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Abstract. In this paper, we consider a system of linear ordinary differential

equations with periodic coefficients where the matrix of the system is anti-
symmetric and depends on some parameters. Our work is mainly devoted

to obtain exact periodic solutions and approximated almost periodic solu-

tions. We are able to construct a catalog, that depends on the election of the
parameters, showing exact periodic solutions. Changing the parameters our

system has almost periodic solutions and we obtain approximations for them

using our catalog.

1. Introduction

The problem of determining the characteristic multipliers or exponents of linear
periodic systems is an extremely difficult one. As is pointed out in [1], except for
scalar second order equations and, more generally , Hamiltonian and canonical
systems, very little is known at all. Of course, also there are few cases where it
is possible to obtain exact solutions for linear periodic systems and for those it is
not needed to determine the characteristic multipliers or exponents.

Even with the difficulties described above, the study of periodic solutions of
non-autonomous ordinary differential equations by using different approaches is
a topic very interesting, see for instance [2]. Also, many of the problems treated
by researchers are related to applications. Atom optics [3], quantum chaos [4],
Hamiltonian systems [5, 6] or epidemic models [7] are examples illustrating the
above affirmation.

This work is mainly devoted to obtain exact periodic solutions and approximate
almost periodic solutions for some kind of periodic systems of the type ẋ = A(t)x,
where the matrix A(t) is antisymmetric and its size is 4× 4. As a matter of fact,
under suitable conditions of the parameters appearing in A(t), we are able to ob-
tain exact periodic solutions. Our approach begins by considering trigonometric
polynomials, with undetermined coefficients, in the form of partial sums of Fourier
series. This allows us to study different cases, depending on the number of undeter-
mined coefficients, which lead to obtain periodic solutions. We only consider two
cases. Then, for other configurations of the parameters, periodic series solutions
are obtained. Two cases, which follow ideas form section 2.5 in [8], are treated.
In addition, for some changes on the parameters and using the exact solutions we
are able to approximate some almost periodic solutions of the perturbed system.
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Some specific situations related with our work arise from equations of the type
iUt = H(t)U , the conventional form of the time dependent Schrödinger equation,
which are important in physical problems such as the scattering of an atom by
a sequence of standing light waves [3], see expression (16) in this reference, or
the study of some time-periodic models of quantum chaos [4]. Also, a real sys-
tem with the characteristic that we consider may appear in the study of classical
Hamiltonian systems, see for instance [5].

The rest of the paper is organized as follows. In section 2, we set precisely the
system to be considered and established our problem. In section 3, by considering
different cases (four cases) we construct a catalogue of exact periodic solutions.
Section 4, provides a theoretical result that allows to estimate the separation
between periodic exact solutions and almost periodic solutions. Some numerical
simulations are performed. Finally, in section 5 we give some concluding remarks
and discuss about further analytical work to do, which is a subject of a future
research.

2. Setting of the problem

For a, b, c ∈ R, ω > 0 , we consider the linear system of differential equations

ẋ1 = −ax2 + c sin(ωt)x3 − b cos(ωt)x4

ẋ2 = ax1 + b cos(ωt)x3 + c sin(ωt)x4

ẋ3 = −c sin(ωt)x1 − b cos(ωt)x2 + ax4

ẋ4 = b cos(ωt)x1 − c sin(ωt)x2 − ax3 (2.1)

Notice that x1ẋ1 +x2ẋ2 +x3ẋ3 +x4ẋ4 = 0, which implies that solutions of (2.1)
have constant norm.

In a matrix form we have
ẋ1

ẋ2

ẋ3

ẋ4

 = A(t; a, b, c, ω)


x1

x2

x3

x4

 ,

where A(t; a, b, c, ω) is the antisymmetric matrix given by

A(t; a, b, c, ω) =


0 −a c sin(ωt) −b cos(ωt)
a 0 b cos(ωt) c sin(ωt)

−c sin(ωt) −b cos(ωt) 0 a
b cos(ωt) −c sin(ωt) −a 0

 .

Our problem is divided in two parts. The first part is devoted to discuss and
obtain expressions in the simplest possible form for exact periodic solutions of
system (2.1). Specifically we are looking for solutions having the form

xi = αi0 +

m∑
j=1

(αij cos(jωt) + βij sin(jωt)), i ∈ {1, 2, 3, 4}.

We divide the discussion in the following cases
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Case Description
i a 6= 0, b 6= 0, c 6= 0
ii a = 0, b 6= 0, c 6= 0
iii a = 0, b 6= 0, c = 0
iv a = 0, b = 0, c 6= 0 .

In the second part we want to apply the knowledge of the exact solutions to obtain
numerically approximate almost periodic solutions in other scenarios.

Note that according to [9], for any linear system with A(t) periodic and an-
tisymmetric, all the solutions are quasi-periodic, so the task in this case is to
approximate some of those solutions using exact periodic solutions with properly
chosen parameters.

3. Exact periodic solutions

3.1. Case i: a 6= 0, b 6= 0, c 6= 0. In this case it is established that there are non
trivial solutions having the form

x1 = α10 + α11 cos(ωt) + β11 sin(ωt)

x2 = α20 + α21 cos(ωt) + β21 sin(ωt)

x3 = α30 + α31 cos(ωt) + β31 sin(ωt)

x4 = α40 + α41 cos(ωt) + β41 sin(ωt). (3.1)

In fact, after replacing these expressions in (2.1), we are able to obtain an
algebraic homogeneous system AX = O of twenty equations and twelve unknowns,
where

A =



0 0 0 2a 0 0 0 0 -c 0 b 0
0 ω 0 0 0 -a c 0 0 0 0 0
0 0 ω 0 a 0 0 0 0 b 0 0
0 0 0 0 0 0 0 c 0 0 0 -b
0 0 0 0 0 0 0 0 c 0 b 0
2a 0 0 0 0 0 0 b 0 0 0 c
0 0 a 0 ω 0 0 0 0 c 0 0
0 a 0 0 0 - ω b 0 0 0 0 0
0 0 0 0 0 0 0 0 b 0 c 0
0 0 0 0 0 0 0 -b 0 0 0 c
0 0 -c 0 -b 0 0 0 0 2a 0 0
-c 0 0 0 0 0 0 ω 0 0 0 a
0 0 0 b 0 0 0 0 ω 0 -a 0
0 c 0 0 0 b 0 0 0 0 0 0
0 0 c 0 -b 0 0 0 0 0 0 0
0 -b 0 0 0 c 2a 0 0 0 0 0
0 0 0 -c 0 0 0 0 -a 0 ω 0
b 0 0 0 0 0 0 -a 0 0 0 - ω
0 0 b 0 -c 0 0 0 0 0 0 0
0 b 0 0 0 c 0 0 0 0 0 0



,X =



α10

α11

β11

α20

α21

β21

α30

α31

β31

α40

α41

β41


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and O is the column zero matrix of size 20× 1.

It is obtained that if b2− c2 6= 0, then the system (2.1) has only one solution of
the form given in (3.1) and that is the trivial solution. We consider just the case
b = c and obtain, without any other restriction on the parameters, an equivalent
system which associated matrix is



1 0 0 0 0 0 0 0 0 0 0 b
a

0 1 0 0 0 0 - a
b

0 0 0 0 0

0 0 1 0 0 0 0 0 0 −a
b

0 0

0 0 0 1 0 0 0 0 0 0 b
a

0

0 0 0 0 1 0 0 0 0 −a
b

0 0
0 0 0 0 0 1 a

b
0 0 0 0 0

0 0 0 0 0 0 (a − ω)(a2 + b2 + aω) 0 0 0 0 0

0 0 0 0 0 0 a2 + b2 + aω 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 -1
0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 (a − ω)(a2 + b2 + aω) 0 0

0 0 0 0 0 0 0 0 0 a2 + b2 + aω 0 0

0 0 0 0 0 0 0 0 0 0 a2 + b2 + aω 0

0 0 0 0 0 0 0 0 0 0 0 a2 + b2 + aω
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


(3.2)

From this, it is easy to check that if a = ω or a2 +b2 +aω 6= 0, the only solution
having the form (3.1) is the trivial one. Now, we assume that

a 6= ω and a2 + b2 + aω = 0.

Under those conditions, after interchanging some rows, the previous matrix
becomes in a matrix which the last twelve rows just contains entries that are zero
and the first eight rows are described in the following matrix



1 0 0 0 0 0 0 0 0 0 0 b
a

0 1 0 0 0 0 -ab 0 0 0 0 0
0 0 1 0 0 0 0 0 0 −a

b 0 0
0 0 0 1 0 0 0 0 0 0 b

a 0
0 0 0 0 1 0 0 0 0 −a

b 0 0
0 0 0 0 0 1 a

b 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 -1
0 0 0 0 0 0 0 0 1 0 1 0


. (3.3)

From this, it is easy to see that the general solution for the homogeneous al-
gebraic system associated to (3.1) could be given as: α10 = − b

aβ41, α11 = a
bα30,

β11 = a
bα40, α20 = − b

aα41, α21 = a
bα40, β21 = −a

bα30, α31 = β41 and β31 = −α41;
with α30, α40, α41 and β41 taking arbitrary real values (free variables).

Next, we obtain four linearly independent solutions, Xi with i ∈ {1, 2, 3, 4}, of
the system (2.1), with b = c , by choosing the free variables as in the following
table
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1 2 3 4
α30 1 0 0 0
α40 0 1 0 0
α41 0 0 1 0
β41 0 0 0 1

Thus,

X1 =


a
b cos(ωt)

- a
b sin(ωt)

1
0

 , X2 =


a
b sin(ωt)
a
b cos(ωt)

0
1



X3 =


0

- b
a

- sin(ωt)
cos(ωt)

 , X4 =


- ba
0

cos(ωt)
sin(ωt)

 .

Now,

X̃(t) :=


a
b cos(ωt) a

b sin(ωt) 0 − b
a

−a
b sin(ωt) a

b cos(ωt) - b
a 0

1 0 - sin(ωt) cos(ωt)
0 1 cos(ωt) sin(ωt)


is a fundamental matrix solution of (2.1) and X(t) =: X̃(t)X̃−1(0) is the principal
matrix solution at t = 0, its expression is given by

X(t) =
1

a2 + b2


a2 cos(ωt) + b2 a2 sin(ωt) ab(cos(ωt) − 1) ab sin(ωt)

- a2 sin(ωt) a2 cos(ωt) + b2 -ab sin(ωt) ab(cos(ωt) − 1)

ab(1 − cos(ωt)) ab sin(ωt) a2 cos(ωt) + b2 -a2 sin(ωt)

-ab sin(ωt) ab(1 − cos(ωt)) a2 sin(ωt) a2 cos(ωt) + b2

 .

(3.4)

The previous discussion allow us, in this case, to obtain the following theorem

Theorem 3.1. If b = c, a 6= ω and a2 + b2 + aω = 0 , then all the solutions of
the system (2.1) are periodic and have the form given in (3.1). Moreover, each
solution can be obtained through the matrix X(t) given in (3.4).

3.2. Case ii: a = 0, b 6= 0, c 6= 0. In this case it is obtained that there exists only
one solution having the form (3.1) and it is the trivial solution. We look for non
trivial solutions having the form

x1 = α10 + α11 cos(ωt) + β11 sin(ωt) + α12 cos(2ωt) + β12 sin(2ωt)

x2 = α20 + α21 cos(ωt) + β21 sin(ωt) + α22 cos(2ωt) + β22 sin(2ωt)

x3 = α30 + α31 cos(ωt) + β31 sin(ωt) + α32 cos(2ωt) + β32 sin(2ωt)

x4 = α40 + α41 cos(ωt) + β41 sin(ωt) + α42 cos(2ωt) + β42 sin(2ωt) (3.5)

After replacing these expressions in (2.1), we are able to obtain an algebraic
homogeneous system of twenty eight equations and twenty unknowns.
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It is obtained that if b2− c2 6= 0, then the system (2.1) has only one solution of
the form given in (3.5) and that is the trivial solution. We consider the case b = c
and obtain, without any other restriction on the parameters, a system for which
the associated matrix contains just entries zero in the last eight rows and the first
twenty rows are described in the following matrix



2b ω 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b2 − 2ω2 0
0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ω 0 0 0 0 0 0 0 0 0 0 -b 0 0
0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 ω 0 0 0
0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 -2 ω
0 0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 ω 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b2 − 2ω2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b2 − 2ω2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b2 − 2ω2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b2 − 2ω2



.

(3.6)

From this, it is easy to check that if b2 − 2ω2 6= 0, the only solution having the
form (3.5) is the trivial one. If b2− 2ω2 = 0, a discussion given as in the foregoing
case allows us to obtain the following fundamental matrix solution

X̃(t) :=


−ω

b sin(2ωt) − b
ω sin(ωt) ω

b cos(2ωt) 2ω
b cos(ωt)

−ω
b cos(2ωt) b

ω cos(ωt) −ω
b sin(2ωt) 2ω

b sin(ωt)
sin(ωt) - sin(2ωt) - cos(ωt) cos(2ωt)
cos(ωt) cos(2ωt) sin(ωt) sin(2ωt)

 .

Here, the principal matrix solution X(t) := X̃(t)X̃−1(0) is given by

X(t) =
1

3


2c(ωt) + c(2ωt) -2s(ωt) + s(2ωt) 2ω

b
(c(ωt)− c(2ωt)) - b

ω
s(ωt)− 2ω

b
s(2ωt)

2s(ωt)− s(2ωt) 2c(ωt) + c(2ωt) 2ω
b
(s(ωt) + s(2ωt)) b

ω
c(ωt)− b

w
c(2ωt)

2b
ω
(−c(ωt) + c(2ωt)) - 2ω

b
(s(ωt) + s(2ωt)) 2c(ωt) + c(2ωt) 2s(ωt)− s(2ωt)

b
ω
(s(ωt) + s(2ωt)) b

ω
(−c(ωt) + c(2ωt)) -2s(ωt) + s(2ωt) 2c(ωt) + c(2ωt)

 .

(3.7)

where, c(u) = cos(u) y s(u) = sin(u)
We summarize the discussion of this case in the following theorem

Theorem 3.2. If b = c and b2 − 2ω2 = 0 , then all the solutions of the system
(2.1) are periodic and have the form given in (3.5). Moreover, each solution can
be obtained through the matrix X(t) given in (3.7).

3.3. Case iii: a = 0, b 6= 0, c = 0. For this case we face the system
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ẋ1 = −b cos(ωt)x4

ẋ2 = b cos(ωt)x3

ẋ3 = −b cos(ωt)x2

ẋ4 = b cos(ωt)x1. (3.8)

Two uncoupled systems, which are the same, are identified

ẋ1 = −b cos(ωt)x4

ẋ4 = b cos(ωt)x1

ẋ3 = −b cos(ωt)x2

ẋ2 = b cos(ωt)x3 (3.9)

To obtain four linearly independent solutions of system (3.8), we consider four
initial value problems for which the initial conditions, ICi with i ∈ {1, 2, 3, 4}, are
given in the following table

IC1 IC2 IC3 IC4

x1(0) 1 0 0 0
x2(0) 0 1 0 0
x3(0) 0 0 1 0
x4(0) 0 0 0 1

.

Notice that uniqueness of solutions of the decoupling given in (3.9) imply, for
each initial condition, for all t ∈ R the following:

IC1 x2(t) = x3(t) = 0, IC2 x1(t) = x4(t) = 0, IC3 x1(t) = x4(t) = 0

and IC4 x2(t) = x3(t) = 0.
Now, our problem reduces to solve two initial value problem

(IV P )1

ẏ1 = −b cos(ωt)y2

ẏ2 = b cos(ωt)y1

y1(0) = 1, y2(0) = 0
(IV P )2

ẏ1 = −b cos(ωt)y2

ẏ2 = b cos(ωt)y1

y1(0) = 0, y2(0) = 1

For both of them, we look for solutions having the representation

y1 = ϕ(t) =

∞∑
k=0

bkϕk(t)

y2 = ψ(t) =

∞∑
k=0

bkψk(t) (3.10)

Substituting this into the differential equations corresponding to the previous
initial value problems yields

ϕ̇(t) =

∞∑
k=0

bkϕ̇k(t) = −
∞∑
k=0

bk+1 cos(ωt)ψk(t)

and
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ψ̇(t) =

∞∑
k=0

bkψ̇k(t) =

∞∑
k=0

bk+1 cos(ωt)ϕk(t) .

Equating equal powers of b yields ϕ̇0(t) = 0, ψ̇0(t) = 0 and for k = 1, 2, 3, . . .

ϕ̇k(t) = − cos(ωt)ψk−1(t)

ψ̇k(t) = cos(ωt)ϕk−1(t). (3.11)

Now, the (IV P )1 is considered and in order to satisfy the initial conditions, we
impose the requirements that ϕ0(0) = 1, ϕk(0) = 0, k ≥ 1 and ψk(0) = 0, k ≥ 0.

Hence, direct computations from (3.11) produces ϕ0(t) = 1, ψ0(t) = 0, ϕ1(t) =
0, ψ1(t) = 1

ω sin(ωt), ϕ2(t) = 1
ω2 (− 1

4 + 1
4 cos(2ωt)), ψ2(t) = 0, ϕ3(t) = 0, ψ3(t) =

1
ω3 (− 1

8 sin(ωt) + 1
24 sin(3ωt)), · · · · · · , and it is observed that ϕ2k+1(t) = 0 and

ψ2k(t) = 0, k ≥ 0.
Using mathematical induction it is obtained that

|ϕ2k(t)| ≤ 22k

ω2k
and |ψ2k+1(t)| ≤ 22k+1

ω2k+1
, k = 0, 1, 2, . . . . (3.12)

Indeed, with k = 0, |ϕ0(t)| ≤ 1 and |ψ1(t)| ≤ 2
ω . Now, we assume that (3.12)

holds with k − 1, k ≥ 1, and consider ϕ2k :

ϕ2k(t) =

∫ t

0

− cos(ωs1)ψ2k−1(s1)ds1

=

∫ t

0

cos(ωs1)

(∫ s1

0

− cos(ωs2)ϕ2k−2(s2)ds2

)
ds1.

Taking the last integral as a value of a double integral and interchanging the
order of integration, we get

ϕ2k(t) =

∫ t

0

(∫ t

s2

− cos(ωs1) cos(ωs2)ϕ2k−2(s2)ds1

)
ds2

=
1

ω
(sin(ωs2)− sin(ωt))

∫ t

0

cos(ωs2)ϕ2k−2(s2)ds2

=
1

ω
(sin(ωs2)− sin(ωt))ψ2k−1(t).

Thus,

|ϕ2k(t)| ≤ 2

ω
· 22k−1

ω2k−1
=

22k

ω2k
.

In a similar way one may obtain the estimate corresponding to ψ2k+1.
The previous discussion allows us to conclude that, under the assumption | 2bω | < 1,
the series given in (3.10) are absolute and uniform convergent. Hence the solution
of the (IV P )1 is given by
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y1 =

∞∑
k=0

b2kϕ2k(t), y2 =

∞∑
k=0

b2k+1ψ2k+1(t) ;

where
ϕ0(t) = 1, ψ0(t) = 0, ϕ2k(t) =

∫ t

0
− cos(ωs1)ψ2k−1(s1)ds1 and ψ2k−1(t) =∫ t

0
cos(ωs1)ϕ2k−2(s1)ds1, k ≥ 1.
In terms of ϕ0(t) and ψ1(t), we get that

ϕ2k(t) = (−1)
k
∫ t

0

∫ s1

0

· · · · · · (3.13)∫ s2k−1

0

cos(ωs1) cos(ωs2) · · · cos(ωs2k)ϕ0(s2k)ds2k · · · ds2ds1

and

ψ2k+1(t) = (−1)
k
∫ t

0

∫ s1

0

· · · · · · (3.14)∫ s2k−1

0

cos(ωs1) cos(ωs2) · · · cos(ωs2k)ψ1(s2k)ds2k · · · ds2ds1.

For the (IV P )2, the solution y1 = ϕ̃(t), y2 = ψ̃(t) is given in terms of the
solution of the (IV P )1. In fact, for the representation

y1 = ϕ̃(t) =

∞∑
k=0

bkϕ̃k(t)

y2 = ψ̃(t) =

∞∑
k=0

bkψ̃k(t),

we have that ϕ̃0(t) = 0, ψ̃0(t) = 1, ϕ̃1(t) = − 1
ω sin(ωt), ψ̃1(t) = 0, ϕ̃2(t) = 0,

ψ̃2(t) =
1

ω2
(−1

4
+

1

4
cos(2ωt)), ϕ̃3(t) =

1

ω3
(
1

8
sin(ωt)− 1

24
sin(3ωt)), ψ̃3(t) = 0, . . .

It is observed that

ϕ̃2k+1(t) = −ψ2k+1(t), ϕ̃2k(t) = 0, ψ̃2k(t) = ϕ2k(t), ψ̃2k+1(t) = 0 with k ≥ 0.

Now, we can conclude that the matrix X(t) defined by

X(t) :=

∞∑
k=0


b2kϕ2k(t) 0 0 - b2k+1ψ2k+1(t)

0 b2kϕ2k(t) b2k+1ψ2k+1(t) 0
0 -b2k+1ψ2k+1(t) b2kϕ2k(t) 0

b2k+1ψ2k+1(t) 0 0 b2kϕ2k(t)


(3.15)

is a fundamental matrix solution for the present case, with X(0) = I. We sum-
marize the discussion of this case in the following
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Theorem 3.3. If the condition | 2bω | < 1 is satisfied, then all the solutions of the
system (2.1) are periodic. Moreover, each solution can be obtained through the
matrix X(t) given in (3.15), where ϕ0(t) = 1, ψ1(t) = 1

ω sin(ωt) and, for k ≥ 1,
ϕ2k(t) and ψ2k+1(t), are giving by the expressions (3.13) and (3.14), respectively.

3.4. Case iv: a = 0, b = 0, c 6= 0. We face the system

ẋ1 = c sin(ωt)x3

ẋ2 = c sin(ωt)x4

ẋ3 = −c sin(ωt)x1

ẋ4 = −c sin(ωt)x2 (3.16)

and using the strategy of the foregoing case, we are able to obtain the following

Theorem 3.4. If the condition | 2cω | < 1 is satisfied, then all the solutions of the
system (2.1) are periodic. Moreover, each solution can be obtained through the
matrix

X(t) :=

∞∑
k=0


c2kϕ2k(t) 0 - c2k+1ψ2k+1(t) 0

0 c2kϕ2k(t) 0 -c2k+1ψ2k+1(t)
c2k+1ψ2k+1(t) 0 c2kϕ2k(t) 0

c2k+1ψ2k+1(t) 0 c2kϕ2k(t)

 ,

where ϕ0(t) = 1, ψ1(t) = 1
ω (−1 + cos(ωt)) and for k ≥ 1

ϕ2k(t) = (−1)
k
∫ t

0

∫ s1

0

· · · · · ·∫ s2k−1

0

sin(ωs1) sin(ωs2) · · · sin(ωs2k)ϕ0(s2k)ds2k · · · ds2ds1

and

ψ2k+1(t) = (−1)
k
∫ t

0

∫ s1

0

· · · · · ·∫ s2k−1

0

sin(ωs1) sin(ωs2) · · · sin(ωs2k)ψ1(s2k)ds2k · · · ds2ds1.

4. Approximate solutions

We have obtained, theorems 1 and 2, expressions for exact solutions of the
system (2.1) in the scenario of the same amplitude, i.e, b = c. Being b 6= c,
we consider two systems like system (2.1) where the matrices giving in (2.2) are
A(t; a, b, b, ω) and A(t; a, b, b+ ε, ω). Thus, we have
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ẋ1 = −ax2 + b sin(ωt)x3 − b cos(ωt)x4

ẋ2 = ax1 + b cos(ωt)x3 + b sin(ωt)x4

ẋ3 = −b sin(ωt)x1 − b cos(ωt)x2 + ax4

ẋ4 = b cos(ωt)x1 − b sin(ωt)x2 − ax3 (4.1)

and

ẏ1 = ay2 + (b+ ε) sin(ωt)y3 − b cos(ωt)y4

ẏ2 = ay1 + b cos(ωt)y3 + (b+ ε) sin(ωt)y4

ẏ3 = −(b+ ε) sin(ωt)y1 − b cos(ωt)y2 + ay4

ẏ4 = b cos(ωt)y1 − (b+ ε) sin(ωt)y2 − ay3. (4.2)

Theorem 4.1. Let x = (x1, x2, x3, x4)
′

and y = (y1, y2, y3, y4)
′
, where ′ denotes

transpose, be solutions of the systems (4.1) and (4.2), respectively. If γ(t) is the

angle between x(t) and ỹ(t), where ỹ = (−y3,−y4, y1, y2)
′
, then

|y(t)− x(t)|2 = |y(0)− x(0)|2 + 2ε|x(0)||y(0)|
∫ t

0

sin(ωs) cos(γ(s))ds. (4.3)

Proof. Subtracting (4.1) from (4.2) produces

(ẏ1 − ẋ1) = −a(y2 − x2) + (b+ ε) sin(ωt)(y3 − x3)− b cos(ωt)(y4 − x4) + ε sin(ωt)y3

(ẏ2 − ẋ2) = a(y1 − x1) + b cos(ωt)(y3 − x3) + (b+ ε) sin(ωt)(y4 − x4) + ε sin(ωt)y4

(ẏ3 − ẋ3) = −(b+ ε) sin(ωt)(y1 − x1)− b cos(ωt)(y2 − x2) + a(y4 − x4)− ε sin(ωt)y1

(ẏ4 − ẋ4) = b cos(ωt)(y1 − x1)− (b+ ε) sin(ωt)(y2 − x2)− a(y3 − x3)− ε sin(ωt)y2.

Now,

4∑
i=1

(yi − xi)(ẏi − ẋi) = ε sin(ωt) [−y3x1 − y4x2 + y1x3 + y2x4]

= ε sin(ωt)(x · ỹ)

= ε sin(ωt)|x||y| cos(γ(t)).

Thus, due to the fact that solutions of (2.1) have constant norm, we have

d

dt

4∑
i=1

(yi − xi)2 = 2ε sin(ωt)|x(0)||y(0)| cos(γ(t)).

Integrating between 0 and t lead us to

4∑
i=1

(yi − xi)2 −
4∑

i=1

(yi(0)− xi(0))2 = 2ε|x(0)||y(0)|
∫ t

0

sin(ωs) cos(γ(s))ds, (4.4)
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Figure 1. In both figures, continuous line represents the exact
periodic solution in the cases (i) and (ii). Dashed and dotted line
represent the almost periodic solution in the case b = c+ ε, with
ε = 0.01 and ε = 0.1 respectively.

and the result follows.

�

In particular, when x(0) and y(0) have the same norm we get from (4.3) that

|y(t)− x(t)|2 = 2|x(0)|2 − 2(x(0) · y(0)) + 2ε|x(0)|2
∫ t

0

sin(ωs) cos(γ(s))ds,

and the fact |x(t)| = |y(t)| = |x(0)|, t ∈ R, lead us to the estimates

0 ≤ ε
∫ t

0

sin(ωs) cos(γ(s))ds ≤ 2. (4.5)

It is deduced, for all t, that either
∫ t

0
sin(ωs) cos(γ(s))ds ≥ 0 (ε > 0) or∫ t

0
sin(ωs) cos(γ(s))ds ≤ 0 (ε < 0).
Now, we perform numerical simulations taking x(t) as an exact solution coming

from some of the cases i,ii,ii or iv and y(t) a solution corresponding to a scenario
where b 6= c. In the simulations we plot the first coordinate of the solutions.

Notice that according to the theorem 4.1, the exact periodic solution give an ap-
proximation for the almost periodic solutions (see Theorem 1 in[9]) corresponding
to the case where b 6= c. Also, counter intuitively we observe that the approxima-
tions is better when b and c are not too close. We believe that is related with the
estimate (4.5), when ε smaller then exists a more tight bound for the error of the
approximation, which is proportional to the integral in (4.5).

5. Concluding remarks

For the kind of system considered we have exhibited a catalog of exact periodic
solutions and it has been shown how to use this to obtain approximately solutions,
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Figure 2. In the figure, continuous line represents the exact pe-
riodic solution in the case (ii). Dashed and dotted line represent
the almost periodic solution in the case a = 0, b = 1 and c = ε,
with ε = 0.01 and ε = 0.1 respectively.

in some scenarios, when the parameters in our system do not correspond with the
relations in the catalog.
Our results correspond to some non trivial cases and it is worth to note that the
framework presented could be applied to provide a wider catalog of exact periodic
solutions. Also, in a future research more general linear systems, periodic or not,
with antisymmetric matrix could be considered and again the first challenge is to
construct a catalog of exact solutions of some nature.
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