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Abstract. Here we obtain a modified version of the well-known “geomet-

ric distribution” through compounding generalized beta distribution with an

extended form of the geometric distribution and investigate its important
properties. The maximum likelihood estimation of the parameters of the dis-

tribution is discussed and the generalized likelihood ratio test procedure is

considered for testing the significance of the parameters of the model and a
simulation study is performed to compare the performance of the estimates

in terms of bias and mean square error. In addition, the proposed mixture
model is fitted to three real life data sets for showing its suitability in various

fields.

1. Introduction

Count data modeling have achieved a great deal of attention of many researchers
working in different areas like insurance, economics, social sciences and biometrics.
However,often it has been found that count data exhibits over-dispersion (variance
> mean) and corresponding distribution function shows long tail behavior. In last
two decades, many methods have been proposed by the researchers to develop new
models for count data, one such method is mixtures of distributions. Application
of mixture models spread over astronomy, biology, genetics, medicine, psychiatry,
economics, engineering, marketing and other fields in the biological, physical and
social sciences. For details see McLachlan and Peel [7]. In these applications, finite
mixture models supports major areas of statistics including cluster and latent class
analysis, discriminant analysis, image analysis and survival analysis. There is a
vast literature available on finite mixture models. For example, see Everitt and
Hand [2], Titterington et al. [12].

Here first we propose a distribution which we obtained through compounding
an extended form of geometric and generalized beta distribution and named it as
the modified geometric distribution (MGD) for creating more flexibility in mod-
elling aspects. Some of the well-known distributions are special cases of MGD.
The manuscript is organized as follows: In Section 2, we introduced the MGD
and provide its important properties. In section 3 we discuss the estimation of
the parameters of the MGD by utilizing the maximum likelihood procedure and
illustrated the procedure in section 4. Section 5 contains a test procedure useful
for testing the additional parameter of the proposed model and in section 6 a brief
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2 C. SATHEESH KUMAR AND HARISANKAR. S

simulation study is included for efficiency comparison of the the performance of
the maximum likelihood estimators of the parameters of MGD.

Throughout this paper we adopt the following shorter notation, for j= 0,1,2,.. .

Ω−1j = 2F1(1 + j, k + j, ρ+ k + j + 1; γ1 + γ2), (1.1)

where 2F1(.) is the Gaussian hyper-geometric function. For more details, see
Slater (1966) or Mathai and Haubold (2008). Further, we need the following
series representations in the sequel.

∞∑
m=0

∞∑
n=0

∆n,m =

∞∑
m=0

m∑
n=0

∆n,m−n, (1.2)

∞∑
m=0

∞∑
n=0

∆n,m =

∞∑
m=0

[m2 ]∑
n=0

∆n,m−2n (1.3)

and
∞∑
m=0

∞∑
n=0

∆n,m =

∞∑
m=0

m∑
n=0

∆n,m. (1.4)

2. A Genesis of the MGD and its properties

Let X be an extended geometric random variable with probability generating
function (p.g.f)

G(t) =
1F0[1;−; θ(γ1 t+ γ2 t

2)]

1F0[1;−; θ(γ1 + γ2)]
, (2.1)

Assume that the parameter θ follows a generalized beta distribution with param-
eters ρ, k, γ1 and γ2, with probability density function (p.d.f)

f(θ) =
Ω0 θ

k−1 (1− θ)ρ 1F0[1;−; θ(γ1 + γ2)]

B(k, ρ+ 1)
,

in which k > 0 ρ > −1. Then the unconditional distribution of X is obtained as

Q(t) =
Ω0

B(k, ρ+ 1)

∫ 1

0

θk−1 (1− θ)ρ 1F0(1;−; θ(γ1 t+ γ2 t
2) dθ

= Ω0 2F1(1, k, ρ+ k + 1; γ1 t+ γ2 t
2), (2.2)

using the identity (1.104) of Johnson, Kemp and Kotz (2005).

Definition 2.1. A non-negative integer valued random variable Y is said to follow
the modified geometric distribution (MGD) if its p.g.f is of the following form, in
which ρ > −1, k > 0, γ1 > 0 and γ2 ≥ 0.

Q(t) = Ω0 2F1[1, k; ρ+ k + 1; γ1t+ γ2t
2] (2.3)
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Clearly certain well-known models can be obtained as special cases of MGD, as
given below:
1).When γ2 = 0 the p.g.f (2.3) reduces to the p.g.f of the doubly generalized Yule
distribution (DGYD) introduced by Kumar and Harisankar (2019).
2). When ρ=0 and k=1, the p.g.f (2.3) reduces to the p.g.f of the modified zero-
inflated logarithmic series distribution (MZILSD) studied by Kumar and Riyaz
(2013), which reduces to zero-inflated logarithmic series distribution when γ2=0.
3). When γ2 = 0, k=1 the p.g.f (2.3) reduces to the p.g.f of the extended version
of yule distribution (EYD) introduced by Martinez-Rodriguez (2011).
4). When γ2 = 0 and γ1 approaches to 1 the p.g.f (2.3) reduces to the p.g.f of the
Waring distribution (WD), which reduces to Yule distribution when k=1.
5). When ρ approaches to -1, the p.g.f (2.3) reduces to the p.g.f of the extended
geometric distribution (EGGD) having p.g.f (2.1) with θ = 1, which further re-
duces to standard geometric distribution when γ2=0.
Now we obtain the p.m.f of the MGD through the following result.

Result 2.2. The p.m.f qy of the MGD with p.g.f (2.3) is the following, for y =
0, 1, 2 · · · , ρ > −1, k > 0, γ1 > 0 and γ2 ≥ 0 such that γ1 + γ2 < 1.

qy = Ω0

[ y2 ]∑
j=0

(1)y−j (k)y−j
(ρ+ k + 1)y−j

γy−2j1 γj2
(y − 2j)! j!

(2.4)

where Ω0 is as defined in (1.1).

Proof. From (2.3) we have the following:

Q(t) = Ω0 2F1[1, k; ρ+ k + 1; γ1 t+ γ2 t
2] (2.5)

=

∞∑
y=0

qy t
y (2.6)

On expanding the gauss hyper-geometric function in (2.5) to get

Q(t) = Ω0

∞∑
y=0

(k)y
(ρ+ k + 1)y

[γ1 t+ γ2 t
2]y. (2.7)

By applying binomial theorem in (2.7), we obtain the following.

Q(t) = Ω0

∞∑
y=0

(k)y
(ρ+ k + 1)y

y∑
j=0

(
y

j

)
(γ1 t)

y−j (γ2 t
2)j

= Ω0

∞∑
y=0

∞∑
j=0

(k)y+j
(ρ+ k + 1)y+j

(
y + j

j

)
(γ1 t)

y (γ2 t
2)j . (2.8)

Apply (1.3) in (2.8) to obtain the following.

Q(t) = Ω0

∞∑
x=0

[ y2 ]∑
j=0

(1)y−j (k)y−j
(ρ+ k + 1)y−j (y − 2j)! j!

γy−2j1 γj2 t
y (2.9)

On equating the coefficients of ty on the right hand side expressions of (2.6) and
(2.9) we get (2.4).
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4 C. SATHEESH KUMAR AND HARISANKAR. S

In the light of equation (2.3), we obtain the following results with regard to the
MGD. �

Result 2.3. The characteristic function φ(t) of the MGD is the following for any
t ∈ R and i =

√
−1.

φ(t) = Ω0 2F1[1, k; ρ+ k + 1; γ1 e
it + γ2 e

2it] (2.10)

Result 2.4. The factorial moment generating function Λ(t) of the MGD with p.g.f
is given by

Λ(t) = Ω0 2F1[1, k; ρ+ k + 1; (γ1 + 2 γ2)t+ γ2 t
2 + (γ1 + γ2)]. (2.11)

Result 2.5. The mean and variance of the MGD are

Mean = Ω0
k (γ1 + 2γ2)

(ρ+ k + 1)
Ω1 (2.12)

and

V ariance =
Ω0k(γ1 + 2γ2)

ρ+ k + 1

[
2(k + 1)(γ1 + 2γ2)Ω2

ρ+ k + 2
+ Ω1Ω0(1− Ω1k(γ1 + 2γ2)

ρ+ k + 1
)

]
.

(2.13)

Remark 2.6. From (2.12) and (2.13), it can be seen that the MGD is over-dispersed
for all values of ρ, k,γ1 and γ2.

Result 2.7. For y ≥ 0, the following is a simple recursion formula for probabilities
qy = qy(1, k; ρ+ k + 1) of the MGD with p.g.f (2.3).

(y + 1) qy+1(1, k; ρ+ k + 1) = Ω0
k (γ1 + 2 γ2)

ρ+ k + 1
qy(2, k + 1; ρ+ k + 2) (2.14)

Proof. From (2.3), we have

Q(t) =

∞∑
y=0

qy(1, k; ρ+ k + 1) ty = 2F1[1, k; ρ+ k + 1; γ1 t+ γ2 t
2] (2.15)

Differentiating the equation (2.15) with respect to t, we get

∞∑
y=0

(y+1) qy+1(1, k; ρ+k+1) ty =
k (γ1 + 2γ2)

ρ+ k + 1
2F1[2, k+1; ρ+k+2; γ1 t+γ2 t

2].

(2.16)
In (2.15) by replacing 1, k and ρ+ k+ 1 with 2, k+ 1 and ρ+ k+ 2 respectively,
we obtain

2F[2, k + 1; ρ+ k + 2; γ1 t+ γ2 t
2] =

∞∑
y=0

qy(2, k + 1; ρ+ k + 2) ty. (2.17)

Substitute (2.17) in (2.16) to get

∞∑
y=0

(y+1) hy+1(1, k; ρ+k+1) ty =
k (γ1 + 2γ2)

(ρ+ k + 1)

∞∑
y=0

qy(2, k+1; ρ+k+2) ty. (2.18)

On equating the coefficients of ty on both sides of (2.18), we get (2.14). �
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Result 2.8. The following is a simple recursion formula for raw moments
µr = µr(1, k; ρ+ k + 1) of the MGD, for r ≥ 0.

µr+1(1, k; ρ+k+1) =
Ω0 k

ρ+ k + 1

r∑
s=0

(
r

s

)
(γ1+2s+1 γ2) µr−s(2, k; ρ+k+2) (2.19)

Proof. For t ∈ R = (−∞,∞) and i =
√
−1, the characteristic function of the

MGD is given by

φ(t) =

∞∑
r=0

µr(1, k; ρ+ k + 1)
(it)r

r!
(2.20)

= Ω0 2F1[1, k; ρ+ k + 1; γ1 e
it + γ2 e

2it]

By using (2.10) with 1, k and ρ + k + 1 replaced by 2, k + 1 and ρ + k + 2
respectively, we obtain

Ω0 2F1[2, k + 1; ρ+ k + 2; γ1 e
it + γ2 e

2it] =

∞∑
r=0

µr(2, k + 1; ρ+ k + 2)
(it)

r

r!
.

(2.21)
Differentiate (2.21) with respect to t to get

∞∑
r=0

iµr+1(1, k; ρ+ k + 1)
(it)

r

r!
= Ω0

i(γ1e
it + 2γ2e

2it) k

ρ+ k + 1

×2F1[2, k + 1; ρ+ k + 2; γ1e
it + γ2e

2it],

(2.22)

which on simplification gives

ρ+ k + 1

k

∞∑
r=0

µr+1(1, k; ρ+ k + 1)
(it)r

r!
= Ω0

[
(γ1e

it + 2γ2e
2it)

∞∑
r=0

µr(2, k + 1; ρ+ k + 2)
(it)r

r!

]
(2.23)

On expanding the exponential function in (2.23) and applying (1.2) to obtain

= Ω0

[
γ1

∞∑
r=0

r∑
s=0

µr−s(2, k + 1; ρ+ k + 2)
(it)r

(r − s)!s!

+γ2

∞∑
r=0

r∑
s=0

2s+1µr−s(2, k + 1; ρ+ k + 2)
(it)r

(r − s)!s!

]
(2.24)

Equating the coefficients of (it)
r

(r!)−1 on both sides of (2.24), we get (2.19). �
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6 C. SATHEESH KUMAR AND HARISANKAR. S

Result 2.9. The following is a simple recursion formula for factorial moments
ψ[m] = ψ[m](1, k; ρ+ k + 1) of the MGD, for m ≥ 0(
ρ+ k + 1

k

)
ψ[m+1](1, k; ρ+ k + 1) = Ω0 [(γ1 + 2 γ2) ψ[m](2, k + 1; ρ+ k + 2)

+2 m γ2 ψ[m−1](2, k + 1; ρ+ k + 2)]

(2.25)

Proof. The factorial moment generating function Λ(t) of the MGD (2.11) is given
by

Λ(t) =

∞∑
m=0

ψ[m]
tm

m!
(2.26)

= Ω0 2F1[1, k; ρ+ k + 1; γ1 (t+ 1) + γ2[(t+ 1)2]]. (2.27)

From (2.11) with 1, k and ρ+k+1 changed by 2, k+1 and ρ+k+2 respectively,
we have

Ω0 2F1[2, k+1; ρ+k+2; γ1 (t+1)+γ2(t+1)2] =

∞∑
m=0

ψm(2, k+1; ρ+k+2)
tm

m!
. (2.28)

By differentiating (2.26) with respect to t, we get

∞∑
m=0

ψ[m+1](1, k; ρ+ k + 1)
tm

m!
= Ω0 [

k (γ1 + 2γ2 (t+ 1))

ρ+ k + 1

×2F 1[2, k + 1; ρ+ k + 2; γ1 t+ γ2(t+ 1)2]

(2.29)

Substituting (2.29) in (2.28) , we have

ρ+ k + 1

k

∞∑
m=0

ψ[m+1](1, k; ρ+ k + 1)
tm

m!
= Ω0[(γ1 + 2γ2) + 2γ2t]

×
∞∑
m=0

ψ[m](2, k + 1; ρ+ k + 2)
tm

m!
(2.30)

= Ω0[(γ1 + 2γ2)
∞∑
m=0

ψ[m](2, k + 1; ρ+ k + 2)
tm

m!

+ 2γ2

∞∑
m=0

mψ[m](2, k + 1; ρ+ k + 2)
tm+1

m!
]

(2.31)

By equating the coefficients of tm (m!)−1 on both sides of (2.31), we get (2.25). �
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3. Estimation

Here we estimating the un-known parameters ρ, k, γ1 and γ2 of the MGD by
the method of maximum likelihood and generalized ratio test procedure applied
for testing the significance of the parameters of the model.

Let a(y) be the observed frequency of y events based on the observations from
a sample with independent components and let z be the highest value of the y
observed. The likelihood function of the sample is

L =

z∑
y=0

[qy]
a(y)

, (3.1)

which implies

lnL =

z∑
y=0

a(y) ln qy. (3.2)

Let ρ̂, k̂, γ̂1 and γ̂2 be the MLEs of ρ, k, γ1 and γ2 respectively. Now the MLEs of
the parameters are obtained by solving the following likelihood equations, obtained
from (3.2) on differentiation with respect to ρ, k, γ1 and γ2 respectively and
equating to zero. Then

∂ logL

∂ρ
= 0 (3.3)

or equivalently

z∑
y=0

a(y)

[ y2 ]∑
j=0

[
1

ε(y; γ1, γ2)

(
y−j
j

)
(k)y−j γ

y−2j
1 γj2

(ρ+ k + 1)y−j
[υ(ρ+ k + 1 + y − j)− υ(ρ+ k + 1)]

+Ω0

∞∑
r=0

(k)r (γ1 + γ2)r

(ρ+ k + 1)r
[υ(ρ+ k + 1)− υ(ρ+ k + r + 1)]] = 0,

∂ logL

∂k
= 0 (3.4)

or equivalently
z∑
y=0

a(y) [Ω0

∞∑
r=0

(k)r (γ1 + γ2)r

(ρ+ k + 1)r
[−υ(ρ+ k + 1)− υ(ρ+ k + r + 1) + υ(k + r)− υ(k)]

+

[ y2 ]∑
j=0

1

ε(y; γ1, γ2)

(
y−j
j

)
(k)y−jγ

y−2j
1 γj2

(ρ+ k + 1)y−j
[−υ(ρ+ k + 1 + y − j)

+υ(ρ+ k + 1) + υ(k + y − j)− υ(k)] = 0,

∂ logL

∂γ1
= 0 (3.5)

or equivalently

z∑
y=0

a(y) −Ω0

∞∑
r=0

(k)r r (γ1 + γ2)r−1

(ρ+ k + 1)r
+

[ y2 ]∑
j=0

[
1

ε(y; γ1, γ2)

(
y−j
j

)
(k)y−j (y − 2j) γy−2j−11 γj2

(ρ+ k + 1)y−j
= 0,
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8 C. SATHEESH KUMAR AND HARISANKAR. S

∂ logL

∂γ2
= 0 (3.6)

or equivalently

z∑
y=0

a(y) −Ω0

∞∑
r=0

(k)r r (γ1 + γ2)r−1

(ρ+ k + 1)r
+

[ y2 ]∑
j=0

[
1

ε(y; γ1, γ2)

(
y−j
j

)
(k)y−j γ

y−2j
1 j γj−12

(ρ+ k + 1)y−j
= 0,

where

ϕ(ρ) = [Γ(ρ)]−1
d Γ(ρ)

dρ
,

υ(ρ, y − j) = ϕ(ρ)− ϕ(ρ+ y − j)
and

ξ(ρ∗) = γ1 γ2
(1)y−j (k)y−j
(ρ+ k + 1)y−j

Ωy−j(γ1 + γ2).

On solving these log-likelihood equations by using MATHEMATICA one can ob-
tain the MLE’s of the parameters ρ, k, γ1 and γ2 of the MGD.

4. Applications

For numerical illustration, we have considered three real life data applications,
of which the first data set taken from Greenwood and Yule (1920) is on the number
of accidents experienced by each 414 industrial workers in a munitions factory over
a three months period. The second data set is on the number of food stores in the
Ljubljuna taken from Douglas (1980). While the third data set is on frequencies
of the observed number of days that expereienced thunderstorm events at Cape
Kennedy, Florida for the month of June, 1967 from Falls et al (1971). All the three
data sets have been fitted by the proposed model MGD and compared with the
existing models the DGYD, the EGGD, the EYD, the EZILSD and the Waring
Distribution(WD). The numerical results obtained are included in the Table 1, 2
and 3. For model comparsion we have considered the information measures like
AIC, BIC ... . Based on the computed values of chi-square statistic it can be seen
that the MGD gives best fit to all the data sets and the values of AIC, BIC and
P-value support its suitability compared to models the DGYD, the EGGD, the
EYD, the EZILSD and the WD.

Table 1: The number of accidents experienced by each 414 indus-
trial workers in a munitions factory.

x
Observed Expected frequency by MLE

DGYD EGGD EYD EZILSD WD MGD
0 296 305.19 281.65 276.87 305.90 306.15 285.58
1 74 71.44 74.60 87.28 70.09 59.06 77.07
2 26 22.85 35.25 31.11 23.14 21.72 30.12
3 8 8.59 13.44 11.59 9.69 11.35 11.10
4 4 3.15 5.50 4.42 3.24 5.88 5.03
5 4 1.56 2.19 1.71 1.10 3.98 3.13
6 1 0.72 0.88 0.66 0.53 2.66 1.41

Continued · · ·

50
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x
Observed Expected frequency by MLE

DGYD EGGD EYD EZILSD WD MGD
7 0 0.34 0.35 0.26 0.22 1.94 0.39
8 1 0.16 0.14 0.10 0.09 1.36 0.17
Total 414 414 414 414 414 414 414
d.f 1 1 2 2 3 1
Estimates of ρ=1.02 γ1=0.24 ρ=-0.70 γ1=0.46 ρ=-0.60 ρ=1.77
parameters γ = 0.61 γ2=0.047 γ=0.41 γ2=0.01 k = 0.77 k=0.64

k=1.25 γ1=0.42
γ2=0.02

χ2-value 3.63 5.46 6.42 5.67 7.62 2.30
AIC 769.58 771.56 774.78 768.06 789.48 765.36
BIC 770.18 771.96 775.18 768.46 789.88 766.16
P Value 0.056 0.019 0.043 0.058 0.054 0.137

Table 2: Number of food stores in the Ljubljuna.

x
Observed Expected frequency by MLE

DGYD EGGD EYD EZILSD WD MGD
0 83 101.66 77.76 72.15 87.83 114.33 84.37
1 18 23.12 22.20 34.41 19.96 16.50 18.85
2 13 8.68 20.80 17.81 15.74 5.48 15.36
3 9 5.12 9.45 9.46 8.04 3.65 9.28
4 7 2.68 6.61 5.09 5.35 1.77 6.05
5 7 1.45 3.61 2.76 3.35 0.96 4.51
6 2 0.87 2.26 1.50 2.24 0.65 3.23
7 5 0.42 1.31 0.82 1.49 0.46 2.35
Total 144 144 144 144 144 144 144
d.f 1 3 3 3 1 1
Estimates of ρ=1.71 γ1=0.26 ρ=-0.84 γ1=0.46 ρ=-0.82 ρ = 1.55
parameters γ = 0.82 γ2=0.20 γ=0.56 γ2=0.23 k=0.19 k=0.40

k=0.91 γ1=0.43
γ2=0.19

χ2-value 54.49 10.59 27.15 8.16 83.74 2.09
AIC 446.10 434.54 451.34 434.16 528.64 430.90
BIC 446.31 434.75 451.55 434.37 528.85 432.11
P Value 0.00001 0.0141 0.00001 0.0428 0.00001 0.1526
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Table 3: Frequencies of the observed number of days that ex-
pereienced thunderstorm events at Cape Kennedy, Florida for the
month of June, 1967 .

x
Observed Expected frequency by MLE

DGYD EGGD EYD EZILSD WD MGD
0 187 210.31 205.89 166.44 207.72 197.44 182.68
1 77 73.98 61.20 84.29 66.88 71.21 81.67
2 40 27.97 34.84 41.43 28.22 30.74 36.64
3 17 11.26 15.62 20.83 14.54 15.06 16.62
4 6 4.20 7.34 9.78 6.93 7.58 7.37
5 2 1.64 3.41 4.84 3.69 4.85 3.46
6 1 0.64 1.60 2.39 2.02 3.12 1.56
Total 330 330 330 330 330 330 330
d.f 1 3 3 3 3 1
Estimates of ρ=-0.90 γ1=0.29 ρ=-1.05 γ1=0.64 ρ=-0.98 ρ=4.85
parameters γ = 0.40 γ2=0.08 γ=0.48 γ2=2×10−6 k=1.70 k=3.15

γ1=0.463
γ2=0.0012

χ2-value 11.78 7.81 7.85 10.345 7.49 1.75
AIC 795.60 803.14 818.24 808.16 806.64 786.40
BIC 795.45 803.04 816.24 806.06 806.54 788.20
P Value 0.0005 0.0501 0.0492 0.0158 0.0578 0.1958

5. Testing of hypothesis

In this section, we present the generalized likelihood ratio test (GLRT) proce-
dure for testing the significance of the parameters of the MGD. We consider the
following tests:

(1) Test 1: H0
(1) : γ2 = 0 against H1

(1) : γ2 6= 0

(2) Test 2: H0
(2) : ρ = 0, k = 1 against H1

(2) : ρ 6= 0, k 6= 0

(3) Test 3: H0
(3) : γ2 = 0, k = 1 against H1

(3) : γ2 6= 0, k 6= 1

. The test statistic is

−2 ln Λ = 2
(

lnL(Λ̂;x)− lnL(Λ̂
∗
;x)
)
, (5.1)

in which Λ̂ is the MLE of Λ = (γ1, γ2, ρ, k) with no restriction and Λ̂
∗

is the MLE
of Λ under H0 . The test statistic −2 log Λ is asymptotically distributed as a chi-
square with one degree of freedom. For details of the GLRT, see Rao (1947). We

have computed the values of lnL(Λ̂;x), lnL(Λ̂
∗
;x) and the test statistic in case of

all the three data sets and inserted in Table 4.
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Table 4: Test statistic value and Chi square value for GLRT in case
of all the three data sets

Data sets logL(Λ̂;x) logL(Λ̂
∗
;x) Test Statistic d f Chi square value

Data set 1

Test 1 -378.68 -381.79 6.22 1 3.84
Test 2 -378.68 -385.39 13.22 2 5.99
Test 3 -378.68 -382.03 6.70 2 5.99

Data set 2

Test 1 -211.95 -220.05 16.20 1 3.84
Test 2 -211.95 -223.67 23.44 2 5.99
Test 3 -211.95 -215.08 6.26 2 5.99

Data set 3

Test 1 -390.20 -394.80 9.20 1 3.84
Test 2 -390.20 -406.12 31.84 2 5.99
Test 3 -390.20 -401.08 21.76 2 5.99

Since the calculated value of the test statistic is greater than the critical value at
5% level of significance in case of all the three data sets and hence we can conclude
that the parameters of the fitted model MGD is significant.

6. Simulation

As the MLE’s of the parameters of the MGD are not in explicit form, we have
carried out a simulation study for assessing the efficiency of the MLE’s of the pa-
rameters of the distribution as follows. We have simulated data sets of size(n) 200,
300 and 500 from MGD for the two sets of parameters i)ρ=0.20, k=1.5,γ1=0.50,
γ2=0.10 ii)ρ=-0.62, k=0.85,γ1=0.32,γ2=0.04. We have generated 100 indepen-
dent samples of size n=200, 300 and 500 from MGD and computed the MLE’s
for each of the 100 samples using the statistical software MATHEMATICA. By
using simulated observations, we estimated the parameters ρ, k, γ1 and γ2 of the
MGD and thereby computed the values of the absolute bias and standard errors
of each of the estimators. The estimated biases and the estimated standard errors
are presented in Table 5. From Table 5, we can see that both the absolute values
of bias and standard errors of the estimators of the parameters are in decreasing
order as the sample size increases.

Table 5: Absolute bias and standard errors in the parenthesis of
the estimators of the parameters ρ, k, γ1 and γ2 of the MGD for
the simulated data sets.

Parameter set
Sample size MLE

ρ̂ k̂ γ̂1 γ̂2

(i)
n = 200 0.27 0.82 0.09 0.07

(0.344) (1.228) (0.034) (0.0085)
n = 300 0.11 0.18 0.05 0.025

(0.308) (0.572) (0.015) (0.0033)
n = 500 0.098 0.158 0.0308 0.0056

(0.134) (0.244) (0.0086) (0.00043)

Continued · · ·
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Sample size MLE

ρ̂ k̂ γ̂1 γ̂2

(ii)
n = 200 0.86 0.49 0.07 0.0267

(1.44) (1.12) (0.024) (0.0024)
n = 300 0.336 0.34 0.065 0.0184

(0.678) (0.88) (0.0073) (0.0016)
n = 500 0.19 0.322 0.029 0.0032

(0.0572) (0.213) (0.0028) (0.0006)
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