BOUNDS FOR ENERGY OF BINARY LABELED GRAPH

SABITHA D'SOUZA, GOWTHAM H. J.*, AND PRADEEP G. BHAT

Abstract

Let G be a graph with vertex set $V(G)$ and edge set $X(G)$ and consider the set $A=\{0,1\}$. A mapping $l: V(G) \rightarrow A$ is called binary vertex labeling of G and $l(v)$ is called the label of the vertex v under l. The label energy of G is the sum of the absolute values of the label eigenvalues. In this paper, we establish bounds for label energy, largest label eigenvalue and label spectral radius.

1. Introduction

Let $G(V, X)$ be a connected graph with n vertices and m edges and let $A=A(G)$ be its adjacency matrix. The eigenvalues of the adjacency matrix A are denoted by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ assumed in non increasing order. The energy of graph G was first introduced by Ivan Gutman [6] in 1978 as $E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. For details on energy of graph refer $[1,2,3,5,7,8,9,11,10,12,13,14,15]$.
P. G. Bhat and S. D'Souza in [4] have introduced label matrix denoted as $A_{l}(G)=\left[l_{i j}\right]$ of order n, whose entries $l_{i j}$ are defined as follows:

$$
l_{i j}= \begin{cases}a, & \text { if } v_{i} v_{j} \in X \text { and } l\left(v_{i}\right)=l\left(v_{j}\right)=0 \\ b, & \text { if } v_{i} v_{j} \in X \text { and } l\left(v_{i}\right)=l\left(v_{j}\right)=1, \\ c, & \text { if } v_{i} v_{j} \in X \text { and } l\left(v_{i}\right)=0, l\left(v_{j}\right)=1 \text { or vice-versa, } \\ 0, & \text { otherwise }\end{cases}
$$

where a, b, c are distinct nonzero real numbers.
The label eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of G are assumed in non increasing order. The label energy of a graph G is defined as $E_{l}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. Since $A_{l}(G)$ is a real symmetric matrix with zero trace, these eigenvalues of binary labeled graph are real with sum equal to zero. Some well known properties of graph label eigenvalues are

$$
\begin{gather*}
\sum_{i=1}^{n} \lambda_{i}=0 \\
\sum_{i=1}^{n} \lambda_{i}^{2}=2 Q \tag{1.1}
\end{gather*}
$$

[^0]where $Q=n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}$ and n_{1}, n_{2}, n_{3} denote number of edges of G whose end vertex labels are $(0,0),(1,1)$ and $(0,1)$ respectively.

And

$$
\begin{equation*}
\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i} \tag{1.2}
\end{equation*}
$$

This paper is organized as follows. In Section 2, we present some bounds for spectral radius and label energy. Bounds for largest label eigenvalue are established.

2. Bounds for energy of binary labeled graph

Proposition 2.1. Let $G\left(m_{1}, n\right)$ and $H\left(m_{2}, n\right)$ be two labeled graphs with n vertices. If $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ and $\lambda_{1}^{\prime} \geq \lambda_{2}^{\prime} \geq \cdots \geq \lambda_{n}^{\prime}$ are label eigenvalues of G and H respectively, then

$$
\sum_{i=1}^{n} \lambda_{i} \lambda_{i}^{\prime} \leq 2 \sqrt{\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)\left(n_{1}^{\prime} a^{2}+n_{2}^{\prime} b^{2}+n_{3}^{\prime} c^{2}\right)}
$$

where $n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}$ denote number of edges of H whose end vertex labels are $(0,0)$, $(1,1)$ and $(0,1)$ respectively. Equality holds if G or H is $\overline{K_{n}}$.
Proof. By Cauchy-Schwarz inequality, we have

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) .
$$

Setting $a_{i}=\lambda_{i}$ and $b_{i}=\lambda_{i}^{\prime}$ in the above inequality, we get

$$
\begin{aligned}
\left(\sum_{i=1}^{n} \lambda_{i} \lambda_{i}^{\prime}\right)^{2} & \leq\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right)\left(\sum_{i=1}^{n} \lambda_{i}^{\prime 2}\right) \\
& =4 Q Q^{\prime}, \quad \text { where } Q^{\prime}=n_{1}^{\prime} a^{2}+n_{2}^{\prime} b^{2}+n_{3}^{\prime} c^{2} .
\end{aligned}
$$

Hence,

$$
\left(\sum_{i=1}^{n} \lambda_{i} \lambda_{i}^{\prime}\right) \leq 2 \sqrt{Q Q^{\prime}}
$$

Therefore,

$$
\sum_{i=1}^{n} \lambda_{i} \lambda_{i}^{\prime} \leq 2 \sqrt{\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)\left(n_{1}^{\prime} a^{2}+n_{2}^{\prime} b^{2}+n_{3}^{\prime} c^{2}\right)} .
$$

Equality holds, when G or $H \cong \overline{K_{n}}$, we have m_{1} or $m_{2}=0$ thus $E_{l}(G)$ or $E_{l}(H)=0$.

Theorem 2.2. [4] Let G be a labeled graph with n vertices, m edges. Then

$$
\sqrt{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)+n(n-1) p^{\frac{2}{n}}} \leq E_{l}(G) \leq \sqrt{2 n\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}
$$

In [4], the upper and lower bounds for $E_{l}(G)$ are attained. Using Theorem 2.2, we find the following bounds for $E_{l}(G)$.

Theorem 2.3. Let G be a connected labeled graph with n vertices and m edges. Then

$$
2 \sqrt{n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}} \leq E_{l}(G) \leq 2 \sqrt{m\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}
$$

with left equality holding if G is $K_{2}, \overline{K_{n}}, S_{n}$, complete bipartite graph and right equality holding if and only if G is $\frac{n}{2} K_{2}, \overline{K_{n}}$.
Proof. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the label eigenvalues of G. Since,

$$
\sum_{i=1}^{n} \lambda_{i}=0
$$

and

$$
\sum_{i=1}^{n} \lambda_{i}^{2}=2 Q
$$

we have

$$
\begin{equation*}
\sum_{i<j} \lambda_{i} \lambda_{j}=-Q \tag{2.1}
\end{equation*}
$$

Now consider

$$
\begin{aligned}
{\left[E_{l}(G)\right]^{2} } & =\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2} \\
& =\sum_{i=1}^{n}\left|\lambda_{i}\right| \sum_{j=1}^{n}\left|\lambda_{j}\right| \\
& =\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}+2 \sum_{1 \leq i<j \leq n}\left|\lambda_{i}\right|\left|\lambda_{j}\right| \\
& \geq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}+2\left|\sum_{i<j} \lambda_{i} \lambda_{j}\right| \\
& \geq 2 Q+2 Q \text { using equations (1.1) and (2.1). }
\end{aligned}
$$

Hence, $E_{l}(G) \geq 2 \sqrt{Q}$.
From Theorem 2.2, we have $E_{l}(G) \leq \sqrt{2 n Q}$. Since $n \leq 2 m$, we have

$$
E_{l}(G) \leq 2 \sqrt{m Q}
$$

Thus,

$$
2 \sqrt{Q} \leq E_{l}(G) \leq 2 \sqrt{m Q}
$$

Therefore,

$$
2 \sqrt{n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}} \leq E_{l}(G) \leq 2 \sqrt{m\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}
$$

Left equality holds, when
(i) $G \cong K_{2}$, an edge whose end vertex labels are $(0,0)$ or $(0,1)$ or $(1,1)$.
(ii) $G \cong \overline{K_{n}}$ and $E_{l}(G)=0$.
(iii) $G \cong S_{n}$, either n_{1} or $n_{2}=0$.
(iv) $G \cong K_{m, m}$, each edge whose end vertex labels are $(0,0),(0,1)$ or $(1,1),(0,1)$.

Right equality holds, when
(i) $G \cong \frac{n}{2} K_{2}$, each edge whose end vertex labels are $(0,0)$ or $(0,1)$ or $(1,1)$.
(ii) $G \cong \overline{K_{n}}$ and $E_{l}(G)=0$.

Now we give few bounds for label spectral radius and obtain bounds for label energy.
Proposition 2.4. Let G be a labeled graph (n, m)- graph and $\rho_{l}(G)=\max _{1 \leq i \leq n}\left\{\left|\lambda_{i}\right|\right\}$ be the label spectral radius of G. Then

$$
\sqrt{\frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}} \leq \rho_{l}(G) \leq \sqrt{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}
$$

with left equality holding if and only if G is $\frac{n}{2} K_{2}, \overline{K_{n}}$ and right equality holds if G is $\overline{K_{n}}$.
Proof. Consider

$$
\begin{gather*}
\rho_{l}^{2}(G)=\max _{1 \leq i \leq n}\left\{\left|\lambda_{i}\right|^{2}\right\} \\
\leq \sum_{j=1} n \lambda_{j}^{2}=2 Q . \\
\rho_{l}(G) \leq \sqrt{2 Q} . \tag{2.2}
\end{gather*}
$$

Next consider

$$
\begin{aligned}
n \rho_{l}^{2}(G) & \geq \sum_{i=1}^{n} \lambda_{i}^{2} \\
& \geq 2 Q .
\end{aligned}
$$

We have

$$
\begin{equation*}
\rho_{l}(G) \geq \sqrt{\frac{2 Q}{n}} \tag{2.3}
\end{equation*}
$$

Combining expression (2.2) and (2.3)

$$
\sqrt{\frac{2 Q}{n}} \leq \rho_{l}(G) \leq \sqrt{2 Q}
$$

Therefore,

$$
\sqrt{\frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}} \leq \rho_{l}(G) \leq \sqrt{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)} .
$$

Left equality holds, when
(i) $G \cong \frac{n}{2} K_{2}$, each edge whose end vertex labels are $(0,0)$ or $(0,1)$ or $(1,1)$.
(ii) $G \cong \overline{K_{n}}$.

Right equality holds, when $G \cong \overline{K_{n}}$.
Theorem 2.5. Let G be a labeled graph and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the label eigenvalues of G. If $n \leq 2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)$ and $\lambda_{1} \geq \frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}$, then
$E_{l}(G) \leq \frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}+\sqrt{(n-1)\left[2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)-\left(\frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}\right)^{2}\right]}$.

Proof. We have

$$
\begin{equation*}
\sum_{i=2}^{n} \lambda_{i}^{2}=2 Q-\lambda_{1}^{2} \tag{2.4}
\end{equation*}
$$

By a special case of Cauchy-Schwarz inequality, we have

$$
\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2} \leq n \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}
$$

Thus,

$$
\left(\sum_{i=2}^{n}\left|\lambda_{i}\right|\right)^{2} \leq(n-1) \sum_{i=2}^{n}\left|\lambda_{i}\right|^{2}
$$

and hence,

$$
\begin{equation*}
\left(\sum_{i=2}^{n}\left|\lambda_{i}\right|\right) \leq \sqrt{(n-1) \sum_{i=2}^{n}\left|\lambda_{i}\right|^{2}} \tag{2.5}
\end{equation*}
$$

Employing (2.4) in (2.5), we obtain

$$
E_{l}(G)-\lambda_{1} \leq \sqrt{(n-1)\left[2 Q-\lambda_{1}^{2}\right]}
$$

that is,

$$
E_{l}(G) \leq \lambda_{1}+\sqrt{(n-1)\left[2 Q-\lambda_{1}^{2}\right]} .
$$

Consider, the function

$$
F(x)=x+\sqrt{(n-1)\left[2 Q-x^{2}\right]} .
$$

Then,

$$
F^{\prime}(x)=1-\frac{x \sqrt{(n-1)}}{\sqrt{2 Q-x^{2}}}
$$

We observe that, $F(x)$ is decreasing in the interval

$$
\left(\sqrt{\frac{2 Q}{n}}, \sqrt{2 Q}\right)
$$

Since, $n \leq 2 Q$ and $\frac{2 Q}{n} \leq \lambda_{1}$, we have

$$
\sqrt{\frac{2 Q}{n}}<\frac{2 Q}{n} \leq \lambda_{1} \leq \sqrt{2 Q}
$$

Last inequality follows from Proposition 2.4.
Hence,

$$
E_{l}(G) \leq \frac{2 Q}{n}+\sqrt{(n-1)\left[2 Q-\left(\frac{2 Q}{n}\right)^{2}\right]}
$$

Therefore,

$$
E_{l}(G) \leq \frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}+\sqrt{(n-1)\left[2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)-\left(\frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}\right)^{2}\right]}
$$

As the proof of the following theorem is similar to that of Theorem 2.5 we omit the proof.
Theorem 2.6. If $n \leq 2 Q$ and $\sqrt{\frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}} \leq \rho_{l}(G) \leq \frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}$, then
$E_{l}(G) \geq \frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}+\sqrt{(n-1)\left[2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)-\left(\frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}{n}\right)^{2}\right]}$.
Now we prove the following theorem which is useful to obtain bounds for the largest label eigenvalue of a graph G.

Theorem 2.7. Let G be a labeled graph with n vertices and m edges and H be a (n, m_{1})-graph. If $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are label eigenvalues of G and $\lambda_{1}^{\prime} \geq \lambda_{2}^{\prime} \geq$ $\cdots \geq \lambda_{n}^{\prime}$ are eigenvalues of H then

$$
\sum_{i=1}^{n} \lambda_{i} \lambda_{i}^{\prime} \leq 2 \sqrt{\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right) m_{1}}
$$

Equality holds if G or H is $\overline{K_{n}}$.
Proof. By Cauchy-Schwartz inequality, we have

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \lambda_{i} \lambda_{i}^{\prime}\right)^{2} \leq\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right)\left(\sum_{i=1}^{n} \lambda_{i}^{\prime 2}\right) \tag{2.6}
\end{equation*}
$$

From equation (1.1), we know that $\sum_{i=1}^{n} \lambda_{i}^{2}=2 Q$. It is well-known that $\sum_{i=1}^{n} \lambda_{i}^{\prime 2}=$ $2 m_{1}$. Using these in expression (2.6) we obtain

$$
\left(\sum_{i=1}^{n} \lambda_{i} \lambda_{i}^{\prime}\right) \leq 2 \sqrt{Q m_{1}}
$$

Therefore,

$$
\left(\sum_{i=1}^{n} \lambda_{i} \lambda_{i}^{\prime}\right) \leq 2 \sqrt{\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right) m_{1}}
$$

Equality holds when G or $H \cong \overline{K_{n}}$, we have $m=0$ or $m_{1}=0$ and $E_{l}(G)=0$.
If we know the spectrum of a graph H with n vertices and m_{1} edges, then we can find an upper bound for the largest label eigenvalue of the labeled graph G with n vertices.

Using Theorem 2.7 we establish bounds for the largest label eigenvalue.
Proposition 2.8. If G is a labeled (n, m)-graph and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are label eigenvalues of G, then

$$
\lambda_{1} \leq \frac{1}{p-1}\left[\sqrt{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right) p(p-1)}+\sum_{i=2}^{p} \lambda_{n-p+i}\right]
$$

where p is any integer, $1<p \leq n$.

Proof. Let $H=K_{p} \cup \overline{K_{n-p}}$. Then the Spectrum of H is $\left(\begin{array}{ccc}(p-1) & 0 & -1 \\ 1 & n-p & p-1\end{array}\right)$. Then by Theorem 2.7 we have
$\lambda_{1}(p-1)+\lambda_{2}(0)+\lambda_{3}(0)+\cdots+\lambda_{n-p+1}(0)+\lambda_{n-p+2}(-1)+\cdots+\lambda_{n}(-1) \leq 2 \sqrt{\frac{Q p(p-1)}{2}}$.
Thus,

$$
(p-1) \lambda_{1} \leq \sqrt{2 Q p(p-1)}+\sum_{i=2}^{p} \lambda_{n-p+i}
$$

Hence,

$$
\lambda_{1} \leq \frac{1}{p-1}\left[\sqrt{2 Q p(p-1)}+\sum_{i=2}^{p} \lambda_{n-p+i}\right]
$$

Therefore,

$$
\lambda_{1} \leq \frac{1}{p-1}\left[\sqrt{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right) p(p-1)}+\sum_{i=2}^{p} \lambda_{n-p+i}\right] .
$$

Remark 2.9. If $p=n$ in the above proposition, then

$$
\lambda_{1} \leq \sqrt{\frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)(n-1)}{n}} .
$$

Remark 2.10. If $p=2$ in the above proposition, then

$$
\lambda_{1}-\lambda_{n} \leq 2 \sqrt{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)}
$$

Proposition 2.11. If G is a labeled (n, m)-graph and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are label eigenvalues of G, then

$$
\sum_{i=1}^{k} \lambda_{i} \leq \sqrt{\frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right) k(p-1)}{p}}
$$

where p is any integer $1 \leq p \leq n$ and $k=\frac{n}{p}$.
Proof. Let H be a graph with n vertices and k components, each is a complete graph K_{p}. Then $n=p k$ and H has $\frac{k p(p-1)}{2}$ edges. Thus spectrum of H is $\left(\begin{array}{cc}(p-1) & -1 \\ k & k(p-1)\end{array}\right)$. Then by Theorem 2.7 we have
$(p-1) \lambda_{1}+(p-1) \lambda_{2}+\cdots+(p-1) \lambda_{k}+(-1) \lambda_{k+1}+\cdots+(-1) \lambda_{n} \leq 2 \sqrt{\frac{Q k p(p-1)}{2}}$.
Thus,

$$
p \sum_{i=1}^{k} \lambda_{i}-\sum_{i=1}^{n} \lambda_{i} \leq \sqrt{2 Q k p(p-1)}
$$

and

$$
\sum_{i=1}^{k} \lambda_{i} \leq \sqrt{\frac{2 Q k(p-1)}{p}}
$$

Therefore,

$$
\sum_{i=1}^{k} \lambda_{i} \leq \sqrt{\frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right) k(p-1)}{p}}
$$

Remark 2.12. If $k=1$ in the above proposition, then

$$
\lambda_{1} \leq \sqrt{\frac{2\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right)(p-1)}{p}}
$$

Proposition 2.13. If G is a labeled (n, m)-graph and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are label eigenvalues of G, then

$$
\left[\sum_{i=1}^{k} \lambda_{i}-\sum_{i=1}^{k} \lambda_{n-k+i}\right] \leq 2 \sqrt{\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right) k}
$$

where $1 \leq k<n$ and $k \mid n$.
Proof. Let H be a graph with n vertices and k components, each is a complete bipartite graph $K_{p, q}$. Then $n=k(p+q)$ and H has $k p q$ edges.
Thus, the spectrum of H is $\left(\begin{array}{ccc}\sqrt{p q} & 0 & -\sqrt{p q} \\ k & k(p+q-2) & k\end{array}\right)$. Then, by Theorem 2.7 we have

$$
\begin{aligned}
& \sqrt{p q} \lambda_{1}+\cdots+\sqrt{p q} \lambda_{k}+(0) \lambda_{k+1}+\cdots+(0) \lambda_{k+k(p+q-2)}+(-\sqrt{p q}) \lambda_{k(p+q-1)+1}+ \\
& \cdots+(-\sqrt{p q}) \lambda_{n} \leq 2 \sqrt{Q k p q} .
\end{aligned}
$$

Thus,

$$
\left[\sum_{i=1}^{k} \lambda_{i}-\sum_{i=1}^{k} \lambda_{n-k+i}\right] \leq 2 \sqrt{Q k p q}
$$

and

$$
\left[\sum_{i=1}^{k} \lambda_{i}-\sum_{i=1}^{k} \lambda_{n-k+i}\right] \leq 2 \sqrt{Q k}
$$

Therefore,

$$
\left[\sum_{i=1}^{k} \lambda_{i}-\sum_{i=1}^{k} \lambda_{n-k+i}\right] \leq 2 \sqrt{\left(n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}\right) k}
$$

Remark 2.14. If $k=1$ in the above proposition, then

$$
\lambda_{1}-\lambda_{n} \leq 2 \sqrt{n_{1} a^{2}+n_{2} b^{2}+n_{3} c^{2}}
$$

References

1. Balakrishnan R.: The energy of a graph, Linear Algebra and its Applications $\mathbf{3 8 7}(2004)$ 287-295.
2. Bapat R. B.: Graphs and Matrices, Springer-Hindustan Book Agency, London, 2011.
3. Bapat R. B., Pati S.: Energy of a graph is never an odd integer, Bulletin of Kerala Mathematical Association 1(2004) 129-132.
4. Bhat P. G., D'Souza S.: Energy of binary labeled graph, Transactions on Combinatorics 2(2013) 53-67.
5. Bhat P. G., D'Souza S.: Minimum covering energy of binary labeled graph, International Journal of Mathematics and Soft Computing 4(2014) 153-164.
6. Gutman I.: The energy of a graph, Ber Math Stat Sekt Forschungsz Graz 103(1978) 1-22.
7. Gutman I.: The energy of a graph: old and new results, Algebraic combinatorics and applications (2001) 196-211.
8. Graovac A., Gutman I., Trinajstic N.: Topological approach to the chemistry of conjugated molecules, Springer-Verlag, (1977).
9. Gutman, I.: Topological studies on hetero conjugated molecules, Z Naturforch $\mathbf{4 5}(1990)$ 1085-1089.
10. Gutman I., Mateljevic M.: Note on the Coulson integral formula, Journal of Mathematical Chemistry 39(2006) 259-266.
11. Harary F.: Graph Theory, Narosa Publishing House, New-Delhi, 1989.
12. Indulal G., Gutman I., Vijayakumar A. : On distance energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 60(2008) 461-472.
13. Pirzadal S., Gutman I.: Energy of a graph is never the square root of an odd integer, Applicable Analysis and Discrete Mathematics 2(2008) 118-121.
14. Zhou B.: The energy of a graph, MATCH Communications in Mathematical and in Computer Chemistry 51(2004) 111-118.
15. Zhou B.: On the energy of a graph, Kragujevac Journal of Mathematics 26(2004) 5-12.

Sabitha D'Souza: Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.

Email address: sabitha.dsouza@manipal.edu
Gowtham H. J.(*Correponding Author): Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.

Email address: gowtham.hj@manipal.edu
Pradeep G. Bhat: Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.

Email address: pg.bhat@manipal.edu

[^0]: 2000 Mathematics Subject Classification. 05C50.
 Key words and phrases. label matrix, label eigenvalues, spectral radius, label energy.

