

And therefore ∫ x

0

tn√
x− t

dt = Pψ(x), (4.6)

where P is 2k−1M × 2k−1M matrix. Using Remark 3.1 and equations (4.4), (4.5),
and (4.6) we have

CTψ(x) = FTψ(x) + CTPψ(x) + ψT (x)KT

(∫ x

0

C̃ψ(t)dW (t)

)
. (4.7)

where C̃ is a m̂× m̂ matrix. Using the SOMIBW, equation (4.7) reduces to:

CTψ(x) = FTψ(x) + CTPψ(x) + ψT (x)KT C̃Psψ(x). (4.8)

Let X = KT C̃PS . Again using Remark 3.1, equation (4.8) reduces to:

CTψ(x) = FTψ(x) + CTPψ(x) + X̂Tψ(x). (4.9)

Therefore, equation (4.9) reduces to:

CT − CTP − X̂T = FT . (4.10)

Equation (4.10) is linear system of equation in terms of vectors of C. Solving
this linear system of equations, we get the unknown vector C. Substituting the
obtained vector C in equation (4.1), we get the required solution of equation (1.1).

5. Convergence and Error analysis

Theorem 5.1. [24] If y : [a, b] ∈ R is a continuous function and f is an integrable
function such that its sign does not change on the interval [a, b], then there exists
a constant ξ ∈ (a, b) such that:∫ b

a

y(x)f(x)dx = y(ξ)

∫ b

a

f(x)dx, (5.1)

Theorem 5.2. Let y(x) be the exact solution and y∗(x) be the approximate solu-
tion of equation (1.1) obtained by Boubaker wavelets. Also, let us assume that the
following conditions hold:

(1) || k(x, t) ||∞≤ κ,
(2) 1− κ ||W (x) ||∞> 0.

Then the upper bound is obtained as follows:

|| y(x)− y∗(x) ||≤ 2 | (y(ξ)− y∗(ξ)) |
(1− κ ||W (x) ||∞)

, (5.2)

where 0 < ξ < x.
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Proof. Let us consider equation (1.1). If y∗(x) is the approximate solution of
equation (1.1) obtained by Boubaker wavelets, then

y∗(x) = f(x) +

∫ x

0

y∗(t)√
x− t

dt+

∫ x

0

k(x, t)y∗(t)dW (t).

Therefore,

y(x)− y∗(x) =

∫ x

0

y(t)− y∗(t)√
x− t

dt+

∫ x

0

k(x, t) (y(t)− y∗(t)) dW (t).

Hence,

|| y(x)− y∗(x) ||∞≤ ||
∫ x

0

y(t)− y∗(t)√
x− t

dt ||∞

+ ||
∫ x

0

k(x, t) (y(t)− y∗(t)) dW (t) ||∞ . (5.3)

Using Theorem 5.1, there exist a constant 0 < ξ < x such that:∫ x

0

y(t)− y∗(t)√
x− t

dt = (y(ξ)− y∗(ξ))
∫ x

0

1√
x− t

dt =
y(ξ)− y∗(ξ)

1
2

√
x.

And therefore,

||
∫ x

0

y(t)− y∗(t)√
x− t

dt ||∞= 2 || y(ξ)− y∗(ξ) || . (5.4)

From equations (5.3), (5.4), and assumption 1, we get

|| y(x)− y∗(x) ||≤ 2 ||| y(ξ)− y∗(ξ) | +κ ||W (x) ||∞|| y(x)− y∗(x) || . (5.5)

From equation (5.5) and assumption 2, we conclude that

|| y(x)− y∗(x) ||≤ 2 | (y(ξ)− y∗(ξ)) |
(1− κ ||W (x) ||∞)

.

�

6. Computational Experiments

Test problem 6.1. Let us consider the following singular linear stochastic Itô-
Volterra integral equation:

y(x) =
1

18
−
∫ x

0

y(t)√
x− t

dt−
∫ x

0

sin(t)y(t)dW (t), x ∈ [0, 1). (6.1)

Exact solution of equation (6.1) is found to be

y(x) =
1

18
exp

(
−2
√
x− 1

4
x+

1

8
sin(2x)−

∫ x

0

sin(t)dW (t)

)
.

Table 1 and table 2 shows the exact solution, approximate solution, absolute errors
(AE), and comparison of test problem 6.1 with Bernoulli polynomials solution
(BPS) for m̂ = 4 and m̂ = 8 respectively. Table 3 shows the comparison of
maximum absolute errors of test problem 6.1 with Bernoulli polynomials for m̂ = 4
and m̂ = 8. Figure 1 shows the graphs of exact and approximate solution of test
problem 6.1 for m̂ = 4 and m̂ = 8. Figure 2 shows the graph of comparison of

60



NUMERICAL SOLUTION OF STOCHASTIC ABEL’S INTEGRAL EQUATIONS... 7

absolute errors of test problem 6.1 with that Bernoulli polynomials for m̂ = 4 and
m̂ = 8.

Table 1. comparison of exact solution, approximate solution, and ab-
solute errors (AE) of test problem 6.1 with Bernoulli polynomials so-
lution (BPS) for m̂ = 4.

x Exact Approximate BPS [27] AE AE of BPS [27]

0 0.0556 0.0496 0.0453 6.00e-03 1.02e-02

0.1 0.0290 0.0267 0.0379 2.30e-03 8.90e-03

0.2 0.0223 0.0219 0.0323 4.00e-04 1.00e-02

0.3 0.0175 0.0245 0.0281 7.00e-03 1.06e-02

0.4 0.0151 0.0154 0.0249 3.00e-04 9.80e-03

0.5 0.0140 0.0216 0.0223 7.60e-03 8.30e-03

0.6 0.0102 0.0177 0.0200 7.50e-03 9.80e-03

0.7 0.0145 0.0118 0.0180 2.70e-03 3.50e-03

0.8 0.0129 0.0154 0.0163 2.50e-03 3.30e-03

0.9 0.0082 0.0050 0.0148 3.20e-03 6.60e-03

Table 2. Comparison of exact solution, approximate solution, and
absolute errors (AE) of test problem 6.1 with Bernoulli polynomials
solution (BPS) for m̂ = 8.

x Exact Approximate BPS [27] AE AE of BPS [27]

0 0.0556 0.0523 0.0492 3.30e-03 6.30e-03

0.1 0.0301 0.0313 0.0385 1.20e-03 8.50e-03

0.2 0.0225 0.0291 0.0322 6.60e-03 9.70e-03

0.3 0.0187 0.0245 0.0277 5.80e-03 9.00e-03

0.4 0.0134 0.0154 0.0242 2.00e-03 1.08e-02

0.5 0.0111 0.0132 0.0213 2.10e-03 1.03e-02

0.6 0.0134 0.0148 0.0190 1.40e-03 5.60e-03

0.7 0.0107 0.0130 0.0170 2.30e-03 6.30e-03

0.8 0.0074 0.0054 0.0154 2.00e-03 8.00e-03

0.9 0.0059 0.0060 0.0140 1.00e-04 8.10e-03
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Table 3. Comparison of maximum absolute errors (Emax) of 6.1 with
Bernoulli polynomials for m̂ = 4 and m̂ = 8.

Methods Maximum

absolute error (Emax)

Boubaker wavelets method

m̂ = 4 7.60e-03

m̂ = 8 6.60e-03

Bernoulli polynomials method [27]

m̂ = 4 1.06e-02

m̂ = 8 1.08e-02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

0

0.02

0.04

0.06

y
(x

)

Exact solution m̂ = 4

Boubaker wavelets solution m̂ = 4

Bernoulli polynomials solution m̂ = 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

0

0.02

0.04

0.06

y
(x

)

Exact solution m̂ = 8

Boubaker wavelets solution m̂ = 8

Bernoulli polynomials solution m̂ = 8

Figure 1. Graphs of exact and approximate solution of test problem
6.1 for m̂ = 4 and m̂ = 8.
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Figure 2. Graph of comparison of absolute errors of test problem 6.1
with that Bernoulli polynomials for m̂ = 4 and m̂ = 8.

Test problem 6.2. Let us consider the following singular linear stochastic Itô-
Volterra integral equation:

y(x) =
1

36
−
∫ x

0

y(t)√
x− t

dt−
∫ x

0

exp(x) sin(t)y(t)dW (t), x ∈ [0, 1). (6.2)

Exact solution of equation (6.2) is found to be

y(x) =
1

36
exp

(
−2
√
x− 1

4
x exp(2x) +

1

8
exp(2x) sin(2x)−

∫ x

0

exp(x) sin(t)dW (t)

)
.

Table 4 and table 5 shows the exact solution, approximate solution, absolute errors
(AE), and comparison of test problem 6.2 with Bernoulli polynomials solution
(BPS) for m̂ = 4 and m̂ = 8 respectively. Table 6 shows the comparison of
maximum absolute errors test problem of 6.2 with Bernoulli polynomials for m̂ = 4
and m̂ = 8. Figure 3 shows the graphs of exact and approximate solution of test
problem 6.2 for m̂ = 4 and m̂ = 8. Figure 4 shows the graph of comparison of
absolute errors of test problem 6.2 with that Bernoulli polynomials for m̂ = 4 and
m̂ = 8.
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Table 4. comparison of exact solution, approximate solution, and ab-
solute errors (AE) of test problem 6.2 with Bernoulli polynomials so-
lution (BPS) for m̂ = 4.

x Exact Approximate BPS [27] AE AE of BPS [27]

0 0.0278 0.0267 0.0227 1.10e-03 5.00e-03

0.1 0.0144 0.0140 0.0190 4.00e-04 4.60e-03

0.2 0.0111 0.0119 0.0162 8.00e-04 5.10e-03

0.3 0.0086 0.0092 0.0140 6.00e-04 5.50e-03

0.4 0.0073 0.0066 0.0124 7.00e-04 5.10e-03

0.5 0.0070 0.0064 0.0110 6.00e-04 4.00e-03

0.6 0.0043 0.0017 0.0097 2.60e-03 5.40e-03

0.7 0.0091 0.0088 0.0086 3.00e-04 5.00e-04

0.8 0.0079 0.0078 0.0076 1.00e-04 3.00e-04

0.9 0.0028 0.0016 0.0066 1.20e-03 3.80e-03

Table 5. Comparison of exact solution, approximate solution, and
absolute errors (AE) of test problem 6.2 with Bernoulli polynomials
solution (BPS) for m̂ = 8.

x Exact Approximate BPS [27] AE AE of BPS [27]

0 0.0278 0.0264 0.0254 1.40e-03 2.30e-03

0.1 0.0146 0.0156 0.0200 1.00e-03 5.40e-03

0.2 0.0115 0.0125 0.0171 1.00e-03 5.60e-03

0.3 0.0097 0.0098 0.0152 1.00e-04 5.40e-03

0.4 0.0090 0.0086 0.0137 4.00e-04 4.70e-03

0.5 0.0077 0.0066 0.0126 1.10e-03 4.90e-03

0.6 0.0075 0.0074 0.0118 1.00e-04 4.30e-03

0.7 0.0106 0.0102 0.0112 4.00e-04 6.00e-04

0.8 0.0099 0.0093 0.0109 6.00e-04 1.00e-03

0.9 0.0083 0.0061 0.0108 2.20e-03 2.60e-03
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Table 6. Comparison of maximum absolute errors (Emax) of 6.2 with
Bernoulli polynomials for m̂ = 4 and m̂ = 8.

Methods Maximum

absolute error (Emax)

Boubaker wavelets method

m̂ = 4 2.60e-03

m̂ = 8 2.20e-03

Bernoulli polynomials method [27]

m̂ = 4 5.50e-03

m̂ = 8 5.60e-03
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Exact solution m̂ = 4
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0.01
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0.03

y
(x

)

Exact solution m̂ = 8

Boubaker wavelets solution m̂ = 8

Bernoulli polynomials solution m̂ = 8

Figure 3. Graphs of exact and approximate solution of test problem
6.2 for m̂ = 4 and m̂ = 8.
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Figure 4. Graph of comparison of absolute errors of test problem 6.2
with that Bernoulli polynomials for m̂ = 4 and m̂ = 8.

7. Conclusion

In this article, we have provided an effective technique for solving stochastic
Abel’s integral equations using Boubaker wavelets. These equations are reduced
to a system of algebraic equations with unknown Boubaker coefficients, by using
Boubaker wavelets, and these equations are solved numerically. Convergence and
error analysis of the proposed method is presented. Moreover, the results obtained
by the method proposed are compared with the exact solution and the Bernoulli
polynomials solution with the number of numerical examples which show that the
method presented is precise and accurate.
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solution of nonlinear stochastic Itô-Volterra integral equations, J. Comput. Appl. Math. 333
(2018) 74–86.

27. Samadyar, N., and Mirzaee, F.: Orthonormal Bernoulli polynomials collocation approach
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