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Abstract. Receiver Operating Characteristic (ROC) curve is widely known
and mostly applied classification tool for assessing the performance of diag-

nostic test(s) and also to provide better classification and allocation. In this
paper, we present a situation of missing data with monotone pattern. This

is dealt with some matrix decomposition approaches and the methodology is

developed in Multivariate ROC curve framework. Using a real data set, the
application of proposed work is illustrated.

1. Introduction

ROC Methodology got originated during world war II in analysing radar images.
The theoretical development and its applications in the fields of psychophysical
research, radiology, preventive medicine and many more dates back to early 1950’s
and 60’s. It has been proved that the methodology of ROC has addressed many
clinical issues, particularly in comparing several diagnostic tests. One of the ob-
jectives of ROC curve analysis is to classify subjects/individuals into one of the ‘k’
populations, in particular k=2, namely healthy (H) and diseased (D) categories.
In order to have better correct classification, the cut-off which will be used for
classification must be an optimal one. The overall accuracy (or) summary of any
diagnostic test can be explained using Area Under the Curve(AUC), which lies
between 0 and 1. Practically, any test’s AUC should lie between 0.5 and 1. AUC
= 0.5 indicates an imperfect test and AUC = 1.0 indicates a perfect test. ROC
curve lies in a unit square plot with 1-specificity (1−Sp) on X-axis and sensitivity
(Sn) on Y-axis.

The definition of ROC curve, sensitivity and specificity are usually given as,

ROC = 1−G[F−1(1− x(t)] (1.1)

where F and G are the distribution functions of H and D populations.
Sensitivity,

Sn = P (U > c |D) (1.2)
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and Specificity,

Sp = P (U ≤ c |H) (1.3)

where U is a test score, c is cut-off. If an individual’s score U > c, it is categorized
to population D , otherwise H.
As we have several co-ordinates of sensitivity and specificity, we will be having
corresponding cutoffs. So, we need to identify an optimal threshold. In ROC
analysis, optimal cutoff can be determined with the help of Youden’s index (J)
and is given as:

J = max[Sn + Sp − 1] (1.4)

In the parametric form of ROC, the well known ROC form is the Binormal ROC
curve, where the diseased(with condition) and healthy(without condition) underlie
Normal distribution. In later years, the decision of classifying an individual into
one of the two populations became essential with a set of variables rather than with
a single variable. Hence it became a need to come out with a multivariate version
of ROC curve, where the feature set is defined in the form of a linear combination.
There are good number of articles on this multivariate extension of ROC corve, a
few to mention are [6, 10, 11, 12, 13, 14]. We consider the multivariate ROC form
proposed by [6], where the vector ‘b’ is obtained using minimax approach. In next
section, the MROC curve methodology is given in detail and in subsequent section
the concept of monotone missing data, estimation of µ and Σ , illustrations and
discussions are presented.

Let us consider two multivariate normal random vectors X and Y with mean
vectors µ0, µ1 and covariance matrices Σ0 and Σ1 respectively, i.e., X ∼
MVN(µ0,Σ0) and Y ∼ MVN(µ1,Σ1). Let x(c) denote the false positive rate
(FPR) and y(c) denote the true positive rate (TPR) where “c” is the threshold
value. The expressions for FPR, TPR and AUC derived by [6] are given below:

FPR = x(t) = Φ

(
c− b′µ0√
b′Σ0b

)
(1.5)

where b ( 6= 0) is a k x 1 vector and Φ denotes the cumulative distribution function
of the normal distribution.

then the threshold can be expressed as,

t = b
′
µ0 +

√
b′Σ0b Φ-1(1− x(t)) (1.6)

then the true positive rate is obtained as,

TPR = y(t) = Φ

(
b
′
µ1 − c√
b′Σ1b

)
(1.7)
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and the MROC curve is given as,

TPR(fpr) = y(x) = Φ

(
b
′
(µ1 − µ0)−

√
b′Σ0b Φ−1(1− x(t))√
b′Σ1b

)
(1.8)

and the linear combination is defined as,

U = b
′
X = b1x1 + b2x2 + ....+ bkxk (1.9)

where b is obtained using the minimax procedure as,

b = [t Σ1 + (1− t) Σ0]-1(µ1 − µ0) (1.10)

Here t takes values between 0 and 1 and should be determined by trial and error
method.

In practice, presence of missing or incomplete data is a very common problem.
There are many types of missing data and how to tackle with those different
types of missing in data is very crucial in the data analysis. In such situation,
the parameter estimates may not be reliable and consistent. In any classification
problem, if we come across such missing data pattern, then it is very important
to address it first and then a classifer rule can be determined. Confining this
discussion to the MROC methodology, we wish to focus on estimating the µ and
Σ of two classes if such missing pattern is witnessed. Hence, we came out with a
solution to estimate µ and Σ of H and D if data is of monotone missing pattern
without any imputation. The nested structure of monotone data allows explicit
derivation of maximum likelihood estimators and likelihood ratio test statistics for
the mean µ and covariance matrix Σ. Therefore it has received a special attention
in the literature [1]. The maximum likelihood estimates of parameters with various
patterns of missing data with simple mathematical manipulation can be read from
[3]. Further, in the same paper, matrix differentiation and matrix transformations
were used to derive the maximum likelihood estimates of the means under rank
constraint and of the covariances when the observations are missing. Closed forms
were obtained for the maximum likelihood estimators of the mean vector and the
covariance matrix of a multivariate normal model with a k-step monotone missing
data pattern [2] using matrix derivatives as an extension of 2-step missing data
pattern [3]. However, some simple test procedures for obtaining the maximum
likelihood estimators of the mean vector and covariance matrix were given by [1].
Fewer studies are reported in literature where the situation of monotone pattern
is dealt in both univariate and multivariate cases. There are good number of
articles that provide realistic situations where one can notice the monotone missing
pattern. A few to mention are [1, 15, 16, 17, 18]. None of the studies dealt with
a scenario where monotone missing data is present in a classification problem. In
this paper, we wish to propose the methodology of estimating the measures of
MROC curves such as sensitivity, Specificity, AUC where, the data has the nature
of monotone missing. Methodology is supported with a numerical illustration.

In this paper we adopted the method of [1] in obtaining the mean vector and
covariance matrix in a classification scenario when there is a presence of monotone
missing pattern, instead of using most common procedures like imputation in the

203



4 DASHINA.P AND R.VISHNU VARDHAN

presence of missing data. To demonstrate the practical importance and application
of the proposed methodology, we created a monotone missing pattern in both
H and D populations. All these exercises are made on a real data set namely
IUGRFDS [5]. In next section, we detail out what actually monotone missing data
means and how µ and Σ will be estimated. Further, few matrix decomposition
techniques are used to boost the AUC and other measures.

2. Monotone Missing Data

Let Xpx1 ∼ MVN(µ,Σ), here µ and Σ are unknown; Σ is a positive definite
matrix. Let X be partitioned as (x′1, x

′
2, . . . ., x

′
k)′ such that xi is pi x 1 vector,

i = 1, 2, .., k and p1 + p2 + . . . + pk = p. Partition the mean vector and covariance
matrix accordingly. Consider a random sample of N1 independent observations
from the above distribution that has the following pattern.
x11, . . . , x1Nk, . . . , x1N2, . . . , x1N1
x21, . . . , x2Nk, . . . , x2N2

.......
xk1, . . . , xkNk

which is known as Monotone or Triangular pattern, that is, Ni observations are
available on p1 + . . . + pi components, where i = 1, 2, . . . , k.

Estimation of the parameters of Monotone Data

Maximum Likelihood Estimates given by [1] are:

µ̂ =

µ̂1

µ̂2

µ̂3

 and Σ̂ =

Σ̂11 Σ̂12 Σ̂13

Σ̂21 Σ̂22 Σ̂23

Σ̂31 Σ̂32 Σ̂33

 (2.1)

From the monotone pattern, for the first N1 observations, we get x1,1 and S(1),
and for N2 observations, we get the sample mean vector

x2 =

[
x1,2
x2,2

]
(2.2)

and the sample covariance matrix

S(2) =

[
S11,2 S12,2

S21,2 S22,2

]
(2.3)

and for N3 observations, we get the sample mean vector

x3 =

x1,3x2,3
x3,3

 (2.4)
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and the sample covariance matrix

S(3) =

S11,3 S12,3 S13,3

S21,3 S22,3 S23,3

S31,3 S32,3 S33,3

 (2.5)

µ̂1 = x1,1 (2.6)

µ̂2 = x2,2 −B21(x1,2 − µ̂1) (2.7)

µ̂3 = x3,3 − [B31(x1,3 − µ̂1) +B32(x2,3 − µ̂2)] (2.8)

Σ̂11 =
S(1)

N1
(2.9)

ˆΣ2.1 =
(S22,2 −B21S12,2)

N2
(2.10)

Σ̂22 = ˆΣ2.1 +B21Σ̂12 (2.11)

Σ̂33 = ˆΣ3.21 +B31Σ̂13 +B32Σ̂23 (2.12)

(Σ31,Σ32) = (B31, B32)

[
Σ̂11 Σ̂12

Σ̂21 Σ̂22

]
(2.13)

(Bl1, ..., Bl l−1) = (Sl1,l, ..., Sl l−1,l)

 S11,l · · · S1 l−1,l
...

. . .
...

Sl−1 1,l · · · Sl−1 l−1,l

 (2.14)

where l = 1, 2, ..., k.
S(1), S(2) and S(3) are unbiased estimates of Σ at each Ni.

Further, an attempt is made to decompose the matrices obtained with N2 and
N3 observations. The most popularly used matrix decomposition methods such as
Cholesky’s and Singular Value have been considered to decompose S(2) and S(3)

matrices.
Cholesky decomposition or Cholesky factorization is a useful decomposition

method for efficient numerical solutions, e.g., Monte Carlo simulations. Let A
be a Hermitian positive-definite matrix and it’s Cholesky’s decomposition is A =
[L][L]T. Here L and LT denote the lower triangular matrix and conjugate transpose
of L respectively.

SVD is a matrix decomposition that applies to any matrix, real, or complex.
The Singular Value decomposition is a powerful tool for many matrix computa-
tions because it reveals a great deal about the structure of a matrix.
Singular value decomposition is a method of decomposing a matrix into three other
matrices :

A= U S VT where,
A is an m x n matrix
U is an m x n orthogonal matrix
that is; UTU = I
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S is an n x n diagonal matrix
V is an n x n orthogonal matrix
that is; VTV=I.

In next section, the above explained methodology is illustrated using a real data
set.

3. Results and Discussion

For the numerical illustration, Intra Uterine Growth Restricted Fetal Doppler
Study (IUGRFDS) dataset is collected from Sri Venkateswara Medical College,
Tirupati by [6], which is a tertiary cum care hospital meets the above criterion
where a procedure namely MCA is used to identify whether the blood flow from
the womb of the mother to the baby is sufficient enough for its growth. The dataset
consists of 82 samples in which 42 (n0) are healthy and 40 (n1) are diseased. Three
indices are used to observe the growth of baby namely Pulsatility Index (PI), Re-
sistivity Index (RI) and Systolic/Diastolic (S/D) ratio. Some observations were
randomly removed from the from variables RI and S/D of MCA procedure, to
obtain a dataset that exhibits monotone missing pattern. Now n0 and n1 of the
monotone data are 34 and 32 respectively. Mean vector and Covariance matrix
were computed using the methods described by [1].

In Table 1, the covariance matrices S(2) and S(3) are given and their decomposed
forms using Cholesky’s decomposition and Singular Value decomposition methods
are shown in Table 2,3 and 4. Table 5 depicts the mean vectors and covariance
matrices of H and D populations obtained using method given by [1], Cholesky’s
decomposition and Singular Value decomposition. In Table 6, the measures of
MROC curve are reported. In Figure 1, the MROC curve generated through com-
plete data, monotone missing data, Cholesky’s decomposition and Singular Value
decomposition are depicted. From the result of Table 5, it is understood that the
adopted method is able to provide the estimates of µ̂ and Σ̂ with small devia-
tions in decimal values when compared with the µ̂ and Σ̂ of complete data. The
AUC values obtained through monotone missing data is almost similar to that
of the complete data AUC. However, the experiment to decompose the S(2) and
S(3) matrices in Σ̂ of monotone missing data has shown some better results. The
AUC value through Cholesky decomposition is much better than AUC of complete
data, whereas, Singular Value decomposition attained similar AUC values as that
of complete data. So, even in estimating µ̂ and Σ̂ under monotone missing pat-
tern, better estimates can be obtained when we further decompose the covariance
matrix. Of the Cholesky decomposition and Singular Value decomposition, the
first method is considered to be a better one in providing similar estimates as that
of complete data and also boosts the AUC. Apart from this, the 1-specificity value
observed using Cholesky decomposition is far better than any other method with
reasonably good sensitivity. The (1−Sp) obtained using Cholesky’s decomposition
is about 18% where as, other methods possessed higher false positive values. In
terms of ROC curves also, the curve obtained by Cholesky decomposition has bet-
ter concavity than that of monotone missing data, Singular value decomposition
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and complete data.

Table 1. Sample covariance matrices of monotone data

Method S(2) S(3)

Healthy

(
1.597 0.795
0.795 6.457

) 1.163 0.993 2.491
0.993 6.315 2.301
2.491 2.301 6.047


Diseased

(
1.006 −0.137
−0.137 6.174

) 0.854 0.031 2.409
0.031 5.870 −0.454
2.409 −0.454 9.361



Table 2. Decomposed matrices of S(2) using CD and SVD methods

Methods Cholesky Decomposition Singular Value Decomposition
LLT USVT

Healthy

(
1.264
0.629 2.462

) (
1.264 0.629

2.462

) (
0.157 −0.987
0.987 0.157

) (
6.58

1.469

) (
0.157 0.987
−0.987 0.157

)
Diseased

(
1.003
−0.136 2.481

) (
1.003 −0.136

2.481

) (
−0.026 −0.999
0.999 −0.026

) (
6.17

1.002

) (
−0.026 0.999
−0.999 −0.026

)

Table 3. Decomposed matrices of S(3) using Cholesky Decomposition

Method Cholesky Decomposition
A= LLT

Healthy

1.163 0.993 2.491
0.993 6.315 2.301
2.491 2.301 6.047

 =

1.078
0.921 2.338
2.311 0.074 0.837

 1.078 0.921 2.311
2.388 0.074

0.837


Diseased

0.854 0.031 2.409
0.031 5.870 −0.454
2.409 −0.454 9.361

 =

0.924
0.034 2.423
2.607 −0.224 1.586

 0.924 0.034 2.607
2.423 −0.224

1.586
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Table 4. Decomposed matrices of S(3) using Singular Value Decomposition

Method Singular Value Decomposition
A= USVT

Healthy

0.295 0.247 0.922
0.650 −0.759 −0.004
0.699 0.601 −0.385

 9.24
4.16

0.1

 0.295 0.650 0.699
0.247 −0.759 0.601
0.922 −0.004 −0.385


Diseased

 0.251 0.051 0.966
−0.103 0.994 −0.025
0.962 0.092 −0.255

 10.04
5.83

0.21

 0.251 −0.103 0.962
0.051 0.994 0.092
0.966 −0.025 −0.255



Table 5. Mean vectors and Covariance matrices obtained from
Different Methods

Healthy Population Diseased Population
Methods µ0 Σ0 µ1 Σ1

CompleteData
1.034
1.162
1.092

0.055 0.013 0.116
0.013 0.172 0.036
0.116 0.036 0.275

1.148
1.323
1.454

0.034 −0.009 0.092
−0.009 0.187 −0.037
0.092 −0.037 0.321

MonotoneData
1.034
1.193
1.099

0.054 0.027 0.115
0.027 0.177 0.063
0.115 0.063 0.266

1.148
1.316
1.438

0.033 −0.005 0.094
−0.005 0.177 −0.029
0.094 −0.029 0.347

Cholesky
Decomposition

1.034
1.193
1.046

0.054 0.027 0.093
0.027 0.192 −0.098
0.093 −0.098 0.303

1.148
1.316
1.437

0.033 −0.005 0.093
−0.005 0.071 −0.022
0.093 −0.022 0.313

Singular
V alue

Decomposition

1.034
1.193
1.121

0.054 0.027 0.153
0.027 0.177 0.208
0.153 0.208 0.465

1.148
1.316
1.436

0.033 −0.005 0.121
−0.005 0.176 0.067
0.121 0.067 0.300

Table 6. Measures of MROC

Methods AUC cutoff sensitivity 1-specificity Youden’s Index
Measure c Sn 1-Sp J

Complete Data 0.71 1.546 0.65 0.35 0.30

Monotone Data 0.68 2.317 0.79 0.54 0.24

Cholesky Method 0.77 1.893 0.65 0.18 0.46

SVD Method 0.70 0.737 0.96 0.80 0.15
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Figure 1. ROC Curves for all the methods

4. Summary

In this paper, an attempt is made in estimating the mean vectors and co-
variance matrices in the case where data is observed to have monotone missing
pattern and considering this scenario in a classification framework. We adapted
the method proposed by [1] and further changes are made in decomposing the
covariance matrix using well known Cholesky’s and Singular Value decomposition
methods. Results depict that information in terms of µ̂ and Σ̂ can be well re-
tained and closer values can be attained as that of µ̂ and Σ̂ of complete data.
Further, it is shown that, on using Cholesky decomposition, the true information
in terms of AUC can be explained in better manner. When compared with AUCs,
the AUC obtained through Cholesky decomposition is much better than with low
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1-specificity and reasonably good sensitivity. Hence, if we have observed missing
cases in a data, using the methods discussed in the paper, the parameter esti-
mates and measures of MROC curve can be estimated in a proper manner and
can provide better results in terms of accuracy and 1− Sp .
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