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Abstract. The cure rate models have demonstrated, beyond doubt, their

utilitarian value for analysis of data pertaining to long term survivors in
diseases like cancer, HIV et al.In the present paper, we have estimated cure

fraction using Power Gompertz distribution, in the presence of covariates and

censoring under Bayesian framework.Using the developed model, Bayesian
analysis of a data set related to patients with breast cancerhas been done.The

standard MCMC techniques in OpenBUGS Software have been used to ana-

lyze the data.

1. Introduction

The standard survival models that are used for analyzing survival time data
do not take into account the cure proportion. These methods are based on the
assumption that all the patients have the same level of susceptibility to the disease
and they all experience the event of interest namely death. But in diseases like
cancer, due to the latest advancement in treatment procedures and new medicines,
some patients get cured of the disease. They are termed as the long time survivors
or immunes and constitute cure fraction. The cured proportion does not experience
death during the study period. The patients who do not get cured are called
susceptible.

Thus the population can be viewed as consisting of cured (immunes) and un-
cured patients (susceptible). Kaplan Meier (KM) plot of survival function helps
us in deciding if the data has a cured proportion or not. If the KM plot shows a
long plateau on the right, then it is indicative of long time survivors.

To analyze the data related to diseases with long time survivors or cure fraction,
cure rate models are used. The cure fraction models are mainly classified into two
categories namely Mixture and Non Mixture cure rate models. Boag [2] introduced
mixture cure rate model. A mixture cure rate model has two components, one
each to account for cured and uncured patients. A non-mixture model gives an
asymptote for the cumulative hazard and hence for the cure fraction.

Several approaches based on various distributions like Gamma, Weibull and
many others, have been proposed to estimate the cure fraction. Achcar et al.
[1], Martinez et al. [11] considered two parameter and four parameter generalized
modified Weibull distributions respectively. Yamaguchi [14], Yu et al. [15] and
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several others used different latency distributions to estimate the cure fraction.
Kannan et al. [10] considered a cure rate model, with Generalized exponential
distribution (with covariates) as latency distribution, to estimate the cure fraction.

One of the important distributions that is being used in survival analysis is
Gompertz distribution. It is a generalization of exponential distribution. Chien-
Lin Su et al. [4] carried out analysis of survival data with cure proportion by
assuming two parameter Gompertz distribution as base line survival function.
This was improved upon by Grover et al. [6] for estimating cure fraction assuming
generalized Gompertz distribution for latency distribution.

Gompertz distribution is a continuous distribution. It can be skewed both to
the left and right. Adding parameters to a distribution makes it more flexible for
modeling heavily skewed data. Different extensionsto this classical distribution
have been proposed, in literature, in order to increase skewness and flexibility. To
name a few, Beta Gompertz distribution (Jafaril et al. [9]), Generalized Gompertz
Distribution (Gohary et al. [7]), Generalized Exponential-Gompertz (El-Damcese
[5]). One such extension of the Gompertz distribution has been proposed by Ieren
et al.[8]. They have proposed power transformation approach to obtain Power
Gompertz distribution. They have shown that Power Gompertz distribution is a
better model as compared to Gompertz distribution for analyzing survival time
data.

In this paper we introduce Power Gompertz Distribution as the baseline survival
function while estimating cure fraction using cure rate models. We have first com-
pared two-parameter Gompertz distribution, Generalized Gompertz distribution
and Power Gompertz Distribution, using Deviance Information Criterion, under
Bayesian Setup. Since Power Gompertz Distribution has the minimum value of
DIC, we introduce Power Gompertz Distribution as the baseline survival function
to estimate cure proportion using mixture and non-mixture cure rate models. To
estimate cure fraction in the presence of covariates we have considered mixture
cure rate model as it has smaller DIC value as compared to non-mixture model.

The remaining paper has been organized as: Section 2, named as Material
and Methods, includes cure rate models, method to compare models, likelihood
equations, priors used for Bayesian Analysis of the data considered. It also includes
pdf of Power Gompertz Distribution, its survival function etc. In Section 3 we have
tabulated and have interpreted the results. Section 4 comprises of discussion which
is followed by the references.

2. Material and Methods

2.1. Mixture Cure Rate Model. If p represents the proportion of immunes
with respect to the event of interest and S0(t) is the baseline survival function for
the patients who remain uncured then under mixture cure rate model, the survival
function is given as

S(t) = p+ (1− p)S0(t),

F (t) = 1− S(t) is the cumulative distribution function and

f(t) = (1− p)f0(t)
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is the pdf of the life time T , f0(t) being the baseline density function for the
susceptible.

Let ti be the survival time of ith patient, di be a censoring indicator variable,
i = 1, 2, 3, . . . and

di =

{
1 for uncensored lifetime

0 for censored lifetime

Then the contribution of ith (i = 1, 2, . . ., n) patient to the likelihood function,
denoted by Li is given by

Li = [f(ti)]
di [S(ti)]

1−di .

2.2. Non Mixture Cure Fraction Model. The survival function under non
mixture model is expressed as

S(t) = p1−S0(t) = exp[ln(p)(1− S0(t))] .

Under this model, the contribution of ith patient to Li is given by,

Li = [h(ti)]
diS(ti),

where h(t) = −(ln p)f0(t) is the hazard function.

2.3. Model Comparison Criteria. The Deviance Information Criterion (DIC)
has been used for (i) identifying the best distribution among two parameter Gom-
pertz, three parameter Gompertz and Power Gompertz distribution and (ii) for
comparison of mixture and non-mixture models (the best distribution in (i) will
be taken as the latency distribution). Spiegelhalter [12] had introduced DIC for
comparing a set of Bayesian hierarchical models. The distribution/model with
smallest value of DIC is considered to be the best fitted distribution/model.

DIC is given by:
DIC = D + PD = D̂ + 2PD,

where PD = D − D̂ is the effective number of parameters in the model, D is
the posterior mean of deviance and D̂ is the deviance calculated at the posterior
means.

Based on DIC value PGD is the best distribution (Table 2).

2.4. Power Gompertz Distribution. The density function of the Power Gom-
pertz distributionwith α (scale), β (shape) and θ (power) as parameters is given as:

f(x) = αθxθ−1eβx
θ

e−
α
β (eβx

θ
−1), x > 0, α > 0, β > 0, θ > 0.

This distribution, obtained by applying power transformation on the traditional
Gompertz distribution, is more skewed and flexible. The distribution is positively
skewed and has increasing failure rate.

Now for Power Gompertz Distribution, we have

S0(t) = exp

[
−α
β

(eβt
θ

− 1)

]
,

F0(t) = 1− S0(t),

f0(t) = αθtθ−1eβt
θ

e−
α
β (eβt

θ
−1) .
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The log likelihood function for PGD under mixture model is given by

l(γ) = [log(1− p) + logα+ log θ]
∑
i

δi + (θ − 1)
∑
i

δi log ti

+ β
∑
i

δit
θ
i −

α

β

[∑
i

δie
βtθi −

∑
i

δi

]

+
∑
i

log(1− δi)
[
p+ (1− p) exp

(
−α
β

(eβt
θ
i − 1)

)]
.

The log likelihood function for PGD under non-mixture model can be expressed as

l(γ) = {log(− log p) + logα+ log θ}
∑
i

δi + (θ − 1)
∑
i

δi log ti

+ β
∑
i

δit
θ
i −

α

β

(∑
i

exp(βtθi δi)−
∑
i

δi

)

+ log p
∑
i

exp

(
−α
β

(eβt
θ
i − 1)

)
.

Let x1, x2, . . . , xl be l covariates influencing the parameters, then the cure propor-
tion p can be expressed as:

log

(
pi

1− pi

)
= a0 + a1x1i + a2x2i + · · ·+ alxli .

The Bayesian estimates are obtained using OpenBUGS software. One of the im-
portant advantage of using OpenBUGS software is that it requires only the prior
distribution and the distribution of the survival data. Throughout the analysis we
have used Beta(1, 1) distribution as the prior for cure fraction p and Gamma(1, 1)
for other parameters. The prior distribution to find posterior estimates of the
parameters of the regression model is assumed to be N(0, 100).

Credible Interval has been used to find the significant prognostic factors.

3. Results

We have used the methodology discussed above to estimate cure fraction on the
basis of a data set of 85 patients suffering frombreast cancer (period of study is
January, 2009 to December, 2010). About 17.6% patients were censored during
follow up time. The median age of patients at the time of diagnosis is 49 years.
Table 1 shows a summary of the breast cancer data.
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Table 1. Descriptive characteristics of the data

Covatiate Frequency Mean Std. Dev. Min Max

Age 85 50.09 12.82 25 85

Tumor Size 85 3.72 1.62 1 8

Nodal Metastasis 85 4.36 4.70 0 15

Tumor Grade 85 1.96 0.71 1 3

NPI 85 4.81 1.34 2.12 7.6

CA-15 85 32.08 6.16 15.2 46

The Kaplan-Meier plot for overall survival (Figure 1) shows a “plateau” on the
right. A plateau on the right indicates that there is a cure fraction among the
patients. This suggest that a cure rate model rather than traditional methods of
analyzing life time data is more appropriate in this case.

Figure 1. Kaplan-Meier Survival Curve indicates suitability of
cure rate models

We first obtained the posterior summaries (Table 2) under traditional Gom-
pertz, Generalized Gompertz and Power Gompertz distributions. The DIC values
in Table 2 indicate that Power Gompertz Distribution is the best among the three
distributions as it has the smallest DIC.
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Table 2. Posterior Summaries without including p

Model Para- Posterior 95% credible DIC

meter Mean (SD) interval

Gompertz distribution λ 0.0689(0.0091) (0.0515,0.086) 565.7

(2-parameters) θ 0.1314(0.053) 0.0022,0.1219)

Generalized λ 0.058(0.025) (0.0152,00834) 561.4

Gompertz θ 3.947(1.477) (0.1385,3.897)

(3-parameters) c 0.0165(0.0182) (0.0004,0.056)

Power Gompertz α 0.075(0.0037) (0.0002,0.0073) 533

β 0.6759(0.4096) (0.0412,0.5168)

θ 0.585(0.1009) (0.3892,0.7208)

Next we fit the cure rate model on the best fitted distribution (Power Gompertz
Distribution) on our data. Initially, we consider the cure fraction models without
covariates. Table 3 shows the posterior estimates of parameters based on Power
Gompertz Distribution under cure rate models.

Table 3. Posterior Estimates including the cure fraction p (with-
out the covariates)

Model Parameter Posterior 95% credible DIC

Mean (SD) Interval

Mixture α 0.0082(0.0028) (0.0002,0.0077) 542

Cure β 0.08198(0.0497) (0.0115,0.1473)

Model θ 1.025(0.1733) (0.8414,1.343)

p 0.0181(0.0203) (0.0006,0.0863)

Non α 0.0017(0.0006) (0.0006,0.0032)

Mixture β 0.3522(0.0245) (0.3172,0.4163) 562.8

Cure θ 0.7209(0.02258) (0.671,0.7616)

Model p 0.0262(0.0203) (0.0034,0.0830)

On the basis of the values of the parameters (Table 3), we can say that in
the absence of the covariates the mixture and non-mixture approach under Power
Gompertz Distribution fits well to the data. It is evident from the results in
Table 3 that the cure fraction is significant under both the models. The DIC
values indicate that mixture model (DIC= 542) is better as compared to the non-
mixture cure model (562.8). Therefore to estimate cure fraction in the presence
of covariates (Table 4) we have used the mixture model under Bayesian approach.
We have considered Age, Tumor size, Tumor grade, NPI, Nodal metastasis and
CA-15 as the covariates.
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Table 4. Posterior summaries including both the cure propor-
tion p and the covariates

Model Parameter Posterior SD 95% credible

Mean interval

Mixture Intercept 0.1276 0.137 (−0.091,0.375)

Cure Age −0.0562 0.045 (−0.135,0.023)

Model Tumor Size 0.0671 0.024 (0.017,0.107)

(Power Tumor grade −0.0767 0.029 (−0.144,-0.033)

Gompertz NPI −0.0106 0.044 (−0.086,0.070)

Distribution) Nodal M 0.1275 0.034 (0.0398,0.0197)

CA-15 −0.0248 0.055 (−0.341,-0.163)

α 0.0104 0.003 (0.005,0.017)

β 0.1952 0.087 (0.058,0.317)

θ 0.81 0.105 (0.673,1.03)

Table 4 gives the posterior summaries in the presence of covariates for mixture
cure rate model with Power Gompertz Distribution. The values of 95% Credible
Interval for Tumor size, Tumor grade, Nodal metastasis and CA-15 does not in-
clude zero suggesting that they are the significant prognostic factors under cure
rate model, which match with the study of Grover et al. [13] (2016). This implies
that these covarites effect the survival and cure probability significantly.

The objective of this paper is to analyze the importance of Power Gompertz
Distribution (PGD) under mixture and non-mixture cure rate models. The Cure
Rate models are an important tool to analyze the survival data having a proportion
of cured patients (cure fraction). A proportion of patients get cured after taking
the treatment and they would not experience the event of interest. Our objective
here is in estimating this proportion among patients of breast cancer using cure
rate models. We are also interested in finding out the significant prognostic factors
of breast cancer. The covariates that we have considered are Age, Tumor Grade,
Tumor Size, NPI, Nodal metastasis and CA-15. Earlier these models have been
used to estimate cure fraction assuming traditional Gompertz Curve and General-
ized Gompertz Curve as susceptible distribution. In this paper we have proposed
PGD as the latency distribution. This distribution is an extension of Gompertz
Curve developed by using power transformation approach. It is positively skewed.
Its hazard function has increasing failure rate and has been proved to give better
results. On the basis of DIC value we could infer that PGD has smaller DIC value
as compared totraditional Gompertz and Generalized Gompertz distributions and
hence it is the best model. Taking PGD as the distribution of susceptible we-
have developed Mixture and Non-Mixture Cure rate models .The DIC of mixture
model is smaller. Therefore to study the effect of covariates we have considered
mixture model. Among all the covariates that we have considered, Tumor size,
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Tumor grade, Nodal metastasis and CA-15 have been found to be the significant
prognostic factors.

4. Discussion

In this research article efforts have been made to highlight the essence and
benefit of Power Gompertz Distribution (PGD) under Mixture and Non-Mixture
cure rate models. Traditional survival models do not take into account the fact that
with the latest advanced treatments, in chronic diseases like cancer and AIDS, not
all the patients meet the event of interest (death). Hence the population consists of
two types of patients: immunes or long term survivors and susceptible or uncured
patients. To deal with such data, special models called cure rate models have
been developed. In this article we have used the mixture and non-mixture cure
rate modelsto analyze a breast cancer data set with long time survivors. Here we
assume the baseline survival function of cured individuals to follow PGD and try to
estimate cure rate under Mixture and Non Mixture cure models both in presence
and absence of covariates. The cure fraction is found to be significant under both
the models. The covariate tumor size, tumor grade, nodal metastasis and CA-15
are found to be significant for cancer patients. Other directions of model extension
by adding some more parameters may be worthy forfurther investigation.
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