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MARKOV PROCESSES

NIKITA RATANOV

Abstract. In this note, we present some observations related to piecewise
deterministic Markov processes. We also give some explicit representations

for invariant and first-crossing time distributions.

1. Introduction

This paper is motivated by the simple idea of studying known examples of
stochastic equations when a Markov process with finite variation and with a finite
number of patterns switching at random times is used instead of white noise. The
solution of the stochastic equation modified in this way can be considered as a
Markov-modulated piecewise deterministic process.

The simplest example of a piecewise deterministic Markov process is the tele-
graph process, Ξ(t) = (Γ(t), ε(t)), t ≥ 0, with values in (−∞,∞)×{0, 1} and with
infinitesimal generator

LΓ =


−λ0 + γ0

d

dx
λ0

λ1 −λ1 + γ1
d

dx


introduces by M.Kac [6]. Here, λ0, λ1 > 0 denote the intensities of switching
between two states {0, 1}, and γ0, γ1 are the alternating velocities of a particle
moving on a line,

Γ(t) =

∫ t

0

γε(s)ds.

The marginal distributions of the integrated telegraph process Γ = Γ(t) can be
described by the (generalised) probability density function

pΓ(t, x) = (p0(t, x), p1(t, x)), pi(t, x)dx = P{Γ(t) ∈ dx | ε(0) = i}, i ∈ {0, 1}.
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2 NIKITA RATANOV

In what follows, we will need explicit formulae for pΓ(t, x),

p0(t, x)dx = e−λ0tδγ0t(dx)

+θ(t, x)
[
λ0I0

(
2
√
λ0λ1ξ0(t, x)ξ1(t, x)

)
+

√
λ0λ1

ξ0(t, x)

ξ1(t, x)
I1

(
2
√

λ0λ1ξ0(t, x)ξ1(t, x)
)]

dx,

(1.1)

p1(t, x)dx = e−λ1tδγ1t(dx)

+θ(t, x)
[
λ1I0

(
2
√
λ0λ1ξ0(t, x)ξ1(t, x)

)
+

√
λ0λ1

ξ1(t, x)

ξ0(t, x)
I1

(
2
√

λ0λ1ξ0(t, x)ξ1(t, x)
)]

dx,

(1.2)

where ξ0(t, x) = (x− γ1t)/(γ0 − γ1), ξ1(t, x) = 1− ξ0(t, x) = (γ0t− x)/(γ0 − γ1),
θ(t, x) = exp(−λ0ξ0(t, x)−λ1ξ1(t, x))/(γ0−γ1) and I0, I1 are the modified Bessel
functions, see, e.g., [8]; δa(dx) denotes the Dirac δ-function.

The class of non-diffusion stochastic models based on piecewise deterministic
Markov processes was introduced into scientific use by Davis [2]. Many authors,
guided by various fields of application, have studied these processes from the point
of view of martingale and ergodicity. Since a continuous telegraph process is not a
martingale, for the purposes of financial modelling, various versions of a telegraph
process equipped with jumps, [11, 8], or Markov modulated diffusion, [12, 13]
are considered. The study of some ergodic properties and invariant distributions
for these processes was stimulated by the modelling of neuronal activity, [10, 15],
models of bacterial chemotaxis, [4]. See also an extensive and detailed review on
this subject in [3].

Recently, the so-called Poisson Stochastic Index processes have also been intro-
duced, studied, and fruitfully used for similar purposes, [19].

In this project, we will focus on a special case of piecewise deterministic pro-
cesses defined by a stochastic equation of the form

X(t) = x+

∫ t

0

Gε(s)(s,X(s))dΓ(s), t ≥ 0. (1.3)

An important example of such a process, defined by the linear equation

X(t) = x+

∫ t

0

[
aε(s) + γε(s)X(s)

]
ds, t ≥ 0, (1.4)

has recently been studied, [14, 15, 17] Since, with an appropriate scaling, the
telegraph process converges to the diffusion process W , and equation (1.4) takes
the form

X̄(t) = x+ at+ bW (t) + γ

∫ t

0

X̄(s)ds,

which is the Langevin equation in the classic form, then this example (1.4) can be
thought of as a generalised Ornstein-Uhlenbeck process.

In the case of the process X defined by equation (1.4), the distributions of
the first crossing times with applications to neural modelling was analysed in
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ON TIME-HOMOGENEOUS PIECEWISE DETERMINISTIC MARKOV PROCESSES 3

[14, 15]. This analysis was continued in [17] by studying invariant distributions
and distributions of exponential functionals.

In this paper, we study the time-homogeneous case of equation (1.3):

X(t) = x+

∫ t

0

G(X(s))dΓ(s), t ≥ 0, (1.5)

where the profile G = G(x) is specified by a continuous positive function.
The Markov process (X(t), ε(t)), t ≥ 0, (1.5), is determined by an infinitesimal

generator

L =


−λ0 + γ0G(x)

d

dx
λ0

λ0 −λ1 + γ1G(x)
d

dx

 . (1.6)

An important examples withG(x) = ρ+|x| andG(x) = ρ+|x|β/β, ρ > 0, β > 0,
are examined explicitly below, see Example 3.7.

2. Time-homogeneous piecewise deterministic processes: invariant
distributions and first crossing times

Let G = G(x) be a positive smooth function and ε = ε(t) ∈ {0, 1} be a two-state
Markov process switching at random times τn, n ≥ 1, τ0 = 0.

Let us define two deterministic flows ϕ0 = ϕ0(t, x) and ϕ1 = ϕ1(t, x), t ≥ 0, on
the line as solutions of the Cauchy problems for first-order differential equations,

∂ϕi(t, x)

∂t
− γiG(x)

∂ϕi(t, x)

∂x
= 0, t > 0, i ∈ {0, 1}, (2.1)

with the initial condition ϕi(0, x) = x, x ∈ (−∞,∞).
By definition, the continuous piecewise deterministic process X = X(t) defined

by (1.5) sequentially follows the patterns ϕ0 and ϕ1, alternating at switching times
τn, that is,

X(t) =
∑
n≥0

ϕεn(t− τn, X(τn))1{τn≤t<τn+1}, εn = ε(τn), t ≥ 0. (2.2)

The distribution PX(t, dy | x) = (P0(t,dy | x), P1(t, dy | x)) of X(t),

Pi(t,dy | x) = P{X(t) ∈ dy | ε(0) = i, X(0) = x}, i ∈ {0, 1},

follows the coupled integral equations, t ≥ 0,
P0(t,dy | x) =e−λ0tδϕ0(t,x)(dy) +

∫ t

0

λ0e
−λ0τP1(t− τ,dy | ϕ0(τ, x))dτ,

P1(t,dy | x) =e−λ1tδϕ1(t,x)(dy) +

∫ t

0

λ1e
−λ1τP0(t− τ,dy | ϕ1(τ, x))dτ,

(2.3)

where λ0, λ1 > 0 are switching intensities.
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4 NIKITA RATANOV

To describe an invariant distribution, we need the L2(K)-adjoint operator L∗

to the generator L, (1.6). For any measurable set K ⊂ R, we have

(
Lf⃗ , φ⃗

)
L2(K)

=

∫
K

(
− λ0f0(x) + γ0G(x)f ′

0(x)+λ0f1(x)
)
φ0(x)dx

+

∫ (
λ1f0(x)− λ1f1(x)+γ1G(x)f ′

1(x)
)
φ1(x)dx

=
[
γ0G(x)f0(x)φ0(x) + γ1G(x)f1(x)φ1(x)

]
|x∈∂K

+

∫
K

f0(x)
[
− λ0φ0(x) + λ1φ1(x)−

d

dx
(γ0G(x)φ0(x))

]
dx

+

∫
K

f1(x)
[
λ0φ0(x)− λ1φ1(x)−

d

dx
(γ1G(x)φ1(x))

]
dx.

Therefore, the (generalised) probability density function π⃗ = (π0(x), π1(x)),
πi(x) := P{X(t) ∈ dx, ε(0) = i}/dx, i ∈ {0, 1}, of an invariant distribution
of Ξ = Ξ(t) supported on K satisfies the equation

L∗[π⃗](x) = 0, x ∈ K, (2.4)

supplied with the boundary conditions π0(x)|x∈∂K = π1(x)|x∈∂K = 0, where

L∗[φ⃗](x) =


−λ0φ0(x)− γ0

d

dx
(G(x)φ0(x)) + λ1φ1(x)

λ0φ0(x)− λ1φ1(x)− γ1
d

dx
(G(x)φ1(x))

 . (2.5)

Rewriting (2.4)-(2.5) in scalar form, we obtain the equivalent system


γ0

d

dx
[G(x)π0(x)] =− λ0π0(x) + λ1π1(x),

γ1
d

dx
[G(x)π1(x)] =λ0π0(x)− λ1π1(x),

x ∈ K. (2.6)

Our next task is to describe the first crossing probabilities.
Let T (x, y) be the moment when the process X(t) reaches the threshold y for

the first time, starting from the point x:

T (x, y) = inf{t > 0 | X(t) = y,X(0) = x}.

We set T (x, y) = +∞ if the threshold y is never reached. Similarly to (2.3) one
can find that the distribution FX(dt, y | x) = (F0(dt, y | x), F1(dt, y | x)),

Fi(dt, y | x) = P{T (x, y) ∈ dt | ε(0) = i,X(0) = x}, i ∈ {0, 1},
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ON TIME-HOMOGENEOUS PIECEWISE DETERMINISTIC MARKOV PROCESSES 5

satisfies the system

F0(dt, y | x) = e−λ0t0(x,y)δt0(x,y)(dt)

+

∫ t0(x,y)∧t

0

λ0e
−λ0τF1(−τ + dt, y | ϕ0(τ, x))dτ,

F1(dt, y | x) = e−λ1t1(x,y)δt1(x,y)(dt)

+

∫ t1(x,y)∧t

0

λ1e
−λ1τF0(−τ + dt, y | ϕ1(τ, x))dτ.

Here, t0(x, y) and t1(x, y) denote the time to reach the threshold y without switch-
ing states.

For the simplest case of the telegraph process, the distributions FΓ(dt, y | x) =
(F0(dt, y | x), F1(dt, y | x)), are well studied, see e.g. [8, 9]. For the sake of
completeness, we write down the explicit formulae below.

For the case of γ0 > 0 > γ1 and x < y,

F0(dt, y | x) =e−λ0tδ(y−x)/γ0
(dt)

+
λ0λ1(y − x)θ(t, x)√
λ0λ1ξ0(t, x)ξ1(t, x)

I1(2
√
λ0λ1ξ0(t, x)ξ1(t, x))dt,

F1(dt, y | x) =λ1θ(t, x)

ξ0(t, x)

[
xI0(2

√
λ0λ1ξ0(t, x)ξ1(t, x))

− γ1√
λ0λ1

√
ξ1(t, x)

ξ0(t, x)
I1(2

√
λ0λ1ξ0(t, x)ξ1(t, x))

]
dt.

(2.7)

3. Time-homogeneous dynamics: marginal and invariant distributions.
Blow-up probabilities

Consider the piecewise deterministic process X, defined by (2.2) with a positive
continuous profile G = G(x). In differential form, equation (1.5) is equivalent to
the initial value problem for the autonomous stochastic equation

dX(t) = G(X(t))dΓ(t), t > 0, (3.1)

with initial condition X(0) = x.
Let

Φ(x) =

∫ x

0

dy

G(y)
. (3.2)

The mapping x → Φ(x) can be considered as a rectifying diffeomorphism to the
initial value problem (3.1), see [1].

Therefore, the solution X = X(t) of equation (3.1) can be explicitly expressed
by means of the underlying telegraph process Γ :

X(t) = Φ−1(Φ(x) + Γ(t)), t ≥ 0. (3.3)

Note that the representation (3.3) is invariant under the transform Φ → kΦ + a,
k ̸= 0.

Theorem 3.1. Let X = X(t) be defined by (1.5) or, equivalently, by (3.1). Let
the velocities γ0, γ1 of the underlying telegraph process Γ(t) have opposite signs.
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6 NIKITA RATANOV

a) If at least one of the integrals converges,∫ 0

−∞

dy

G(y)
< ∞ or

∫ ∞

0

dy

G(y)
< ∞, (3.4)

then process X goes to infinity a.s. in a finite time (blow-up);
b) If both integrals diverge,∫ 0

−∞

dy

G(y)
= ∞ and

∫ ∞

0

dy

G(y)
= ∞, (3.5)

then process X is well-defined for all t ≥ 0. In this case, the distribution of
the random variable X(t), t ≥ 0, is supported on the interval It,x ending
in the points ϕ0(t, x) and ϕ1(t, x) and determined by the probability density
function pX(t, · | x) = (p0(t, · | x), p1(t, · | x)) of the form:

pX(t, y | x) =
∣∣∣∣dΦ(y)dy

∣∣∣∣ · pΓ(t,Φ(y)− Φ(x)), (3.6)

y is between ϕ0(t, x) and ϕ1(t, x),

where Φ is defined by (3.2), and pΓ(t, z) is the probability density function
of the telegraph process Γ(t), (1.1)-(1.2).

Proof. In case a), (3.4), the function Φ(x) is bounded (at least on one side), and
the inverse function Φ−1 is defined on a bounded (at least on one side) interval

∆ = (A−, A+), where A− := −
∫ 0

−∞
dy

G(y) , A+ :=
∫ +∞
0

dy
G(y) . Therefore, X(t) goes

to infinity when the telegraph process Φ(x) + Γ(t) leaves the interval ∆, which
happens a.s. within a finite time Tx, see, for example, [8].

Otherwise, (3.5), both functions, Φ(x) =
∫ x

0
dy/G(y) and Φ−1, are monotonic

and are defined on the whole line. Therefore (3.6) follows from the representation
(3.3). Detailed comments on this issue can be found in [18].

Formulae (3.6) follow from the representation (3.3). �

The case of both positive velocities is similar to Theorem 3.1.

Corollary 3.2. Let γ0, γ1 > 0.

a) If A =
∫∞
0

G(y)−1dy < ∞, then the process X = X(t) goes to +∞ a.s.
in finite time.
b) If

∫∞
0

G(y)−1dy = ∞, then the process X = X(t) is a subordinator, and
its distribution is given by (3.6).

The case of both negative velocities is symmetric.
The blow-up scenario requires more detail. For example, we need to know the

probability of a process going to −∞ versus to +∞. Let Tx be the time instant
when the process X leaving the interval ∆.

By virtue of representation (3.3), the following auxiliary result will be very
useful.

Lemma 3.3. Let a < 0 < b and a stopping time T Γ(a;x) (respectively, T Γ(b;x))
be the time when the process x+Γ(t) first crosses the threshold a (respectively, b).
Let u(x) = P{T Γ(b;x) < T Γ(a;x) | ε(0) = 0}, a < b, a ≤ x ≤ b.
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ON TIME-HOMOGENEOUS PIECEWISE DETERMINISTIC MARKOV PROCESSES 7

Function u(x) has the form:

u(x) =


α1 − α0 exp(∆α · (x− a))

α1 − α0 exp(∆α · (b− a))
, α0 ̸= α1,

1 + α(x− a)

1 + α(b− a)
, α0 = α1 = α,

(3.7)

where α0 = λ0/γ0, α1 = λ1/γ1, and ∆α = α0 − α1.

Proof. Let u0(x) = u(x) = P{T Γ(b;x) < T Γ(a;x) | ε(0) = 0} and u1(x) =
P{T Γ(b;x) < T Γ(a;x) | ε(0) = 1}. These functions follow the system of coupled
equations {

u′
0(x) =α0(u0(x)− u1(x)),

u′
1(x) =α1(u0(x)− u1(x)),

a < x < b, (3.8)

supplied with the boundary conditions u0(b) = 1, u1(a) = 0, cf [7, pp.192-193].
By virtue of (3.8), α1u

′
0(x) = α0u

′
1(x) and (u0−u1)

′(x) = (α0−α1)(u0−u1)(x).
Therefore,

u0(x) = A0 exp ((α0 − α1)(x− a))+B, u1(x) = A1 exp ((α0 − α1)(x− a))+B,

such that

α0A1 = α1A0, A1 +B = 0, A0e
(α0−α1)(b−a) +B = 1,

which give (3.7) for α0 ̸= α1. The case α0 = α1 is analysed similarly. �

Theorem 3.4. Let γ0 > 0 > γ1 and both integrals in (3.4) converge.
Therefore, if the process starts at point x, A− < Φ(x) < A+, with positive

velocity γ0, then

P{X(Tx) = +∞ | ε(0) = 0} = 1− P{X(Tx) = −∞ | ε(0) = 0}

=


α1 − α0 exp(∆α · (Φ(x)−A−))

α1 − α0 exp(∆α · (A+ −A−))
, if α0 ̸= α1,

1 + α · (Φ(x)−A−)

1 + α · (A+ −A−)
, if α0 = α1 = α.

(3.9)

Here A− = −
∫ 0

−∞ G(y)−1dy, A+ =
∫∞
0

G(y)−1dy.

Proof. First, note that X(Tx) = +∞ occurs if and only if the underlying telegraph
process Φ(x) + Γ(t) leaves the interval ∆ = [A−, A+] on the right (through the
point A+). Therefore, formula (3.9) follows from (3.7), Lemma 3.3. �

In view of applications, the description of invariant distributions is of special
interest.

Since the mapping Φ is monotonically increasing, the process X = X(t) is a
subordinator when both velocities of Γ are positive (the same is true for −X if
both velocities are negative). Thus, there is no invariant measure in this case.

The following theorem shows how to describe the invariant distribution when
telegraphic velocities are of opposite signs.
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8 NIKITA RATANOV

Theorem 3.5. Let function G = G(x) be continuous, positive,G(x) > 0 ∀x, and
even, G(−x) = G(x). Let X = X(t) be defined by (3.1) with the telegraph process
having velocities of opposite signs, γ0 · γ1 < 0, such that α0 + α1 > 0, where no
blow-up occurs, (3.5).

The invariant measure for X exists and is defined by the probability density
functions

π0(x) =
1

2

α0 + α1

γ0 − γ1
c0(x)G(x)−1 exp

(
−(α0 + α1)

∣∣∣∣∫ x

0

dy

G(y)

∣∣∣∣) ,

π1(x) =
1

2

α0 + α1

γ0 − γ1
c1(x)G(x)−1 exp

(
−(α0 + α1)

∣∣∣∣∫ x

0

dy

G(y)

∣∣∣∣) ,

(3.10)

where

c0(x) =

{
−γ1, x > 0,

γ0, x < 0,
c1(x) =

{
γ0, x > 0,

−γ1 x < 0.

Proof. The linear system (2.6) considered on the whole line (−∞,∞) has the
following solution: for x ∈ (0,+∞) by direct substitution into (2.6) one can verify
that

π0(x) = −Cγ−1
0 G(x)−1 exp

(
−(α0 + α1)

∫ x

0

G(y)−1dy

)
,

π1(x) = Cγ−1
1 G(x)−1 exp

(
−(α0 + α1)

∫ x

0

G(y)−1dy

)
,

which can be extended to (−∞, 0) by symmetry. The indefinite constant C can
be found from the normalisation condition,∫ ∞

−∞
(π0(x) + π1(x)) dx = 1.

�

Corollary 3.6. In the symmetric case, that is, if γ0 = −γ1 = γ, then

π0(x) = π1(x) =
1

4
(α0 + α1)G(x)−1 exp

(
−(α0 + α1)

∣∣∣∣∫ x

0

G(y)−1dy

∣∣∣∣) ,

−∞ < x < ∞.

Let us take a few more examples.

Example 3.7. Let G(x) = ρ + |x|, ρ > 0. In this case, the rectifying diffeomor-
phism Φ for the stochastic equation

dX(t) = (ρ+ |X(t)|)dΓ(t), (3.11)

is given by Φ(x) = sign(x) · ln(1 + |x|/ρ) which is odd and strictly increasing
function on the line (−∞,∞), so that

Φ−1(y) = ρ(e|y| − 1)sign(y)

is also strictly increasing.
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ON TIME-HOMOGENEOUS PIECEWISE DETERMINISTIC MARKOV PROCESSES 9

Notice that the alternating patterns ϕ0(t, x), ϕ1(t, x) that form the process
X = X(t) depend on the value of the corresponding velocity γ. In this case, if
γ > 0, then ϕ(t, x) = (ρ+ x)eγt − ρ with x > 0, and for x < 0,

ϕ(t, x) =

{
ρ− (ρ− x)e−γt, for small t, such that t < t∗ = 1

γ ln (1− x/ρ) ,
ρ

1−x/ρe
γt − ρ, for large t, t > t∗.

If γ < 0, then the formulae are symmetric.
Let γ0 · γ1 < 0. By virtue of (3.10), the invariant probability density functions

for X(t) defined by (3.11) have the form:

π0(x) =
1

2

α0 + α1

γ0 − γ1
c0(x)ρ

α0+α1(ρ+ |x|)−1−(α0+α1),

π1(x) =
1

2

α0 + α1

γ0 − γ1
c1(x)ρ

α0+α1(ρ+ |x|)−1−(α0+α1),

This example can be easily generalised. Instead of (3.11), consider the initial
value problem,

dX(t) =

(
ρ+

|X(t)|β

β

)
dΓ(t), t > 0,

X(0) =x,

where ρ > 0 and β > 0.
Let Φ = Φ(x), x ∈ (−∞,∞) be an odd and strictly increasing function which

is defined so that for x ≥ 0

Φ(x) =

∫ x

0

(
ρ+ uβ/β

)−1
du =

∫ xβ

0

v−1+1/β

βρ+ v
dv.

By virtue of [5, 3.194.5],

Φ(x) = xρ−1 · 2F1(1, 1/β; 1 + 1/β;−xβ/(βρ)), x > 0, (3.12)

with odd extension to x < 0. Here 2F1 is the Gauss hypergeometric function. If
0 < β ≤ 1, there is no blow-up, (3.5), and one can obtain an invariant distribution,
as in the previous case.

If β > 1, then

2A =

∫ ∞

−∞

dy

1 + |y|β/β
< ∞,

that is, the blow-up condition (3.4) holds. Therefore, the inverse function Φ−1 is
only defined on the interval (−A,A), and the process X = Φ−1(Φ(x) + Γ(t)) goes
to infinity in a.s. finite time Tx, where

Tx = sup{t > 0 | −A− Φ(x) < Γ(t) < A− Φ(x)},

where Φ(x) is defined by (3.12). The form of distribution of Tx follows from (2.7)
and Theorem 3.4 . See also [16].
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