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Abstract. In this paper, we construct the type 2 polyexponential Euler

polynomials and numbers, are called the type 2 polyexponential Euler poly-

nomials and numbers by using polyexponential functions and derive several
properties on the type 2 polyexponential Euler polynomials and numbers.

Then, we introduce type 2 unipoly-Euler polynomials by using polyexpo-

nential functions and investigate some properties of them. Furthermore, we
derive some new explicit expressions and identities of type 2 unipoly-Euler

polynomials and related to special numbers and polynomials.

1. Introduction

Special polynomials have their origin in the solution of the differential equations
(or partial differential equations) under some conditions. Special polynomials can
be defined in a various ways such as by generating functions, by recurrence rela-
tions, by p-adic integrals in the sense of the fermionic and bosonic, by degenerate
versions, etc.

The aim of this paper is to study the type 2 Euler polynomials and numbers by
using polyexponential functions, namely type 2 polyexponential Euler polynomials
and numbers, in the spirit of [1]. They were recently introduced by Kim-Kim [13].
We derive their explicit expressions and some identities involving them. Further,
we introduce the type 2 unipoly-Euler polynomials and numbers. Again, we de-
duce their explicit expressions and some identities related to them.

As is well known, the type 2 Bernoulli polynomials Bn(x), (n ≥ 0) and the type
2 Euler polynomials En(x), (n ≥ 0) are, respectively, defined by
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, (see [3, 14]). (1.2)
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2 WASEEM A. KHAN∗ AND SUNIL K. SHARMA

For x = 0, Bn(0) := Bn (or En(0) := En) are called the type 2 Bernoulli (or
type 2 Euler) numbers.

For k ∈ Z, the polylogaritm function is defined by

Lik(x) =

∞∑
n=1

xn

nk
, (| x |< 1), (see [5]). (1.3)

Note that

Li1(x) =

∞∑
n=1

xn

n
= − log(1− x). (1.4)

For k ∈ Z, Kim-Kim considered the polyexponential function, as an inverse to
the polylogarithm function to be

Eik(x) =

∞∑
n=1

xn

(n− 1)!nk
, (see [13]). (1.5)

It is notice that

e(x, 1/k) =
1

x
Eik, Ei1(x) =

∞∑
n=1

xn

n!
= ex − 1. (1.6)

In [1], Dolgy-Jang introduced the poly-Genocchi polynomials arising from poly-
exponential function as

2Eik (log(1 + t))

et + 1
ext =

∞∑
n=0

G(k)
n (x)

tn

n!
, (k ∈ Z). (1.7)

In the case when x = 0, G
(k)
n (0) = G

(k)
n are called the poly-Genocchi numbers.

Note that G
(1)
n (x) = Gn(x) are called the ordinary Genocchi polynomials.

Yoshinori [2] introduced the poly-Euler polynomials and numbers are defined
by

2Lik(1− e−t)

t(et + 1)
=

∞∑
n=0

E(k)
n (x)

tn

n!
. (1.8)

In the case when x = 0, E
(k)
n (0) = E

(k)
n are called the poly-Euler numbers. In

particular, for k = 1, E
(1)
n (x) = En(x) are called the ordinary Euler numbers.

The Daehee polynomials are defined by

log(1 + t)

t
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
, (see [12, 17, 19]). (1.9)

When x = 0, Dn(0) = Dn are called the Daehee numbers.
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For n ≥ 0, the Stirling numbers of the first kind are defined by

(x)n =

n∑
l=0

S1(n, l)xl, (see [4-8]), (1.10)

where (x)0 = 1, and (x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1). From (1.10), it is
easily to see that

1

k!
(log(1 + t))k =

∞∑
n=k

S1(n, k)
tn

n!
, (k ≥ 0), (see [9-12]). (1.11)

In the inverse expression to (1.10), the Stirling numbers of the second kind are
defined by

xn =

n∑
l=0

S2(n, l)(x)l. (1.12)

From (1.12), we see that

1

k!
(et − 1)k =

∞∑
n=l

S2(n, l)
tn

n!
, (see [1-19]). (1.13)

2. Type 2 polyexponential-Euler polynomials and numbers

In this section, we introduce the type 2 poly-Euler polynomials and numbers
employing the polyexponential functions and represent the usual type 2 Euler
numbers (more precisely, the value of type 2 Euler polynomials at 1) when k = 1.
At the same time, we give explicit expressions and identities involving those poly-
nomials.

In view of (1.7) and using the polyexponential functions, we define the type 2
polyexponential Euler polynomials by

2Eik (log(1 + t))

t
(
e

1
2 (t) + e−

1
2 (t)

)ext =

∞∑
n=0

E(k)
n (x)

tn

n!
, (k ∈ Z). (2.1)

In the case when x = 0, E
(k)
n (0) := E

(k)
n are called the type 2 polyexponential

Euler numbers.

For k = 1, by using (1.2) and (2.1), we see that

2Ei1 (log(1 + t))

t
(
e

1
2 (t) + e−

1
2 (t)

)ext =
2

e
1
2 (t) + e−

1
2 (t)

ext =

∞∑
n=0

En(x)
tn

n!
, (2.2)

where En(x) are called the type 2 Euler polynomials.

By (2.1) and (2.2), we get

E(1)
n (x) = En(x), (n ≥ 0).
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Theorem 2.1. For k ∈ Z and n ≥ 0, we have

E(k)
n =
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l
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Proof. From (2.1), we note that
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(
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1

(m + 1)k−1

S1(l + 1,m + 1)

l + 1
En−l

)
tn

n!
. (2.3)

Therefore, by (2.1) and (2.3), we complete the proof.
�

Corollary 2.1. For n ≥ 0, we have

En =

n∑
l=0

(
n

l

) l∑
m=0

S1(l + 1,m + 1)

l + 1
En−l.

Theorem 2.2. For k ∈ Z and n ≥ 0, we have

E(k)
n (x) =

n∑
m=0

(
n

m

)
E

(k)
n−mxm =

n∑
m=0

(
n

m

)
E(k)
m xn−m.

Proof. From (2.1), we note that

∞∑
n=0

E(k)
n (x)

tn

n!
=

2Eik (log(1 + t))

t
(
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1
2 (t) + e−

1
2 (t)

)ext
=

∞∑
n=0

(
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(
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n∑
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(
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m

)
E(k)
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)
tn

n!
. (2.4)

Therefore, by (2.1) and (2.4), we obtain the result. �

Theorem 2.3. Let n ≥ 0, and k ∈ Z, we have

d

dx
E(k)
n (x) = nE

(k)
n−m(x).
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Proof. By using Theorem 2.2, we observe that

d

dx
E(k)
n (x) =

d

dx

n∑
m=0

(
n

m

)
E

(k)
n−mxm

=
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m=1

(
n

m

)
E

(k)
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(
n

m + 1

)
E

(k)
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= n
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(n− 1)!

m!(n−m− 1)
E

(k)
n−mxm = nE

(k)
n−m(x). (2.5))

Therefore, by comparing on both sides of tn in (2.5), we get the result. �

For the next theorem, we need the following well known identity, (see [1, 17])(
t

log(1 + t)

)r
(1 + t)x−1 =

∞∑
n=0

B(n−r+1)
n (x)

tn

n!
,

where B
(n)
n is the Bernoulli numbers of order n at x = 0.

Theorem 2.4. For n ∈ N and k ∈ Z, we have

E(k)
n =

n∑
m=0

(
n

m

) ∑
m1+···+mk−1=m

(
m

m1, · · · ,mk−1

)
En−m

×B
(m1)
m1 (0)

m1 + 1

B
(m2)
m2 (0)

m1 + m2 + 1
· · ·

B
(mk−1)
mk−1 (0)

m1 + · · ·+ mk−1 + 1
.

Proof. First, we note that

d

dx
Eik (log(1 + x)) =

d

dx

∞∑
n=1

(log(1 + x))n

nk(n− 1)!

=
1

(1 + x) log(1 + x)

∞∑
n=1

(log(1 + x))n

nk−1(n− 1)!
=

1

(1 + x) log(1 + x)
Eik−1(log(1 + x)).

(2.6)
Thus, by (2.6), for k ≥ 2, we get

Eik(log(1 + x)) =

∫ x

0

1

(1 + t) log(1 + t)
Eik−1(log(1 + t))dt

=

∫ x

0

1

(1 + t) log(1 + t)

∫ t

0

· · · 1

(1 + t) log(1 + t)

∫ t

0

1

(1 + t) log(1 + t)︸ ︷︷ ︸
(k−2)−times

dt · · · dt

×Ei1(log(1 + t))dt · · · dt

=

∫ x

0

1

(1 + t) log(1 + t)

∫ t

0

· · · 1

(1 + t) log(1 + t)

∫ t

0

1

(1 + t) log(1 + t)︸ ︷︷ ︸
(k−2)−times

dt · · · dt.

(2.7)
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From (2.1) and (2.7), we get

∞∑
n=0

E(k)
n

xn

n!
=

2Eik (log(1 + x))

x
(
e

1
2 (x) + e−

1
2 (x)

) =
2

x
(
e

1
2 (x) + e−

1
2 (x)

)
×
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0
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∫ t

0

1
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· · ·
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t

(1 + t) log(1 + t)
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(2.8)

=
2x

x
(
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1
2 (x) + e−

1
2 (x)

) ∞∑
m=0

∑
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(
m

m1, · · · ,mk−1

)
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m1 (0)

m1 + 1

B
(m2)
m2 (0)

m1 + m2 + 1
· · ·

B
(mk−1)
mk−1 (0)

m1 + · · ·+ mk−1 + 1
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n!

=

∞∑
n=0

n∑
m=0

(
n

m

) ∑
m1+···+mk−1=m

(
m

m1, · · · ,mk−1

)
En−m
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B
(m2)
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m1 + m2 + 1
· · ·

B
(mk−1)
mk−1 (0)

m1 + · · ·+ mk−1 + 1

xn

n!
. (2.9)

Therefore, by comparing the coefficients of tn in (2.9), we arrive the desired
result. �

Corollary 2.2. For n ≥ 0, we have

E(2)
n =

n∑
m=0

(
n

m

)
B

(m)
m+1(0)

m + 1
En−m.

Theorem 2.5. For n ∈ N and k ∈ Z, we have

n

n∑
m=1

(
n− 1

m

)
1

2m−1

[
E

(k)
n−1−m + (−1)mE

(k)
n−1−m

]
=

n∑
m=1

1

mk−1
S1(n,m).

Proof. From (2.1), we note that

2Eik (log(1 + t)) = t(e
1
2 (t) + e−

1
2 (t))

∞∑
n=0

E(k)
n
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n!

= t

( ∞∑
m=0
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2mm!
+

∞∑
m=0

(−1)mtm

2mm!

) ∞∑
n=0

E(k)
n

tn

n!

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
1

2m

[
E

(k)
n−m + (−1)mE

(k)
n−m

]) tn+1

n!

=

∞∑
n=1

(
n∑

m=1

(
n− 1

m

)
1

2m

[
E

(k)
n−1−m + (−1)mE

(k)
n−1−m

]) tn

(n− 1)!
. (2.10)
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On the other hand,

2Eik (log(1 + t)) = 2

∞∑
m=1

(log(1 + t))m

(m− 1)!mk

= 2

∞∑
m=1

(log(1 + t))m

(m− 1)!mk

m!

m!
=

∞∑
m=1

1

mk−1

(log(1 + t))m

m!

= 2

∞∑
m=

1

mk−1

∞∑
n=m

S1(n,m)
tn

n!
= 2

∞∑
n=1

(
n∑

m=1

1

mk−1
S1(n,m)

)
tn

n!
. (2.11)

Therefore, by (2.10) and (2.11), we obtain the result. �

By (2.1), we have

2Eik (log(1 + t))

t
(
e

1
2 (t) + e−

1
2 (t)

) =

∞∑
n=0

E(k)
n

tn

n!
, (k ∈ Z) (2.12).

Theorem 2.6. For n ∈ N, we have

n∑
m=0

E(k)
m S2(n,m) =

n∑
j=0

j∑
q2=0

q2∑
q1=0

(
j

q2

)(
n

j

)
Eq1S2(q2, q1)Bj−q2

1

(n− j + 1)k
.

Proof. Replacing t by et − 1 in (2.12), we get

∞∑
m=0

E(k)
m

(et − 1)m

m!
=

2Eik(t)

(et − 1)
(
e

1
2 (et − 1) + e−

1
2 (et − 1)

)
2Eik(t)

e
1
2 (et − 1) + e−

1
2 (et − 1)

=
2

e
1
2 (et − 1) + e−

1
2 (et − 1)

t

et − 1

Eik(t)

t

=

∞∑
q1=0

Eq1
1

q1!
(et − 1)q1

∞∑
j=0

Bj
tj

j!

∞∑
n=0

tn

n!(n + 1)k

=

∞∑
n=0

 n∑
j=0

j∑
q2=0

q2∑
q1=0

(
j

q2

)(
n

j

)
Eq1S2(q2, q1)Bj−q2

1

(n− j + 1)k

 tn

n!
. (2.13)

On the other hand,

∞∑
m=0

E(k)
m

(et − 1)m

m!
=

∞∑
m=0

E(k)
m

∞∑
n=m

S2(n,m)
tn

n!

=

∞∑
n=0

(
n∑

m=0

E(k)
m S2(n,m)

)
tn

n!
. (2.14)

By comparing the coefficients of tn in (2.13) and (2.14), we obtain the result. �
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3. Type 2 unipoly-Euler polynomials and numbers

In this section, we introduce type 2 unipoly-Euler polynomials attached to p
and derive several properties and explicit expressions of these polynomials.

Let p be any arithmetic function which is a real or complex valued function
defined on the set of positive integers N. Then Kim-Kim [13] defined the unipoly
function attached to p by

uk(x|p) =

∞∑
n=1

p(n)

nk
xn, (k ∈ Z). (3.1)

It is well known that

uk(x|1) =

∞∑
n=1

xn

nk
= Lik(x), (see [5]). (3.2)

In view of (3.1), we define the type 2 unipoly-Euler polynomials attached to p
by

2uk (log(1 + t)|p)

t
(
e

1
2 (t) + e−

1
2 (t)

)ext =

∞∑
n=0

E(k)
n,p(x)

tn

n!
. (3.3)

In the case when x = 0, E
(k)
n,p(0) := E

(k)
n,p are called the type 2 unipoly-Euler

numbers attached to p.

If we take p(n) = 1
Γ(n) . Then, we have

∞∑
n=0

E
(k)

n, 1
Γ

tn

n!
=

2

t
(
e

1
2 (t) + e−

1
2 (t)

)uk (log(1 + t)| 1
Γ

)

=
2

t
(
e

1
2 (t) + e−

1
2 (t)

) ∞∑
m=1

(log(1 + t))m

mk(m− 1)!

=
2

t
(
e

1
2 (t) + e−

1
2 (t)

)uk (log(1 + t)) =

∞∑
n=0

E(k)
n

tn

n!
. (3.4)

Thus, by (3.4), we obtain

E
(k)

n, 1
Γ

= E(k)
n , (n ≥ 0). (3.5)

Theorem 3.1. For n ≥ 0 and k ∈ Z, we have

E(k)
n,p =

n∑
l=0

l∑
m=0

(
n

l

)
p(m + 1)(m + 1)!

(m + 1)k
S1(l + 1,m + 1)

l + 1
En−l.
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In particular,

E
(k)

n, 1
Γ

=

n∑
l=0

l∑
m=0

(
n

l

)
En−l

(m + 1)k−1

S1(l + 1,m + 1)

l + 1
.

Proof. From (3.5), we have

∞∑
n=0

E
(k)
n,λ

tn

n!
=

2

t
(
e

1
2 (t) + e−

1
2 (t)

) ∞∑
m=1

p(m)(log(1 + t))m

mk

=
2

t
(
e

1
2 (t) + e−

1
2 (t)

) ∞∑
m=0

p(m + 1)(log(1 + t))m+1

(m + 1)k

=
2

t
(
e

1
2 (t) + e−

1
2 (t)

) ∞∑
m=0

p(m + 1)(m + 1)!

(m + 1)k

∞∑
l=m+1

S1(l,m + 1)
tl

l!

=
2

e
1
2 (t) + e−

1
2 (t)

∞∑
m=0

p(m + 1)(m + 1)!

(m + 1)k

∞∑
l=m

S1(l + 1,m + 1)

l + 1

tl

l!

=

( ∞∑
n=0

En
tn

n!

)( ∞∑
l=0

l∑
m=0

p(m + 1)(m + 1)!

(m + 1)k
S1(l + 1,m + 1)

l + 1

)
tl

l!

=

∞∑
n=0

(
n∑
l=0

l∑
m=0

(
n

l

)
p(m + 1)(m + 1)!

(m + 1)k
S1(l + 1,m + 1)

l + 1
En−l

)
tn

n!
.

On comparing the coefficients of t, we get the result. �

Theorem 3.2. For n ≥ 0 and k ∈ Z, we have

E(k)
n,p(x) =

n∑
l=0

(
n

l

) l∑
m=0

(x)mS2(m, l)E
(k)
n−l,p.

Proof. Using equations (3.3) and (1.13), we obtain

∞∑
n=0

E(k)
n,p(x)

tn

n!
=

2

t
(
e

1
2 (t) + e−

1
2 (t)

)uk(log(1 + t)|p)ext

=
2

t
(
e

1
2 (t) + e−

1
2 (t)

)uk(log(1 + t)|p)
(
et − 1 + 1

)x
=

2uk (log(1 + t)|p)

t
(
e

1
2 (t) + e−

1
2 (t)

) ( ∞∑
m=0

(
x

m

)
(et − 1)m

)

=

∞∑
n=0

(
n∑
l=0

(
n

l

) l∑
m=0

(x)mS2(m, l)E
(k)
n−l,p

)
tn

n!
. (3.6)

Thus, we complete the proof of the theorem. �
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Theorem 3.3. For n ≥ 0 and k ∈ Z, we have

E(k)
n,p =

n∑
l=0

l∑
m=0

n−l∑
j=0

(
n− l

j

)(
n

l

)
Dn−j−lEj

p(m + 1)m!

(m + 1)k
S1(l,m).

Proof. Using equations (1.2), (1.9) and (3.5), we see that
∞∑
n=0

E
(k)
n,λ

tn

n!
=

2

t
(
e

1
2 (t) + e−

1
2 (t)

) ∞∑
m=1

p(m)(log(1 + t))m

mk

=
2

t
(
e

1
2 (t) + e−

1
2 (t)

) ∞∑
m=0

p(m + 1)(log(1 + t))m+1

(m + 1)k

=
2 log(1 + t)

t
(
e

1
2 (t) + e−

1
2 (t)

) ∞∑
m=0

p(m + 1)m!

(m + 1)k

∞∑
l=m

S1(l,m)
tl

l!

=
2 log(1 + t)

t
(
e

1
2 (t) + e−

1
2 (t)

) ∞∑
l=0

l∑
m=0

p(m + 1)m!

(m + 1)k
S1(l,m)

tl

l!

=
log(1 + t)

t

2

e
1
2 (t) + e−

1
2 (t)

∞∑
l=0

l∑
m=0

p(m + 1)m!

(m + 1)k
S1(l,m)

tl

l!

=

( ∞∑
n=0

Dn
tn

n!

) ∞∑
j=0

Ej
tj

j!

( ∞∑
l=0

l∑
m=0

p(m + 1)m!

(m + 1)k
S1(l,m)

tl

l!

)
.

On comparing the coefficients of t, we obtain the result. �

4. Conclusion

In this article, we introduced type 2 polyexponential Euler polynomials by aris-
ing from polyexponential functions and derived several properties of these polyno-
mials. Specially, we obtained various expressions of type 2 polyexponential Euler
polynomials in terms of Euler, Bernoulli polynomials and Stirling numbers of the
first kind and second kind in Theorem 2.1 to 2.6. Finally, we considered type 2
unipoly-Euler polynomials attached to p by using polyexponential functions and
investigated some identities of for those polynomials. Besides, we obtained some
identities relating between type 2 Euler numbers, Daehee numbers and Stirling
numbers of the first and second kind in Theorem 3.1 to 3.3.
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