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Abstract. In this study, the general linear and nonlinear Fredholm integro-
differential equations are handled using the Direct Computation approach.

The proposed method’s exact solution is established using a convergence

analysis, and the methodology is provided strictly. A formula for computing
the solution is derived after establishing existence and uniqueness conditions.

The application of the strategy to a few instances using tables and graphs

created using MATLAB (2018) Version 9.4 will demonstrate the effectiveness
of the method.

1. Introduction

Ivar Fredholm first presented the Fredholm Integro-differential (FID) equation
in the early 1900s. Numerous scientific applications call for the use of the Fredholm
integro-differential (FID) equations. The ability to derive these equations from
boundary value issues was also demonstrated [1, 2, 5, 8, 10]. The Fredholm integro-
differential (FID) equations [6, 9, 22-25, 29, 30] are notoriously challenging to
solve analytically when the boundary conditions are known. Therefore, various
numerical and approximation techniques must be used to solve these difficulties.
When studying a population growth model, Fredholm looked at the genetic factors.
A specific topic on Fredholm integro-differential (FID) equations emerged from the
research work. [16, 26] contains information on the existence and uniqueness of
such problems’ solutions.

We look at the class of nth−order variable coefficient Fredholm integro-differential
(FID) equation

n∑
m=0

fm(y)Ξm(y) = g(y) + λ

∫ d

c

K(y, t)Ξ(t)dt, (1.1)

In this research, we examine the nonlinear Fredholm integro-differential (FID)
equations provided by

n∑
m=0

fm(y)Ξm(y) = g(y) +

∫ d

c

K(y, t)G(Ξ(t))dt, y, t ∈ [c, d], (1.2)

2000 Mathematics Subject Classification. 65R20, 65R99, 45G99.
Key words and phrases. Linear Fredholm Integro-differential Equation, Non-linear Fredholm

Integro-differential Equation, Direct Computation Method, Uniqueness of FID equation.

Global and Stochastic Analysis  
Vol. 11 No. 1 (January, 2024) 
 
 

Received: 25 August 2023          Revised: 19th October 2023            Accepted: 25th October 2023 

65



ASIYA ANSARI, NAJMUDDIN AHMAD, AND FARAH DEEBA

With the initial conditions

Ξ(s)(c) = ds, s = 0, 1, 2, . . . , (n− 1). (1.3)

Where Ξm(y) are the mth derivative of the unknown function Ξ(y), fm(y) is a

function of y, fn(y) ̸= 0, the initial conditions Ξ(0),Ξ
′
(0), . . . ,Ξm−1(0) and the

boundary conditions Ξ(0) = α1,Ξ
′
(0) = α2, . . . ,Ξ(c) = αm−1,Ξ

′
(d) = αm where

αi, i = 1, 2, 3, . . . ,m are any finite real constants are prescribed. The kernel
K(y, t) ∈ C([c, d] × [c, d]), the function g(y) ∈ C[c, d] are given real-valued func-
tions, c, d, λ and G(Ξ(t)) is nonlinear function of Ξ(y) [15].

The Adomian Decomposition Method (ADM) [4, 7, 12-14, 17, 20, 29, 30], Vari-
ational Iteration Method (VIM) [2, 4, 11, 21, 27, 29], He’s Homotopy Perturbation
Method [5], Homotopy Analysis Method (HAM) [1, 18], Homotopy Perturbation
Method [3], the Haar Wavelet method [19], the Laplace Adomian Decomposition
Method [28], Modified Adomian Decomposition Method [29, 30] and others have
recently been used to solve Integro-Differential Equations.

The primary goal of the current work is to analyse the behaviour of linear or
nonlinear Fredholm integro-differential (FID) equation solutions. This behaviour
can be explicitly characterised using the Direct Computational Method (DCM), a
semi-analytical approximate method. Additionally, we established the Fredholm
integro-differential (FID) equations existence and uniqueness results.

2. Derivation of the Direct Computation Method

In order to solve the system of general linear and non-linear Fredholm’s integro-
differential (FID) equations, this study extends the analysis of the Direct Compu-
tational Method (DCM). Many Fredholm integro-differential (FID) equations [29,
30] are typically handled using the classic Direct Computation Method (DCM)
[23]. A Fredholm Integro-differential (FID) equation is transformed into an ordi-
nary differential equation (ODE) via the DCM. The acquired ODE’s solution is
then converted into an algebraic system of equations. By computing the algebraic
system of equations’ answers and substituting them into the ODE’s solution.

Assume the kernel in equation (1.2) has the following shape:

K(y, t) =

l∑
k=1

fk(y)gk(t). (2.1)

The following Ordinary Differential Equation (ODE) is produced by substituting
(2.1) into the system of Fredholm Integro-Differential (FID) equation (1.2)

n∑
m=0

fm(y)Ξ(m)(y) = g(y) +

∫ d

c

l∑
k=1

fk(y)gk(t)G(Ξ(t))dt, y ∈ [c, d], (2.2)

The definite integral at the RHS of (2.2) makes it evident that the integrand
depends only on the variable t. Because β is a constant, the definite integral in
the RHS (2.2) is identical to the number β. Therefore, (2.2) becomes

Ξ
′
(y) = g(y) + β1f1(y) + β2f2(y) + · · ·+ βlfl(y)
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Where

βm =

∫ d

c

gm(t)Ξ
′

m(t)dt, 1 ≤ m ≤ l. (2.3)

So, (2.2) becomes

n∑
m=0

fm(y)Ξ(m)(y) = g(y) +

l∑
k=1

fk(y)βmdt (2.4)

It is possible to find the constant βm by simplifying both sides of equation (2.2),
integrating m − times from 0 to y, coupling with the initial conditions stated in
equation (1.3), and then inserting the resulting equations for Ξm(y) into equation
(2.3). The solution Ξ(y) of the system of Fredholm integro-differential (FID)
equations (1.2) is achieved by plugging the determined numerical value of the
constant into the determined equation for Ξ(y).

3. Existence and Uniqueness

Using the initial conditions (1.3) and the uniqueness and existence results of
(1.2), we will demonstrate it in this section [16, 26].

We can express (1.2) as follows:

Ξ(y) = L−1

[
g(y)

fn(y)

]
+

n−1∑
s=0

(y − c)s

s!
ds + λ1L

−1

[∫ d

c

1

fn(y)
K(y, t)G(Ξl(t))dt

]

− L−1

[n−1∑
m=0

fm(y)

fn(y)
Ξ(m)(y)

]
.

We are able to write

L−1

[∫ d

c

1

fn(y)
K(y, t)G(Ξl(t))dt

]
=

∫ d

c

(y − t)n

n!fn(y)
K(y, t)G(Ξl(t))dt

n−1∑
m=0

L−1

[
fm(y)

fn(y)

]
Ξ(m)(y) =

n−1∑
m=0

∫ d

c

(y − t)n−1fm(t)

(n− 1)!fn(t)
Ξ(m)(t)dt.

We set

Π(y) = L−1

[
g(y)

fn(y)

]
+

n−1∑
s=0

(y − c)s

s!
ds.

We introduce the following hypothesis before getting started and proving the
main results:

(A1) ∃ two constants ϕ and Φm > 0,m = 0, 1, 2, . . . , n such that, for any
Ξ1,Ξ2 ∈ C(M,R)

|G(Ξ1)−G(Ξ2)| ≤ ϕ|Ξ1 − Ξ2|
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And

|Dm(Ξ1)−Dm(Ξ2)| ≤ Φm|Ξ1 − Ξ2|.

We assume that the nonlinear terms G(Ξ(y)) and Dm(Ξ) =

(
dm

dym

)
Ξ(y) =∑∞

i=0 Φim , where Dm is a derivative operator, are Lipschitz continuous for m =
0, 1, 2, . . . , n.

(A2) We consider it to be ∀ c ≤ t ≤ y ≤ d, and m = 0, 1, 2, . . . , n :∣∣∣∣λ(y − t)nK(y, t)

n!fn(y)

∣∣∣∣≤ τ1,

∣∣∣∣λ(y − t)nK(y, t)

n!

∣∣∣∣≤ τ2,

And ∣∣∣∣ (y − t)n−1fm(t)

(n− 1)!fn(t)

∣∣∣∣≤ τ3,

∣∣∣∣ (y − t)n−1fm(t)

(n− 1)!

∣∣∣∣≤ τ4.

(A3) ∃ three functions τ∗3 , τ
∗
4 , and Φ∗ ∈ C(D,R+), the collection of all contin-

uous positive functions D = {(y, t) ∈ R× R : 0 ≤ t ≤ y ≤ 1, } such that:

τ∗3 = max|τ3|, τ∗4 = max|τ4|, and Φ∗ = max|Φm|.

(A4) Π(y) is bounded function ∀ y in M = [c, d].

Theorem 3.1 Assume that (A1) - (A4) hold. If 0 < Π = (ϕτ1+nϕ∗τ∗3 )(d−c) < 1,
then ∃ a unique solution Ξ(y) ∈ C(M) to initial value problem (IVP) (1.2) -(3).

Proof. Let Ξ1 and Ξ2 be two different solutions of IVP (1.2)-(1.3), then

|Ξ1 − Ξ2| =
∣∣∣∣∫ d

c

λ(y − t)nK(y, t)

fn(y)n!

∣∣∣∣[G(Ξ1)−G(Ξ2)]dt

−
n−1∑
m=0

∫ d

c

(y − t)n−1fm(t)

fn(t)(n− 1)!
[Dm(Ξ1)−Dm(Ξ2)]dt

≤
∫ d

c

∣∣∣∣λ(y − t)nK(y, t)

fn(y)n!

∣∣∣∣|G(Ξ1)−G(Ξ2)|dt

−
n−1∑
m=0

∫ d

c

∣∣∣∣ (y − t)n−1fm(t)

fn(t)(n− 1)!

∣∣∣∣|Dm(Ξ1)−Dm(Ξ2)|dt

≤ (ϕτ1 + nϕ∗τ∗3 )(d− c)|Ξ1 − Ξ2|

We get (1−Π)|Ξ1 − Ξ2| ≤ 0. Since 0 < Π < 1, so |Ξ1 − Ξ2| = 0.

Therefore, Ξ1 = Ξ2 and the proof is completed.
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4. Analysis

Demonstrate how the existence theorem can be applied to several examples of
FID equations as well as the numerical examples that are solved by DCM in this
article. Additionally, some numerical solutions that were obtained converged ap-
proximately to the exact solution. To compare the Direct Computational Method
(DCM) answer with the exact solution, we provide the absolute which is defined
by

Error(l) = |Ξ(y)− Ξl(y)|.
To make the notation simpler in (2.1), we substitute β for β1 in the situation where
l = 1.

Example 4.1: Consider the FID equation:

Ξ
′′
(y) = −siny + y −

∫ π/2

0

ytΞ(t)dt, Ξ(0) = 0, Ξ
′
(0) = 1.

Uniqueness:

|f(y, t,Ξ1(t))− f(y, t,Ξ2(t))| = |yΞ1(t)− yΞ2(t)| = |y||Ξ1 − Ξ2|,
Where K1(y, t) = y, since

sup
t∈[0,π/2]

∫ π/2

0

K1(y, t)dy = sup
t∈[0,π/2]

∫ π/2

0

ydy ≤ 1.

Then, the existence theorem allows us to conclude that the problem has a unique
solution.

When using DCM, we can pinpoint the exact solution.
Where

β =

∫ π/2

0

tΞ(t)dt.

To find the value of β, β = 1.
We thus arrive to answer Ξ(y) = sin(y), which is exact.

Example 4.2: Consider the FID equation:

Ξ
′
(y) = −1 +

1

e
− cosh(y) + ysinh(1) +

∫ 1

0

(y − t)Ξ
′
(t)dt, Ξ(0) = 1.

Uniqueness:

|f(y, t,Ξ1(t))− f(y, t,Ξ2(t))| = |(y − t)Ξ1(t)− (y − t)Ξ2(t)| = |y − t||Ξ1 − Ξ2|,
Where K1(y, t) = (y − t), since

sup
t∈[0,1]

∫ 1

0

K1(y, t)dy = sup
t∈[0,1]

∫ 1

0

(y − t)dy ≤ 1.

Then, the existence theorem allows us to conclude that the problem has a unique
solution.
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When using DCM, we can pinpoint the exact solution.
Where

β1 =

∫ 1

0

Ξ
′
(t)dt, β2 =

∫ 1

0

tΞ
′
(t)dt.

To find the value of β1 and β2 as

β1 =
1

e
+

1

2
(−2 + β1 − 2β2 − sinh(1)),

β2 =
8 + e2 + 2eβ1 − 3e(3 + β)

6e
.

Solving these above equations, we obtain

β1 = −−2 + 2e2 + 9esinh(1)

13e
,

β2 = −−12 + 13e− e2 + 2esinh(1)

13e
.

We thus arrive to answer Ξ(y) = 1− sinh(y), which is exact.

Table 1. The approximate and exact solution of example 4.2

y Exact Solution, n = 10 Approximate Sol. n = 10 |Ξ(y)− Ξm(y)|
0.2 0.7986640 0.7986450 1.9129E − 5
0.4 0.5892480 0.5892040 4.3296E − 5
0.6 0.3633460 0.3632880 5.8509E − 5
0.8 0.1118940 0.1118440 4.9678E − 5

Figure 1. Comparison between the exact and approximate solution
for example 4.2.

Example 4.3: Consider the FID equation:

Ξ
′′
(y) =

9

4
− 1

3
y +

∫ 1

0

(y − t)Ξ(t)dt, Ξ(0) = Ξ
′
(0) = 0.

Uniqueness:

|f(y, t,Ξ1(t))− f(y, t,Ξ2(t))| = |(y − t)Ξ1(t)− (y − t)Ξ2(t)| = |(y − t)||Ξ1 − Ξ2|,
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Where K1(y, t) = (y − t), since

sup
t∈[0,1]

∫ 1

0

K1(y, t)dy = sup
t∈[0,1]

∫ 1

0

(y − t)dy ≤ 1.

Then, the existence theorem allows us to conclude that the problem has a unique
solution.

When using DCM, we can pinpoint the exact solution.
Where

β1 =

∫ 1

0

Ξ(t)dt, β2 =

∫ 1

0

tΞ(t)dt.

To find the value of β1 and β2 as

β1 =
1

4
, β2 =

1

3
.

We thus arrive to answer Ξ(y) = y2, which is exact.

Example 4.4: Consider the FID equation:

Ξ
′
(y) = −33

50
siny +

∫ 1

−1/2

sinyΞ
′
(t)dt, Ξ(−0.5) = cos(−0.5).

Uniqueness:

|f(y, t,Ξ1(t))− f(y, t,Ξ2(t))| = |sinyΞ1(t)− sinyΞ2(t)| = |siny||Ξ1 − Ξ2|,

Where K1(y, t) = siny, since

sup
t∈[−1/2,1]

∫ 1

−1/2

K1(y, t)dy = sup
t∈[−1/2,1]

∫ 1

−1/2

sinydy ≤ 1.

Then, the existence theorem allows us to conclude that the problem has a unique
solution.

When using DCM, we can pinpoint the exact solution.
Where

β =

∫ 1

−1/2

Ξ
′
(t)dt.

To find the value of β as

β = −0.33728

We thus arrive to answer Ξ(y) = cos(y), which is exact.
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Table 2. The approximate and exact solution of example 4.4

y Exact Solution, n = 10 Approximate Sol. n = 10 |Ξ(y)− Ξm(y)|
-0.35 0.9393730 0.9393730 2.22045E − 16
-0.20 0.9800670 0.9800670 1.11022E − 16
-0.05 0.9987500 0.9987500 0.000000000
0.10 0.9950040 0.9950040 0.000000000
0.25 0.9689120 0.9689120 1.11022E − 16
0.40 0.9210661 0.9210661 2.22045E − 16
0.55 0.8525250 0.8525250 2.22045E − 16
0.70 0.7648420 0.7648420 1.11022E − 16
0.85 0.6599840 0.6599840 0.000000000

Figure 2. Comparison between the exact and approximate solution
for example 4.4.

5. Conclusion

In this research, the system of general Fredholm Integro-differential (FID) equa-
tions was solved using the Direct Computation Method (DCM). It is crucial to
note that additional techniques should be used for systems with different or sep-
arate kernels. While any form of kernel can be utilised with the DCM to solve
the system of general Fredholm Integro-differential (FID) equations. Addition-
ally, we looked at whether the proposed FID equations had a unique solution
and calculated the estimated inaccuracy of the suggested system. The outcomes
demonstrate that DCM is very effective, practical, and adaptable to address an
array of issues. Tables 1 and 2 demonstrate the consistency between the exact
answer and the numerical result produced using DCM.
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