Received: 17th May 2023 Revised: 12th July2023

BOUNDS FOR ENERGY OF BINARY LABELED GRAPH

SABITHA D'SOUZA, GOWTHAM H. J.*, AND PRADEEP G. BHAT

ABSTRACT. Let G be a graph with vertex set V(G) and edge set X(G) and consider the set $A = \{0, 1\}$. A mapping $l : V(G) \to A$ is called binary vertex labeling of G and l(v) is called the label of the vertex v under l. The label energy of G is the sum of the absolute values of the label eigenvalues. In this paper, we establish bounds for label energy, largest label eigenvalue and label spectral radius.

1. Introduction

Let G(V, X) be a connected graph with *n* vertices and *m* edges and let A = A(G) be its adjacency matrix. The eigenvalues of the adjacency matrix *A* are denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$ assumed in non increasing order. The energy of graph *G* was first introduced by Ivan Gutman [6] in 1978 as $E(G) = \sum_{i=1}^{n} |\lambda_i|$. For details on energy of graph refer [1, 2, 3, 5, 7, 8, 9, 11, 10, 12, 13, 14, 15].

P. G. Bhat and S. D'Souza in [4] have introduced label matrix denoted as $A_l(G) = [l_{ij}]$ of order n, whose entries l_{ij} are defined as follows:

$$l_{ij} = \begin{cases} a, & \text{if } v_i v_j \in X \text{ and } l(v_i) = l(v_j) = 0, \\ b, & \text{if } v_i v_j \in X \text{ and } l(v_i) = l(v_j) = 1, \\ c, & \text{if } v_i v_j \in X \text{ and } l(v_i) = 0, \ l(v_j) = 1 \text{ or vice-versa}, \\ 0, & \text{otherwise.} \end{cases}$$

where a, b, c are distinct nonzero real numbers.

The label eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of G are assumed in non increasing order. The label energy of a graph G is defined as $E_l(G) = \sum_{i=1}^n |\lambda_i|$. Since $A_l(G)$ is a real symmetric matrix with zero trace, these eigenvalues of binary labeled graph are real with sum equal to zero. Some well known properties of graph label eigenvalues are

$$\sum_{i=1}^{n} \lambda_i = 0$$
$$\sum_{i=1}^{n} \lambda_i^2 = 2Q \tag{1.1}$$

²⁰⁰⁰ Mathematics Subject Classification. 05C50.

Key words and phrases. label matrix, label eigenvalues, spectral radius, label energy.

where $Q = n_1 a^2 + n_2 b^2 + n_3 c^2$ and n_1, n_2, n_3 denote number of edges of G whose end vertex labels are (0, 0), (1, 1) and (0, 1) respectively.

And

$$\det(A) = \prod_{i=1}^{n} \lambda_i.$$
(1.2)

This paper is organized as follows. In Section 2, we present some bounds for spectral radius and label energy. Bounds for largest label eigenvalue are established.

2. Bounds for energy of binary labeled graph

Proposition 2.1. Let $G(m_1, n)$ and $H(m_2, n)$ be two labeled graphs with n vertices. If $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and $\lambda'_1 \geq \lambda'_2 \geq \cdots \geq \lambda'_n$ are label eigenvalues of G and H respectively, then

$$\sum_{i=1}^{n} \lambda_i \lambda_i^{'} \le 2\sqrt{(n_1 a^2 + n_2 b^2 + n_3 c^2)(n_1^{'} a^2 + n_2^{'} b^2 + n_3^{'} c^2)},$$

where n'_1 , n'_2 , n'_3 denote number of edges of H whose end vertex labels are (0,0), (1,1) and (0,1) respectively. Equality holds if G or H is $\overline{K_n}$.

Proof. By Cauchy-Schwarz inequality, we have

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right).$$

Setting $a_i = \lambda_i$ and $b_i = \lambda'_i$ in the above inequality, we get

$$\left(\sum_{i=1}^{n} \lambda_i \lambda_i'\right)^2 \leq \left(\sum_{i=1}^{n} \lambda_i^2\right) \left(\sum_{i=1}^{n} {\lambda_i'}^2\right)$$
$$= 4QQ', \text{ where } Q' = n_1'a^2 + n_2'b^2 + n_3'c^2.$$

Hence,

$$\left(\sum_{i=1}^n \lambda_i \lambda_i'\right) \le 2\sqrt{QQ'}.$$

Therefore,

$$\sum_{i=1}^{n} \lambda_i \lambda_i^{'} \le 2\sqrt{(n_1 a^2 + n_2 b^2 + n_3 c^2)(n_1^{'} a^2 + n_2^{'} b^2 + n_3^{'} c^2)}.$$

Equality holds, when G or $H \cong \overline{K_n}$, we have m_1 or $m_2 = 0$ thus $E_l(G)$ or $E_l(H) = 0$.

Theorem 2.2. [4] Let G be a labeled graph with n vertices, m edges. Then

$$\sqrt{2(n_1a^2 + n_2b^2 + n_3c^2) + n(n-1)p^{\frac{2}{n}}} \le E_l(G) \le \sqrt{2n(n_1a^2 + n_2b^2 + n_3c^2)}.$$

In [4], the upper and lower bounds for $E_l(G)$ are attained. Using Theorem 2.2, we find the following bounds for $E_l(G)$.

Theorem 2.3. Let G be a connected labeled graph with n vertices and m edges. Then

 $2\sqrt{n_1a^2 + n_2b^2 + n_3c^2} \leq E_l(G) \leq 2\sqrt{m(n_1a^2 + n_2b^2 + n_3c^2)}$ with left equality holding if G is K_2 , $\overline{K_n}$, S_n , complete bipartite graph and right equality holding if and only if G is $\frac{n}{2}K_2$, $\overline{K_n}$.

Proof. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the label eigenvalues of G. Since,

 $\sum_{i=1}^{n} \lambda_i = 0$ $\sum_{i=1}^{n} \lambda_i^2 = 2Q$

we have

and

$$\sum_{i < j} \lambda_i \lambda_j = -Q. \tag{2.1}$$

Now consider

ſ

$$E_{l}(G)]^{2} = \left(\sum_{i=1}^{n} |\lambda_{i}|\right)^{2}$$

$$= \sum_{i=1}^{n} |\lambda_{i}| \sum_{j=1}^{n} |\lambda_{j}|$$

$$= \sum_{i=1}^{n} |\lambda_{i}|^{2} + 2 \sum_{1 \le i < j \le n} |\lambda_{i}| |\lambda_{j}|$$

$$\ge \sum_{i=1}^{n} |\lambda_{i}|^{2} + 2 |\sum_{i < j} \lambda_{i} \lambda_{j}|$$

$$\ge 2O + 2O \text{ ming constitutions (1.1) and (2.1)}$$

 $\geq 2Q + 2Q$ using equations (1.1) and (2.1).

Hence, $E_l(G) \ge 2\sqrt{Q}$.

From Theorem 2.2, we have $E_l(G) \leq \sqrt{2nQ}$. Since $n \leq 2m$, we have $E_l(G) \leq 2\sqrt{mQ}$

Thus,

$$2\sqrt{Q} \le E_l(G) \le 2\sqrt{mQ}.$$

Therefore,

$$2\sqrt{n_1a^2 + n_2b^2 + n_3c^2} \le E_l(G) \le 2\sqrt{m(n_1a^2 + n_2b^2 + n_3c^2)}$$

Left equality holds, when

- (i) $G \cong K_2$, an edge whose end vertex labels are (0,0) or (0,1) or (1,1).
- (ii) $G \cong \overline{K_n}$ and $E_l(G) = 0$.
- (iii) $G \cong S_n$, either n_1 or $n_2 = 0$.

(iv) $G \cong K_{m,m}$, each edge whose end vertex labels are (0,0), (0,1) or (1,1), (0,1). Right equality holds, when (i) $G \cong \frac{n}{2}K_2$, each edge whose end vertex labels are (0,0) or (0,1) or (1,1).

(ii)
$$G \cong K_n$$
 and $E_l(G) = 0$.

Now we give few bounds for label spectral radius and obtain bounds for label energy.

Proposition 2.4. Let G be a labeled graph (n,m)- graph and $\rho_l(G) = \max_{1 \le i \le n} \{|\lambda_i|\}$ be the label spectral radius of G. Then

$$\sqrt{\frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n}} \le \rho_l(G) \le \sqrt{2(n_1a^2 + n_2b^2 + n_3c^2)}$$

with left equality holding if and only if G is $\frac{n}{2}K_2$, $\overline{K_n}$ and right equality holds if G is $\overline{K_n}$.

Proof. Consider

$$\rho_l^2(G) = \max_{1 \le i \le n} \{ |\lambda_i|^2 \}$$

$$\le \sum_{j=1} n\lambda_j^2 = 2Q.$$

$$\rho_l(G) \le \sqrt{2Q}.$$
(2.2)

Next consider

$$n \ \rho_l^2(G) \ge \sum_{i=1}^n \lambda_i^2$$
$$\ge 2Q.$$

We have

$$\rho_l(G) \ge \sqrt{\frac{2Q}{n}}.\tag{2.3}$$

Combining expression (2.2) and (2.3)

$$\sqrt{\frac{2Q}{n}} \le \rho_l(G) \le \sqrt{2Q}.$$

Therefore,

$$\sqrt{\frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n}} \le \rho_l(G) \le \sqrt{2(n_1a^2 + n_2b^2 + n_3c^2)}$$

Left equality holds, when

(i) $G \cong \frac{n}{2}K_2$, each edge whose end vertex labels are (0,0) or (0,1) or (1,1). (ii) $G \cong \overline{K_n}$.

Right equality holds, when $G \cong \overline{K_n}$.

Theorem 2.5. Let G be a labeled graph and $\lambda_1, \lambda_2, \dots, \lambda_n$ be the label eigenvalues of G. If $n \le 2(n_1a^2 + n_2b^2 + n_3c^2)$ and $\lambda_1 \ge \frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n}$, then $E_l(G) \le \frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n} + \sqrt{(n-1)\left[2(n_1a^2 + n_2b^2 + n_3c^2) - \left(\frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n}\right)^2\right]}.$ *Proof.* We have

$$\sum_{i=2}^{n} \lambda_i^2 = 2Q - \lambda_1^2 \tag{2.4}$$

By a special case of Cauchy-Schwarz inequality, we have

$$\left(\sum_{i=1}^{n} |\lambda_i|\right)^2 \le n \sum_{i=1}^{n} |\lambda_i|^2.$$

Thus,

$$\left(\sum_{i=2}^{n} |\lambda_i|\right)^2 \le (n-1)\sum_{i=2}^{n} |\lambda_i|^2$$

and hence,

$$\left(\sum_{i=2}^{n} |\lambda_i|\right) \le \sqrt{(n-1)\sum_{i=2}^{n} |\lambda_i|^2}.$$
(2.5)

Employing (2.4) in (2.5), we obtain

$$E_l(G) - \lambda_1 \le \sqrt{(n-1)[2Q - \lambda_1^2]}$$

that is,

$$E_l(G) \le \lambda_1 + \sqrt{(n-1)[2Q - \lambda_1^2]}.$$

Consider, the function

$$F(x) = x + \sqrt{(n-1)[2Q - x^2]}.$$

Then,

$$F'(x) = 1 - \frac{x\sqrt{(n-1)}}{\sqrt{2Q - x^2}}.$$

We observe that, F(x) is decreasing in the interval

$$\left(\sqrt{\frac{2Q}{n}},\sqrt{2Q}\right)$$

Since, $n \leq 2Q$ and $\frac{2Q}{n} \leq \lambda_1$, we have

$$\sqrt{\frac{2Q}{n}} < \frac{2Q}{n} \le \lambda_1 \le \sqrt{2Q}.$$

Last inequality follows from Proposition 2.4. Hence,

$$E_l(G) \le \frac{2Q}{n} + \sqrt{(n-1)\left[2Q - \left(\frac{2Q}{n}\right)^2\right]}.$$

Therefore,

$$E_l(G) \le \frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n} + \sqrt{\left(n-1\right)\left[2(n_1a^2 + n_2b^2 + n_3c^2) - \left(\frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n}\right)^2\right]}.$$

As the proof of the following theorem is similar to that of Theorem 2.5 we omit the proof.

Theorem 2.6. If $n \le 2Q$ and $\sqrt{\frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n}} \le \rho_l(G) \le \frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n}$, then

$$E_l(G) \ge \frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n} + \sqrt{(n-1)\left[2(n_1a^2 + n_2b^2 + n_3c^2) - \left(\frac{2(n_1a^2 + n_2b^2 + n_3c^2)}{n}\right)^2\right]}$$

Now we prove the following theorem which is useful to obtain bounds for the largest label eigenvalue of a graph G.

Theorem 2.7. Let G be a labeled graph with n vertices and m edges and H be a (n, m_1) -graph. If $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are label eigenvalues of G and $\lambda'_1 \geq \lambda'_2 \geq \cdots \geq \lambda'_n$ are eigenvalues of H then

$$\sum_{i=1}^{n} \lambda_i \lambda_i^{\prime} \le 2\sqrt{(n_1 a^2 + n_2 b^2 + n_3 c^2)m_1}.$$

Equality holds if G or H is $\overline{K_n}$.

Proof. By Cauchy-Schwartz inequality, we have

$$\left(\sum_{i=1}^{n} \lambda_i \lambda_i'\right)^2 \le \left(\sum_{i=1}^{n} \lambda_i^2\right) \left(\sum_{i=1}^{n} {\lambda_i'}^2\right) \tag{2.6}$$

From equation (1.1), we know that $\sum_{i=1}^{n} \lambda_i^2 = 2Q$. It is well-known that $\sum_{i=1}^{n} {\lambda'_i}^2 = 2m_1$. Using these in expression (2.6) we obtain

$$\left(\sum_{i=1}^{n} \lambda_i \lambda_i'\right) \le 2\sqrt{Qm_1}$$

Therefore,

$$\left(\sum_{i=1}^{n} \lambda_i \lambda_i'\right) \le 2\sqrt{(n_1 a^2 + n_2 b^2 + n_3 c^2)m_1}$$

Equality holds when G or $H \cong \overline{K_n}$, we have m = 0 or $m_1 = 0$ and $E_l(G) = 0$. \Box

If we know the spectrum of a graph H with n vertices and m_1 edges, then we can find an upper bound for the largest label eigenvalue of the labeled graph G with n vertices.

Using Theorem 2.7 we establish bounds for the largest label eigenvalue.

Proposition 2.8. If G is a labeled (n,m)-graph and $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ are label eigenvalues of G, then

$$\lambda_1 \le \frac{1}{p-1} \left[\sqrt{2(n_1 a^2 + n_2 b^2 + n_3 c^2)p(p-1)} + \sum_{i=2}^p \lambda_{n-p+i} \right]$$

where p is any integer, 1 .

Proof. Let $H = K_p \cup \overline{K_{n-p}}$. Then the Spectrum of H is $\begin{pmatrix} (p-1) & 0 & -1 \\ 1 & n-p & p-1 \end{pmatrix}$. Then by Theorem 2.7 we have

 $\lambda_1(p-1) + \lambda_2(0) + \lambda_3(0) + \dots + \lambda_{n-p+1}(0) + \lambda_{n-p+2}(-1) + \dots + \lambda_n(-1) \le 2\sqrt{\frac{Qp(p-1)}{2}}.$ Thus,

$$(p-1)\lambda_1 \le \sqrt{2Qp(p-1)} + \sum_{i=2}^p \lambda_{n-p+i}$$

Hence,

$$\lambda_1 \le \frac{1}{p-1} \left[\sqrt{2Qp(p-1)} + \sum_{i=2}^p \lambda_{n-p+i} \right].$$

Therefore,

$$\lambda_1 \le \frac{1}{p-1} \left[\sqrt{2(n_1 a^2 + n_2 b^2 + n_3 c^2) p(p-1)} + \sum_{i=2}^p \lambda_{n-p+i} \right].$$

Remark 2.9. If p = n in the above proposition, then

$$\lambda_1 \le \sqrt{\frac{2(n_1a^2 + n_2b^2 + n_3c^2)(n-1)}{n}}.$$

Remark 2.10. If p = 2 in the above proposition, then

$$\lambda_1 - \lambda_n \le 2\sqrt{2(n_1a^2 + n_2b^2 + n_3c^2)}.$$

Proposition 2.11. If G is a labeled (n,m)-graph and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are label eigenvalues of G, then

$$\sum_{i=1}^{k} \lambda_i \le \sqrt{\frac{2(n_1 a^2 + n_2 b^2 + n_3 c^2)k(p-1)}{p}}$$

where p is any integer $1 \le p \le n$ and $k = \frac{n}{p}$.

Proof. Let H be a graph with n vertices and k components, each is a complete graph K_p . Then n = pk and H has $\frac{kp(p-1)}{2}$ edges. Thus spectrum of H is $\binom{(p-1) \quad -1}{k \quad k(p-1)}$. Then by Theorem 2.7 we have

$$(p-1)\lambda_1 + (p-1)\lambda_2 + \dots + (p-1)\lambda_k + (-1)\lambda_{k+1} + \dots + (-1)\lambda_n \le 2\sqrt{\frac{Qkp(p-1)}{2}}.$$

Thus,

$$p\sum_{i=1}^{k} \lambda_i - \sum_{i=1}^{n} \lambda_i \le \sqrt{2Qkp(p-1)}$$

and

$$\sum_{i=1}^k \lambda_i \le \sqrt{\frac{2Qk(p-1)}{p}}$$

Therefore,

$$\sum_{i=1}^{k} \lambda_i \le \sqrt{\frac{2(n_1a^2 + n_2b^2 + n_3c^2)k(p-1)}{p}}$$

Remark 2.12. If k = 1 in the above proposition, then

$$\lambda_1 \le \sqrt{\frac{2(n_1a^2 + n_2b^2 + n_3c^2)(p-1)}{p}}$$

Proposition 2.13. If G is a labeled (n,m)-graph and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are label eigenvalues of G, then

$$\left[\sum_{i=1}^{k} \lambda_i - \sum_{i=1}^{k} \lambda_{n-k+i}\right] \le 2\sqrt{(n_1 a^2 + n_2 b^2 + n_3 c^2)k},$$

where $1 \leq k < n$ and k|n.

Proof. Let H be a graph with n vertices and k components, each is a complete

bipartite graph $K_{p,q}$. Then n = k(p+q) and H has kpq edges. Thus, the spectrum of H is $\begin{pmatrix} \sqrt{pq} & 0 & -\sqrt{pq} \\ k & k(p+q-2) & k \end{pmatrix}$. Then, by Theorem 2.7 we have

$$\sqrt{pq}\lambda_1 + \dots + \sqrt{pq}\lambda_k + (0)\lambda_{k+1} + \dots + (0)\lambda_{k+k(p+q-2)} + (-\sqrt{pq})\lambda_{k(p+q-1)+1} + \dots + (-\sqrt{pq})\lambda_n \le 2\sqrt{Qkpq}.$$

Thus,

$$\left[\sum_{i=1}^{k} \lambda_i - \sum_{i=1}^{k} \lambda_{n-k+i}\right] \le 2\sqrt{Qkpq},$$

and

$$\left[\sum_{i=1}^{k} \lambda_i - \sum_{i=1}^{k} \lambda_{n-k+i}\right] \le 2\sqrt{Qk}.$$

Therefore,

$$\left[\sum_{i=1}^{k} \lambda_i - \sum_{i=1}^{k} \lambda_{n-k+i}\right] \le 2\sqrt{(n_1 a^2 + n_2 b^2 + n_3 c^2)k}.$$

Remark 2.14. If k = 1 in the above proposition, then

$$\lambda_1 - \lambda_n \le 2\sqrt{n_1 a^2 + n_2 b^2 + n_3 c^2}.$$

BOUNDS FOR ENERGY OF BINARY LABELED GRAPH

References

- 1. Balakrishnan R.: The energy of a graph, *Linear Algebra and its Applications* **387**(2004) 287–295.
- 2. Bapat R. B.: Graphs and Matrices, Springer-Hindustan Book Agency, London, 2011.
- Bapat R. B., Pati S.: Energy of a graph is never an odd integer, Bulletin of Kerala Mathematical Association 1(2004) 129–132.
- Bhat P. G., D'Souza S.: Energy of binary labeled graph, Transactions on Combinatorics 2(2013) 53–67.
- Bhat P. G., D'Souza S.: Minimum covering energy of binary labeled graph, International Journal of Mathematics and Soft Computing 4(2014) 153–164.
- 6. Gutman I.: The energy of a graph, Ber Math Stat Sekt Forschungsz Graz 103(1978) 1–22.
- Gutman I.: The energy of a graph: old and new results, Algebraic combinatorics and applications (2001) 196–211.
- 8. Graovac A., Gutman I., Trinajstic N.: Topological approach to the chemistry of conjugated molecules, Springer-Verlag, (1977).
- 9. Gutman, I.: Topological studies on hetero conjugated molecules, Z Naturforch ${\bf 45}(1990)$ 1085-1089.
- Gutman I., Mateljevic M.: Note on the Coulson integral formula, Journal of Mathematical Chemistry 39(2006) 259-266.
- 11. Harary F.: Graph Theory, Narosa Publishing House, New-Delhi, 1989.
- Indulal G., Gutman I., Vijayakumar A. : On distance energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 60(2008) 461-472.
- Pirzadal S., Gutman I.: Energy of a graph is never the square root of an odd integer, Applicable Analysis and Discrete Mathematics 2(2008) 118-121.
- Zhou B.: The energy of a graph, MATCH Communications in Mathematical and in Computer Chemistry 51(2004) 111-118.
- 15. Zhou B.: On the energy of a graph, Kragujevac Journal of Mathematics 26(2004) 5-12.

SABITHA D'SOUZA: DEPARTMENT OF MATHEMATICS, MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL ACADEMY OF HIGHER EDUCATION, MANIPAL 576104, INDIA.

 $Email \ address: \tt sabitha.dsouza@manipal.edu$

GOWTHAM H. J.(*CORREPONDING AUTHOR): DEPARTMENT OF MATHEMATICS, MANIPAL IN-STITUTE OF TECHNOLOGY, MANIPAL ACADEMY OF HIGHER EDUCATION, MANIPAL 576104, INDIA. *Email address*: gowtham.hj@manipal.edu

PRADEEP G. BHAT: DEPARTMENT OF MATHEMATICS, MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL ACADEMY OF HIGHER EDUCATION, MANIPAL 576104, INDIA.

Email address: pg.bhat@manipal.edu