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Abstract: Based on the positive invariance concept, a new and easy methodology of performing the convergence
rate to the origin is proposed for invariant linear continuous-time systems with asymmetrical input constraints. It
enables to benefit from a large set of admissible initial states to the cost of a slow transient’s system convergence
rate performance. When the state tends to the origin, the control law is switched to larger and larger gains and the
convergence rate to the origin is made better and better. This control law is computed off-line and it guarantees
that input bounds are never exceeded without causing input saturations. The importance of the proposed approach
with respect to existing ones is shown through an example.

1. INTRODUCTION

In many applications, linear systems subject to state and/or input constraints are frequently encountered because
such constraints are generally associated to physical limitations of the actuators. The respect of this constraints
can be accomplished by designing suitable feedback control laws. In many cases, this can be done by constructing
positively invariant domains inside the set of the constraints, ( [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11])in
which case, saturation does not occur. A second way to deal with the constraints is given by saturation allowance,
in this case, system is non linear and significant efforts are made to guarantee the stability of the closed-loop
system ( [12], [13], [14], [15], [16] and reference therein). In this work, we treat the saturation avoidance. The
main purpose of this approach is to design a controller which can stabilize the system while maintaining its state
vector inside a positively invariant set. The use of the invariance positive concept in the regulation of linear
systems under constraints is motivated by its simplicity with respect to other approaches. Other applications
have being derived from this concept. Particularly, one which consists in using large set of initial states while
the constraints on the control vector are respected, ( [17], [18]). In fact, a dilemma appears between the size of
this set and the convergence rate of the closed-loop system. To overcome this dilemma, the proposed method
consists in tolerating bad initial convergence rate performance, which leads to the use of a large set of initial
states and when the state tends to the origin, the control law is switched to larger and larger gains. In [17], an
optimal control law based on the quadratic Lyapunov functions is used leading to symmetrical nested ellipsoidal
domains, while in [18], the non-quadratic asymmetrical Lyapunov functions are used, leading to asymmetrical
nested polyhedral domains which are more convenient to the real constraint type. In spite of the simplicity of
the second method, some questions have not been dealt with. In particular, as will be shown, the system matrix
A(x� = Ax + Bu, x � �n, u � �m) must possess at least (n – m) stable eigenvalues. In the opposite case, the method
developed in [18] cannot be applied, i.e., one can not introduce fictitious entries in a given system as done in [3]
and improve its convergence rate to the origin.
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In this paper, the asymmetrical constraints on the control vector are considered. The proposed approach
consists in starting the closed-loop system with modest convergence rate performance and finishing it with
better one using an, a priori chosen, number N of predetermined regulator gains Fi, i = 1, …, N. It consists in
switching the feedback control law gain from Fi–1 to Fi, i = 1, …, N when the state crosses the polyhedral domain
belonging to Fi. Each polyhedral domain is positively invariant with respect to the corresponding closed-loop
system. These domains are asymmetric and not necessarily nested, which constitutes a great advantage in the
sense that, applying the proposed control law, the union of the obtained domains is positively invariant and it
can be taken as a large set of initial states. The pole assignment method studied in [9] is used to compute state
feedback gains which assign faster and faster dynamics while the constraints on the control vector are respected.

The particular case of linear systems with single input is also studied. In this case, it is shown that all the
gain feedback matrices are proportional to the initial gain.

The paper is organized as follows: Preliminary results are stated in section II. Section III is reserved to the
main results together with some comments and two illustrative examples.

1.1 Notations

� For two vectors x, y of �n, x � y (respectively, x < y) if and only if xi � yi (respectively xi < yi), i = 1, …,  n.

� �n is the identity matrix of �n; AT , �i(A) and �(A) denote the transpose, the ithe eigenvalue and the spectrum
of matrix A, respectively.

� For �� �, �+ = sup(�, 0), �– = sup(–�, 0).

� For µ � �, Re(µ) is the real part of µ.

� �m
+ = {x � �m/xi � 0, i = 1, …, m}

� For two subsets S1 and S2 of �m, S1\S2 = {x � �m/x � S1 and x � S2}

� int�m
+ is the interior of �m

+.

� If H = (hij)1� i, j � m � �m×m then,

�H =
1 2 22

2 1

m mH H
R

H H

� �
�� �

� �
� �� �

�

H1(i, j) = 2

0
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ij

ijij

h if i j if i j
H i j

h if i jh if i j ��

�� ��� �� �� �
�� �� ��

2. PROBLEM STATEMENT AND PRELIMINARY RESULTS

This note is devoted to the study of linear systems described by:

x� = Ax + Bu (1)

x � �n is the state vector, u � �m is the control vector, A and B are constant matrices with appropriate dimensions
and (A, B) is stabilizable. The control vector u is constrained to evolve in the set � defined by:

� = {u � �m/ – umin � u � umax} (2)
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umin, umax � int�m
+ are fixed vectors. Consider the unconstrained state feedback control law,

u = F0x, F0 � �m×n (3)

The control is admissible only if the state is constrained to evolve in the domain given by,

D(F0, umin, umax) = {x � �n/ – umin � F0x � umax} (4)

Taking into account (3), system (1) becomes,

x� = (A + BF0) x (5)

which represents an autonomous system equation. Consider the projection z = F0x then z� = F0(A + BF0)x. If there
exists a matrix H0 such that F0(A + BF0) = H0F0 then system (5) and domain (4) become respectively,

z� = H0z (6)

D(�m, umin, umax) = {z � �m/ – umin � z � umax} (7)

Definition 2.1: A subset D of �m is said to be positively invariant with respect to system (6) if for every z(to)
� D, z(t) � D, � t � to.

Definition 2.2: Let S1 and S2 be two subsets of �m satisfying S1 � S2, we say that S1 is S2-attractive with
respect to system (6) if for every z(to) � S2, there exist t* � to such that z(t) � S1 for every t � t*.

The following result recalls the non-quadratic asymmetrical Lyapunov function.

Theorem 2.1: ([6]): Function

v(z) = 
max min

max max i i
i ii

z z

u u

� �� �
�� �� �

� �
(8)

with umin > 0, umax > 0, which is continuous positive definite, is a Lyapunov function of system (6), and domain
D(�m, umin, umax) = {z � �m= v(z) � 1} is a stability domain of system (6) if and only if:

�
0 0H U � � (9)

where

max 2

min

mu
U

u

� �
� �
� �
� �� �

� ��

Recall that ([6], [16]) v� (z) is the directional derivative of function v at z in the direction of H0z with z� (t) = H0z(t).
That is,

v� (z) = 0

0

( ) ( )
lim

v z H z v z
���

� � �
�

We also have, if �0H U U��� , then ( ) ( )v z v z��� �  for any ��� 0 ([6]).

In order to apply this result to system (1) with (3), we have to look for a couple of matrices (H0, F0) such
that:
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�
0 0 0 0 0

0 0

F A F BF H F

H U

� ��
� ��

(10)

For this, consider the following approach, named inverse procedure, where H0 is chosen to be a stable
diagonalizable matrix such that:

�
0H U U��� , (11)

where � is a positive real number (0 < �). The gain matrix F0 is obtained by solving the following equation:

XA + XBX = H0X. (12)

For the resolution of this equation, one can refer to ([9]).

3. MAIN RESULTS

The method presented here is built up from the inverse procedure: The stable diagonalizable matrix H0 is chosen
such that its eigenvalues are as close as possible to the imaginary axis, so the initial convergence rate performance
of the corresponding system (6) is bad. Furthermore, there must exist a real � > 0 such that inequality (11) is
satisfied while equation (12) is solved to obtain the feedback gain F0. Our objective is to start the closed loop
with the dynamics of H0 and finish it with those of HN through N successive feedback control gain switches. In
order to compute the N remaining gains, we begin by the computation of matrix Hi as follows,

Hi = H0 – �i�m, i = 1, …, N. (13)

Where

�i = �(�i – 1)

� > 1 is the rate with which the convergence improvement is made as it will be shown in the second item of
Remark 3.1. Feedback gain matrices Fi, i = 1, …, N are obtained from equation (12) off-line and stored because
the feedback control is going to be switched N times.

Consider the following control law,

u(t) = Fix(t) (14)

Using the gain Fi, the closed-loop system is described by:

x�  (t) = (A + BFi)x(t) (15)

To compute matrices Hi, i = 1, …, N, one needs to know �. For this, we choose �N which characterizes the
eigenvalues of matrix HN, since �i(HN) = �i(H0)–�N, i = 1, …, m, and compute � according to the following
lemma:

Lemma 3.1: Consider system (1) with matrix H0 satisfying (11) and matrices Hi, i = 1, …, N obtained from
(13), if the integer N and the scalar �N are fixed then the scalar � is given by,

� = 
1

exp log 1 1N

N

� ��� �� �� �� ��� �� �
(16)

Proof: The real � is known by virtue of equation (11) which is satisfied. From (13), if �N is fixed then HN is
also fixed. Since �N = �(�N – 1), equation (16) is then obtained.
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It is worth noting that the spectrum of matrix (A + BFi) is the union of the spectrum of matrix Hi and the
stable and desired eigenvalues of matrix A [9]. If the dominant eigenvalue of (A + BFi), i.e., the eigenvalue
�d � ��(A + BFi) satisfying Re(�d) = maxj (Re (�j(A + BFi))), j = 1, …,  n, is an eigenvalue of Hi, then the
convergence rate of system (15) is improved in the state space. Else, the convergence rate is improved only for
system u�  = Hiu in the control space. Without loss of generality, we suppose that the dominant eigenvalue of
(A + BFi) is an eigenvalue of Hi, i = 0, … , N. Now we present a result concerning the positive invariance
property of each domain D(Fi, umin, umax) with respect to the corresponding system.

Theorem 3.1: Consider system (1) with (14), where H0 satisfies (11) and matrices Hi, i = 1, …, N, computed
from (13) then, every domain D(Fi, umin, umax) is positively invariant with respect to the corresponding system
(15), i = 1, … , N.

Proof: The first equation of (10) is satisfied because Fi is obtained from the resolution of equation (12).

From (13), one obtains � �
0 2i i mH H� �� � . Since H0 satisfies (11), we can write � �

0iH U H U� � �iU < – � U– ��(�i

– 1) U = – ��iU, that is �iH U  < –��iU < 0, the second equation of (10) is then satisfied.

Remarque 3.1

� Clearly, the origin 0 is a common interior point of all the predetermined domains Di = D(Fi, umin, umax), i = 1,
…, N, which are neighborhoods of 0. Consequently, their intersection �

�
 = �N

i = 0 Di is a neighborhood of 0.

� If H0 satisfies (11) then Re(�i(H0)) < –�, i = 1, …, m, (see [6]). From the proof of Theorem 3.1, �iH U < –�aiU
which implies that Re(�i(Hj)) < –��j , i = 1, …, m, j = 1, …, N. Consequently, � is the rate of convergence
improvement when Fi–1 is changed to Fi in the control law (14).

Comments

1. The obtained domains are not nested. This property is an advantage of this method; If the initial state x(0) is
chosen in �

�
 = �N

i=0 Di, the control law must be applied adequately: The gain Fk which will be used corresponds
to the greatest integer k such that x(0) � Dk. The controller gain Fk is then kept for all times t � 0 until the
first time t1 > 0 when x(t1) � Dj for some j > k, then switches to Fj (j is the greatest integer such that x(t1) �
Dj). Then, t1 and x(t1) are taken as the initial time and initial state of an ordinary linear system. Once t*, the
first time such that x(t*) � DN, is reached, the gain switches to the static gain FN for all future times, leading
to the asymptotic stability of the system inside DN. At the switching instant, a discontinuity on the control
trajectory appears but the imposed constraints remain respected.

2. In the study of the constrained regulation problems, it is important to obtain a large set of initial states such
that if the state is initialized therein, then input bounds are never exceeded without causing any saturation.
It is known that the size of this domain is limited by the constraints. This approach enables us to enlarge the
domain of initial states to the cost of a slow transient’s system convergence rate performance.

3. The other advantage of the proposed technic is the mastery of the spectrum of the closed-loop system.
Indeed, if the eigenvalues of H0 are known, those of Hi are obtained by simple translation using the coeffcient
(–�i). This constitutes an improvement of the dynamics because �i > 0 for i = 1, …, N.

4. The previous results can also be justified by a Lyapunov functions argument. In fact, the function v(u) given
by (8), satisfies inequality v� (u) < –��iv(u) ([6]). Since � > 1, the rate with which v(u) decreases inside Di is
better than the one inside Di–1, i = 1, …, N.
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The following result is about the positive invariance property of �
�
.

Corollary 3.1: According to the proposed control law, �
�
 is positively invariant with respect to system (1)

with (14).

Proof: The proof results immediately from the first item of the comments.

Theorem 3.2: �
�
 is �

�
-attractive with respect to system (1) and (14).

Proof: Let x(to) be in �
�
\�
�
 and ko � [0, …, N] be the greatest integer such that x(to) be in Dko

. Since system
x� = (A + BFko

)x is asymptotically stable and 0 � Dko
 , then, if k0 < N, there exists t1 � to and k1 > ko such that x(t1)

� Dk1
. The same idea is applied on t1 and k1 to find t2 and k2, etc.... Consequently, there exists tN such that x(tN)

� DN. From the asymptotic stability property of the system inside DN i.e., limt�� x(t) = 0, and the fact that �
�
�

DN is a neighborhood of 0, there exists t* such that x(t) � �
�
 for every t � t*, this ends the proof.

The interest of this result is to confirm that the initial convergence rate performance depends on the initial
state but the final one is always imposed by the eigenvalues of HN.

When our interest is focused on the size of the initialization domain and not on the performance improvement,
the following result shows that �

�
 can be used as a large domain of stability for system (1) by applying a

feedback control law with a fixed gain depending on the initial state.

Corollary 3.2: For every xo = x(0) � �
�
, there exists a gain Fk, 0 � k ��N, such that system (15) with i = k,

is asymptotically stable and the control law u = Fkx is admissible.

Proof: Obvious.

Note that in the case of Corollary 3.2, the dynamics of the closed-loop system depend on the initial state
because there is no gain switching.

3.1 Particular Case: Single Input Linear Systems

In this case, all matrices Fi, i = 1, …, N, are proportional to F0. This can be seen from the fact that, considered as
linear forms of �n, the Fi’s have the same kernel. Since F0 is nonzero, there is a scalar �i such that Fi = �iF0. The
value of �i is given by the following proposition:

Proposition 3.1: In the particular case of single input linear systems such that �(A) has (n – 1) stable
eigenvalues, we have the following equations:

0
1

0

1
1 ( )

i i

i i

F F
i N

H � �

� ��
� ��� ��� � � � � ��

where the real �* is the eigenvalue of A which we want to change.

Proof: Let V be an eigenvector of A associated to the eigenvalue �*. Note that V is not in the kernel of F0

which is spanned by the eigenvectors of A associated to the stable eigenvalues. So F0V is a nonzero scalar. Now,
we have

�*F0V = F0AV = (H0F0 – F0BF0)V = (H0 – F0B)F0V

Then, one has �* = H0 – F0B. In similar way, we get: �* = Hi – FiB. Hence:

H0 – F0B = Hi – FiB

= H0 – �i – �iF0B
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This leads to: �i(H0–�
*) = H0–�

*–�i. That is, �i = 1–�i(H0–�
*)–1.

To illustrate this property, consider the following example.

Example 3.1: Consider system (1) with,

3 2 1 5

2 1 0
A B

� �� � � �
� � �� � � ��� � � �

(A, B) is controllable, umin = 4, umax = 5, that is U = [ 5 4 ]T , the eigenvalues of A are � (A) = {–4.2361 0.2361}.
We hope to start with the spectrum {– 0.2 – 4.2361} and finish with the spectrum {– 4.2  – 4.2361} in three
steps. That is, N = 3, h0 = –0.2 and �3 = 4. Using � = 0.19, inequality (11) is satisfied. From equation (16) we
obtain � = 2.8043, which leads to the following results: h1 = –0.5428, h2 = –1.5041 and h3 = –4.2. Furthermore,

� 0 3i
iH U U i� ��� � � ��� �

Equation (12) is solved four times to obtain feedback gains Fi, i = 0, …,  3. The obtained results are:

F0 = [–0.2907 –0.4704 ], F1 = [ –0.5193 –0.8402],

F2 = [–1.1601 –1.8772 ], F3 = [ –2.9574 –4.7851]

and,

�1 = 1.7861 �2 = 3.9905 �3 = 10.1722

It is easy to see that, F1 = �1F0 F2 = �2F0 F3 = �3F0 In this case, the obtained domains are nested because �3 >
�2 > �1 > 1, so,

D(F3, umin, umax) � D(F2, umin, umax) � D(F1, umin, umax) � D(F0, umin, umax)

Example 3.2: Consider system (1) with,

0 1 0 5

0 0 1
A B

�� � � �
� � �� � � �
� � � �

with umin = 2, umax = 1. The system does not possess a stable eigenvalues (n–m = 1). An easy way of calculous to
overcome the existence of (n–m) stable eigenvalues problem is the introduction of a fictitious entry v ( see [3]),
with vmin = 3 and vmax = 2.5. In this case all the spectrum of the closed loop will be assigned. The counterpart is
that the polyhedral domains become bounded. Big are vmin and vmax, large are D(Fi, umin, umax), i = 0, …, N, but
matrix H0 must be chosen such that equation (11) is satisfied. The augmented system is described by A and

0 5 0

1 0aB
�� �

� �� �
� �

We want to start the closed loop with the spectrum {–1 – 0.7} and finish it with the spectrum {–4 – 3.7} in
three steps. That is N = 3 and �3 = 3. Let

0
1 0 05

0 0 7
H

� �� �
� � �� �� �
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In this case U = [ 1 2.5 2 3]T . With � = 0.4, inequality (11) is satisfied. From equation (16) we obtain � =
2.0408, which leads to the following results:

�(H0) = {–1 –0.7}

�(H1) = {–1.4163 –1.1163]

� (H2) = { –2.2660 –1.9660]

�(H3) = { –4  –3.7}

Furthermore,

� 0 3i
iH U U i� ��� � � ��� �

Equation (12) is solved four times to obtain feedback gains Fi, i = 0, …,  3. The obtained results are:

F0 = 1
0 7 1 35 1 5811 1 7421

9 8 4 9 35 3005 7 2737
F

� � � � � � � �� � � �
� � �� � � �� � � �� � � �

F2 = 3
4 4549 2 0045 14 8 0 3

175 1665 10 2809 1095 2 273 8
F

� � � � � � � �� � � �
� � �� � � �� � � � � �� � � �

Note that the convergence rate performance of the closed-loop system increases through the predetermined
domains while the constraints on the control vector are respected. In figure 1, the induced domains D(F0, umin,

Figure 1: The Induced Domains in the State Space



Switched Gain Control of Continuous LTI Systems with Asymmetrical Input Constraints 63

Figure 2: Dotted Lines Represent the Trajectories with Initial Gain. Solid Lines Represent the Trajectories
with the Proposed Control Law

umax), D(F1, umin, umax), D(F2, umin, umax) and D(F3, umin, umax) are presented in decreasing size sens. In figure 2, the
components of the state and the control are presented with initial gain (dotted lines) and with the proposed
control law (solid lines).

Remarque 3.2

� If fictitious entries are used to overcome the existence of (n–m) stable eigenvalues in the spectrum of A
then, matrix H0 cannot be chosen diagonale because in this case, its eigenvectors �i, i = 1, …,  n, are the
canonical basis of �n, so Ba�i = 0, i = m + 1, …,  n, consequently, equation (12) cannot be solved.

� The gains Fi really used to realize the control law (14) are

F0 = [ –0.7 –1.35 ], F1 = [–1.5811 –1.7421 ],

F2 = [ –4.4549  –2.0045 ], F3 = [ –14.8 –0.3].

because v is a fictitious entry introduced to overcome the problem of the existence of (n – m) stable eigenvalues
in �(A) ([3]). In this case, the control law is applied on the initial system and not the augmented one.

4. CONCLUSION

A new approach is introduced to build a piecewise linear continuous-time systems with asymmetrical constraints
on the control vector. The method is based on the positive invariance concept. Its application leads to overcome
some limitations encountered in this kind of problems. Furthermore, it enables the mastery of the spectrum of
the closed-loop system during all the steps of the gains switching without any control saturation. The increase in
the computation time is avoided because all calculous are done off-line. After the last switch, the desired
convergence rate is reached. Two examples are given to illustrate the obtained results.



64 Journal of Mathematical Control Science and Applications (JMCSA)

REFERENCES

[1] Baddou A. and A. Benzaouia, On the dynamic improvement for linear constrained control discrete time systems.
Int. Journal of Systems Sciences, Vol. 32, pp. 433–441, 2001.

[2] Gutman P. O. and P. Hagander, A new design of constrained controllers for linear systems. IEEE Trans. on Aut.
Control, Vol. 30, No. 1, 1985.

[3] Benzaouia A. and C. Burgat, Regulator problem for linear discrete-time systems with non-symmetrical constrained
control. Int. J. Contr., Vol. 48, No. 6, pp. 2441–2451, 1988.

[4] Bitsouris G., Existence of positively invariant polyhedral sets for continuous-time linear systems. Control Theory
and Advanced Technology, Vol. 7, pp. 407–427, 1991.

[5] Castelan E. B. and C. Hennet, On Invariant Polyhedra of continuous-time linear systems. IEEE Trans. on Aut.
control, Vol. 38, No. 11, 1993.

[6] Benzaouia A. and A. Hmamed, Regulator problem for continuous time systems with nonsymmetrical constrained
control. IEEE Trans. Aut. Control. Vol. 38, No. 10, pp. 1556–1560, 1993.

[7] Vassilaki M., J.C. Hennet and G. Bitsoris, Feedback control of linear discrete time systems under state and control
constraints. International Journal of Control, Vol. 47, No. 6, pp.1727–1735, 1988.

[8] Tarbouriech S. and C. Burgat, Positively invariant sets for constrained continuous-time systems with cone properties.
IEEE Trans. on Auto. Control, Vol 39, No. 2, pp. 401–405, 1994.

[9] Benzaouia A., The resolution of equation XA + XBX = HX and the pole assignment problem. IEEE Trans. Auto. Control,
Vol. 39, No. 10, 1994.

[10] Blanchini F. and S. Miani, Onthe transient estimate for linear systems with time varying uncertain parameters. IEEE
Trans. on Circuits and Systems, part 1, Vol. 43, No. 7, pp. 591–596, 1996.

[11] Blanchini F., Set invariance in control. Automatica, Vol. 35, pp. 1747–1767, 1999.

[12] Lin Z. and A. Saberi, Semi global exponential stabilisation of linear systems subject to input saturation via linear feedback.
Systems and Control Letters, Vol. 21, pp. 225–239, 1993.

[13] Gomes da Silva Jr. J. M. and S. Tarbouriech, Local stabilization of discrete time linear systems with saturating control: An
LMI based approach. IEEE Trans. Auto. Control, Vol. 46, No. 1, pp. 119–125, 2001.

[14] Hu T. and Z. Lin, On imprvoving the performance with bounded continuous feedback laws. IEEE Trans. Auto. Control,
Vol. 47, No. 9, pp. 1570–1575, 2002.

[15] Hu T., Z. Lin and Y. Shamash, On maximizing the convergence rate for linear systems with input saturation. IEEE Trans.
Auto. Control, Vol. 48, No. 7, pp. 1570–1575, 2003.

[16] Hahn W., Stability of motions. New York: Springer-Verlag, 1967.

[17] Wredenhagen G. F. and P. R. Blanger, Piecewise linear LQ control for systems with input constraints. Automatica, Vol.
30, No. 3, pp. 403–416, 1994.

[18] Benzaouia A. and A. Baddou, Piecewise linear constrained control for continuous-time systems. IEEE Trans. Auto. Control,
Vol. 44, No. 7, pp. 1477, 1999.

[19] Yihui Lan., Equilibrium Exchange Rates and Currency Forecasts: A Big MAC Perspective, International Economics
and Finance Journal, Vol. 1, No. 2, p. 291.

[20] Everton Dockery., Asymmetries and the Effect of Macroeconomic News on Stock Market Volatility: An Empirical
Examination of the Warsaw Equity Market, International Journal of Financial Economics and Econometrics, Vol.
1, No. 1, pp 11-29.

[21] N.K. Das Diversity, Pluralism and Convergence: Aouth Asia and India in Perspective, JOURNAL OF SOCIAL
ANTHROPOLOGY

[22] Jalel Akaichi & Michel Schneider, A Unified Model for Data Warehouse Schema Design A Health Screening
Program Case Study, International Journal of Computer Science and Software Technology



Switched Gain Control of Continuous LTI Systems with Asymmetrical Input Constraints 65

[23] Yusnita Yusof and Othman O. Khalifa, Analysis on Perceptibility and Robustness of Digital Image Watermarking
using Discrete Wavelet Transform, International Journal of Information Analysis and Processing

[24] Sugata Sanyal, ACRR: Ad-hoc On-Demand Distance Vector Jayesh Kataria, P.S. Dhekne & Routing with Controlled
Route Requests, International Computer Science and Information Engineering.

[25] Ming Li, Comparative Study of IIR Notch Filters for Suppressing 60-Hz Interference in Electrocardiogram Signals,
International Journal of Electronics and Computers

[26] Delowar Hossain, Impulse Noise Removal In Images Using Morphological Set Notation, International Journal of
Information Technology and Knowledge Management.

[27] Farhan Razi, Modified BUSTRAP: An Optimal BUS Travel Planner for Commuters using Mobile, International
Journal of Electronics Engineering.

[28] Naresh Chandra Sahu & Binayak Rath., Does Socio-Economic Heterogeneity matter in the Community Based
Forest Resource Management? An Empirical Investigation from Orissa, International Journal of Environment and
Development, Vol. 3, No. 1, pp. 35-43.

[29] Sofyan S. Harahap., Indonesian Economic and Business Development, Indian Development Review, Vol. 3, No. 2,
pp. 171-192.

[30] Craig J. Forsyth., Framing Perceived Effects of Disaster: Giving Names to A Lot of Stuff, International Journal of
Sociological Research, Vol. 1, No. 1, pp. 39-51.

[31] Rudra Prakash Pradhan., Social Infrastructure In India: The Present Scenario and Future Perspective, International
Journal of Business Policy and Economics, Vol. 1, Nos. 1-2, pp. 43-62.

[32] Grose Christos, Geronikolaou Georgios & Kargidis Theodoros., Mutual Fund Performance in Eastern Europe,
Economic and Finance Notes, Vol. 1, No. 1, pp. 37-58.

[33] Smita Garg & R. K. Gupta., Laboratory Studies on Individual and Combined Effects of Cadmium, Arsenic and Zinc
on Carbohydrate Content in Indian Major Carps, International Journal of Environmental Engineering Science,
Vol. 1, No. 1, pp. 27-47.

[34] Andreas G. Merikas & Anna A.Merika., An Econometric Approach for Estimating Cash Collection Rates: A Note,
International Journal of Trade in Services, Vol. 1, No. 1, pp. 21-25.

[35] Anastasios Michailidis, Konstantinos Polymeros & Efstratios Loizou., Biologic Olive Oil Quality: An Illustration
of Consumers’ Perception, International Review of Applied Economic Research, Vol. 1, No. 1, pp. 35-44.

[36] M. Mizanur Rahman, Kelvin Balcombe & Laurence Smith., A Non-parametric Approach to Model Technical,
Allocative, Cost and Scale Efficiencies of Bangladeshi Rice Producers, Journal of Agricultural and Food Economics,
Vol. 1, No. 1, pp. 27-48.

[37] Dayang-Affizzah, A.M., Muzafar Shah Habibullah & Chin-Hong Puah., Regional Income Convergence in East
Asean Growth Area (Bimp-eaga): Results From Three Approaches of Cointegration Analysis, Journal of International
Economic Review, Vol. 1, No. 1, pp. 49-60

[38] Konstantinos Polymeros & Constantinos Katrakilidis., The Dynamic Characteristics of Competitiveness in the Eu
Fish Market, International Journal of Economic Issues, Vol. 1, No.1, pp. 25-42.




