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Abstract. In this paper, we introduce the fourth cube-root multiplicative

atom bond connectivity indices of a graph. A topological index is a numeric

quantity derived from the structural graph of a molecule. We compute the
fourth cube-root multiplicative atom bond connectivity index of line graphs

of subdivision graphs of two-dimensional lattice of TUC4C8[p, q].

1. Introduction

One of the well-known and widely used topological indices is the product con-
nectivity index or Randi index, introduced by Randi in [4]. Motivated by the
definition of the product connectivity index and its wide applications, Kulli [5]
introduced the first multiplicative atom bond connectivity index of a graph G,
which is defined as

ABCII1(G) =
∏

uv∈E(G)

dG(u) + dG(v)− 2

dG(u)dG(v)
.

Recently, many other multiplicative indices have been studied (see [6, 7, 8, 9, 10]).
The second multiplicative atom bond connectivity index of a graph G is defined
as

ABCII2(G) =
∏

uv∈E(G)

nunv

nu + nv − 2
,

where nu denotes the number of vertices of G lying closer to the vertex u than to
the vertex v for the edge uv ∈ E(G).
The fourth multiplicative atom bond connectivity index of a graph G is defined as

ABCII4(G) =
∏

uv∈E(G)

SG(u)SG(v)

SG(u) + SG(v)− 2
,

where SG(u) is the sum of the degrees of all vertices adjacent to a vertex u.
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Recently kulli introduced the fourth multiplicative atom bond connectivity index
of a graph G is defined as

ABCII(4)(G) =
∏

uv∈E(G)

√
SG(u) + SG(v)− 2

SG(u)SG(v)
,

where SG(u) is the sum of the degrees of neighbors of vertex u. Motivated by
the definition of the The second multiplicative atom bond connectivity index , the
fourth multiplicative atom bond connectivity index and by previous research on
topological indices, we now introduce the Cube-root Multiplicative Atom Bond
Connectivity Indices of a graph as follows.

2. Fourth Cube-root Multiplicative Atom Bond Connectivity Index

The fourth cube-root multiplicative atom bond connectivity index of a graph G is
defined as

ABCII
(4)
3 (G) =

∏
uv∈E(G)

3

√
SG(u) + SG(v)− 2

SG(u)SG(v)
,

where SG(u) is the sum of the degrees of neighbors of vertex u.

Lemma 2.1 ([1]). Let G be a (p, q) graph. Then L(G) has q vertices and

1

2

p∑
i=1

dG(ui)
2 − q

edges.

Lemma 2.2 ([1]). Let G be a (p, q) graph. Then S(G) has p + q vertices and 2q
edges.

Theorem 2.3. Let G be the line graph of the subdivision graph of 2D-lattice of
TUC4C8[p, q]. Then

ABCII
(4)
3 (G) =

(
3

8

) 4
3
×
(

7

20

) 8
3
×
(

8

25

) 4(p+q−4)
3

×
(

8

25

) 4(p+q−2)
3

×
(

15

72

) 8(p+q−2)
3

×
(

4

9

) 2(9pq+10)−19(p+q)
3

,

if p > 1, q > 1,

ABCII
(4)
3 (G) =

(
3

8

) 6
3
×
(

7

20

) 4
3
×
(

8

25

) 2×(p−2)
3

×
(

11

40

) 4×(p−1)
3

×
(

14

64

) 2×(p−1)
3

×
(

15

72

) 4×(p−1)
3

×
(

4

9

) (p−1)
3

.,

if p > 1, q = 1.
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Proof. The 2D-lattice of TUC4C8[p, q] is a graph G with 4pq vertices and 6pq−p−q
edges where p and q denote the number of squares in a row and the number of
rows of squares respectively. By Lemma 2, the subdivision graph of the 2D-lattice
of TUC4C8[p, q] is a graph with 10pq − p − q vertices and 2(6pq − p − q) edges.
Thus, by Lemma 1, G has 2(6pq − p− q) vertices and 18pq − 5p− 5q edges.

SG(u), SG(v) (uv ∈ E(G)) Number of edges
(4, 4) 4
(4, 5) 8
(5, 5) 2(p + q − 4)
(5, 8) 4(p + q − 2)
(8, 9) 8(p + q − 2)
(9, 9) 2(9pq + 10)− 19(p + q)

Table 1. Edge partition of G with p > 1 and q > 1.

SG(u), SG(v) (uv ∈ E(G)) Number of edges
(4, 4) 6
(4, 5) 4
(5, 5) 2(p− 2)
(5, 8) 4(p− 1)
(8, 8) 2(p− 1)
(8, 9) 4(p− 1)
(9, 9) p− 1

Table 2. Edge partition of G with p > 1 and q = 1.

Case 1. Suppose p > 1 and q > 1. By algebraic method, we obtain |V4| = 8,
|V5| = 4(p+ q− 2), |V8| = 4(p+ q− 2), and |V9| = 2(6pq− 5p− 5q+ 4) in G. Thus,
the edge partition based on the degree sum of neighbor vertices of each vertex is
obtained as given in Table 1.

ABCII
(4)
3 (G) =

∏
uv∈E(G)

(
SG(u) + SG(v)− 2

SG(u)SG(v)

) 1
3

ABCII
(4)
3 (G) =

(
4 + 4− 2

4× 4

) 4
3
×
(

4 + 5− 2

4× 5

) 8
3
×
(

5 + 5− 2

5× 5

) 2×(p+q−4)
3

××

(
5 + 8− 2

5× 8

) 4×(p+q−2)
3

×
(

8 + 9− 2

8× 9

) 8×(p+q−2)
3

×
(

9 + 9− 2

9× 9

) 2(9pq+10)−19(p+q)
3

.

=

(
3

8

) 4
3
×
(

7

20

) 8
3
×
(

8

25

) 4(p+q−4)
3

×
(

8

25

) 4(p+q−2)
3
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×
(

15

72

) 8(p+q−2)
3

×
(

4

9

) 2(9pq+10)−19(p+q)
3

.

Case 2. Suppose p > 1 and q = 1. The edge partition based on the degree sum
of neighbor vertices of each vertex is obtained as given in Table 2.

ABCII
(4)
3 (G) =

(
4 + 4− 2

4× 4

) 6
3
×
(

4 + 5− 2

4× 5

) 4
3
×
(

5 + 5− 2

5× 5

) 2×(p−2)
3

×

(
5 + 8− 2

5× 8

) 4×(p−1)
3

×
(

8 + 8− 2

8× 8

) 2×(p−1)
3

×
(

8 + 9− 2

8× 9

) 4×(p−1)
3

×
(

9 + 9− 2

9× 9

) (p−1)
3

.

=

(
3

8

) 6
3
×
(

7

20

) 4
3
×
(

8

25

) 2×(p−2)
3

×
(

11

40

) 4×(p−1)
3

×
(

14

64

) 2×(p−1)
3

×
(

15

72

) 4×(p−1)
3

×
(

4

9

) (p−1)
3

.
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