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Abstract. Graph theory have strong connections with other fields of mathematics. In this
article we introduce two new concepts in graph theory by collaborating with number theory and

real analysis. In the second section, a new graph product called the ARMS-product of graphs is
introduced, in which the degree of each vertex and the greatest common divisor of these degrees

determines the adjacency of the graph. ARMS-product of certain classes of graphs including

regular graphs, paths, cycles, stars are determined. In section 3 we associate the concept of
limit in real analysis with graph theory by defining a new graph called limit graph of a given

graph. Limit graphs of certain standard graphs as well as graphs obtained through various graph

theoretic operations are derived with suitable illustrations. Further we determine some graphs
whose limit graphs are unique as well as not unique.

1. Introduction

In this paper first we define a new graph product called ARMS-product of two graphs where
ARMS is the abbreviation of Akhil, Roy, Manju and Suresh. Numerous graph products exist in
the literature that consider one or more parameters of the given graphs. Typically, the cartesian
product of the vertex sets of the given graphs yields the vertex set of the new graph, and the edges
of the new graph are determined by certain rules related to the graph’s parameters or structure.
Also, we define limit graph of a graph and further determine the graphs with unique and distinct
limit graphs.

All graphs under our consideration are simple, connected and undirected. Let G = (V (G), E(G))
be a graph with order n = |V (G)| and size m = |E(G)|. The degree of a vertex vi in G is the
number of edges incident on vi and is denoted by d(vi), degG(vi) or simply di. The distance
between two vertices u and v in G is the length of the shortest path joining them in G denoted
by d(u, v) . For any connected graph G, nG represents a graph with n isomorphic copies of G.
A graph with p vertices and q edges is denoted as a (p, q) graph. The (1, 0) graph is called the
trivial graph and the (p, 0) graph is called an empty or null or void graph. An n × m rook
graph, is an undirected graph that shows all possible moves that a rook chess piece may make
on an n×m chessboard. A rook can travel between any two squares that share a row or column,
and each square on a chessboard represents a vertex in the rook graph. Let G and H be simple
graphs. A vertex function f : V (G) −→ V (H) preserves adjacency if for every pair of adjacent
vertices u and v in graph G, the vertices f(u) and f(v) are adjacent in graph H. Similarly, f
preserves non-adjacency if f(u) and f(v) are non-adjacent whenever u and v are non-adjacent.
A vertex bijection f : V (G) −→ V (H) between the vertex sets of two simple graphs G and H
is structure preserving if it preserves adjacency and non-adjacency. That is, for every pair of
vertices in G, u and v are adjacent in G ⇐⇒ f(u) and f(v) are adjacent in H. Two simple
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graphs G and H are isomorphic, denoted G ∼= H, if there exists a structure preserving vertex
bijection f : V (G) −→ V (H). Such a function f between the vertex sets of G and H is called an
isomorphism from G to H [2]. A subgraph of G is a graph all of whose vertices belong to V (G)
and all of whose edges belong to E(G). Let G be a graph and S a nonempty subset of V (G). A
subgraph of G whose vertex set is S and all edges of G which have both their ends in S is known
as the subgraph induced by S and is denoted as ⟨S⟩ or G[S]. Any subgraph induced by a set of
vertices will be called a vertex induced subgraph or simply an induced subgraph [5]. A vertex
u is a neighbor of v in G, if uv is an edge of G, and u ̸= v. The set of all neighbors of v is the open
neighborhood of v or the neighbor set of v, and is denoted by N(v); the set N [v] = N(v)∪ {v}
is the closed neighborhood of v in G [1]. A tree in which one vertex say r is distinguished from
others is called a rooted tree. The vertex r is called the root. In a rooted tree, the level (depth)
of a vertex v, is the length of the unique path from the root to v. The height of a rooted tree is
the length of the longest path from root. If a vertex u immediately precedes the vertex v on the
path from root to v, then u is the parent of v and v is the child of u. A vertex v is said to be the
descendant of a vertex u (also u is the ancestor of v) if u is on the unique path from the root to
v. A leaf in a rooted tree is any vertex having no childeren and an internal vertex of a rooted
tree is any vertex that is not a leaf. An m-array tree is a rooted tree in which each vertex has
a maximum of m children. A complete m-array tree is an m-array tree in which each internal
vertex has exactly m children and all leaves have the same depth. When m = 2, the corresponding
complete m-array tree is called a complete binary tree. An m-array tree has atmost mk vertices
at level k. A Tadpole graph is denoted by Tm,n we mean the graph obtained by joining a cycle
graph Cm to a path graph Pn with a bridge [4]. We follow [5] for more terminologies and notations
not mentioned here.

This article’s goal is to investigate two new concepts in graph theory namely a novel graph
product called ARMS-product by applying a well known concept in number theory viz. the greatest
common divisor and the limit concept from the real analysis.

2. The ARMS-product of Graphs

In discrete mathematics, product of graphs are frequently used as tools in combinatorial con-
structions. Naturally, graph products can be used to study any graph invariant [6]. Graph products
are helpful in the creation of numerous structural models and are also utilised in the development
of various networks within the communication system domain. By approximating the structure of
large-scale networks, it can also be utilised to produce some analytical estimations of their spectral
features [3]. Graph products can be used to create a variety of network topologies for intercon-
nection networks. Graph products based on adjacency have been the subject of numerous studies
[7].

Definition 2.1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with order m and n respec-
tively. The ARMS-Product of G1 and G2 denoted by G1 ⊠ G2 is a graph G with vertex set
V = V1 × V2 and two vertices x = (ui, vj) and y = (uk, vl) are adjacent in G if:

(1) either ui = uk and gcd (dG2
(vj), dG2

(vl)) = 1 or
(2) gcd (dG1(ui), dG1(uk)) = 1 and vj = vl

for all i, k = 1, 2, . . . ,m with i ̸= k and j, l = 1, 2, . . . , n with j ̸= l.

Remark 2.2. Following are some immediate observations from the definition.

(1) ⊠ is commutative.
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(2) ⊠ doesnot preserve the connectedness. That is, even though for two connected graphs G1

and G2, G1 ⊠G2 need not be connected.

For example, consider G1 = C4 and G2 = P3. Here both C4 and P3 are connected, but C4 ⊠ P3

is disconnected.

ma1.PNG

Figure 1. C4 ⊠ P3

Next, the degree of an arbitrary vertex in G1 ⊠G2 is determined in terms of degrees of G1 and
G2.

Let G1 be a graph with vertex set V1. Then for u ∈ V1, O(u) be the set defined by

O(u) = {v ∈ V1 : gcd (dG1(u), dG1(v)) = 1 with v ̸= u} .

Let (ui, vj) ∈ G1 ⊠G2, then

dG1⊠G2
((ui, vj)) = |O(ui)|+|O(vj)|

where ui ∈ V1 and vj ∈ V2, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
Next, we try to give a sufficient condition for the connectedness of the ARMS-product of two
connected graphs.

Theorem 2.3. Let G1 and G2 be two connected graphs. Then G1 ⊠ G2 is connected if G1 and
G2 has at least one pendant vertex.

Proof. Let V1 = {u1, u2, . . . , um} and V2 = {v1, v2, . . . , vn} are the vertex sets of G1 and G2

respectively, where m,n ≥ 2. Without loss of generality assume that dG1
(u1) = dG2

(v1) =
1. Consider G1 ⊠ G2. We have to show that G1 ⊠ G2 is connected. Consider the vertices
(u1, v1), (u1, v2), . . . , (u1, vn). Then (u1, v1) is adjacent to (u1, vj) ∀ j = 2, 3, . . . , n. This is due
to the fact that gcd (dG2(v1), dG2(vj)) = 1, irrespective of dG2(vj) ∀ j = 2, 3 . . . , n. Similarly it
is clear that the vertex (u2, v1) is adjacent to (u2, vj) ∀ j = 2, 3, . . . , n. Continuing like this, the
vertex (um, v1) is adjacent to (um, vj) ∀ j = 2, 3, . . . , n. These give rise to m components.

Now fix the vertex (u1, v1). Since gcd (dG1
(u1), dG1

(uk)) = 1 ∀ k = 2, 3, . . . ,m it is evident that
the vertex (u1, v1) is adjacent to the vertices (u2, v1), (u3, v1), . . . , (um, v1). We have each (ui, v1) is
in the ith component, where i = 1, 2, . . . ,m. That is (u1, v1) is in the 1st component, (u2, v1) is in
the 2nd component and so on. Hence the resulting graph G1⊠G2 is a single connected component.
This completes the proof. □
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Remark 2.4. The condition given in Theorem 2.3 is not necessary. That is, the product G1 ⊠G2 is
connected need not imply G1 and G2 having pendant vertices.

For example, in figure 2 both G1 and G2 have no pendant vertices. Again in figure 3, the graph
G1 ⊠G2 is connected.

MA0.PNG

Figure 2. G1 and G2

MA01.PNG

Figure 3. G1 ⊠G2

Corollary 2.5. For m,n ≥ 2, Pm ⊠ Pn is connected.
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Theorem 2.6. Let G1 = K1,m and G2 = K1,n with m,n ≥ 2, then G1⊠G2 is an (m+1)×(n+1)−
rook graph.

Proof. Let V (K1,m) = {u1, u2, . . . , um+1} and V (K1,n) = {v1, v2, . . . , vn+1}. Without loss of gen-
erality assume that u1 and v1 be the central vertices of G1 and G2 respectively. Consider G1 ⊠G2.
Then (ui, vj) is adjacent to (ui, vl) ∀ i = 1, 2, . . . ,m + 1 and j, l = 1, 2, . . . , n + 1, j ̸= l. Again
(ui, vj) is adjacent to (uk, vj) ∀ i, k = 1, 2, . . . ,m + 1, i ̸= j and j = 1, 2, . . . , n + 1. The resulting
graph has order mn+m+ n+ 1 and

dG1⊠G2
(ui, vj) = |O(ui)|+|O(vj)|

= m+ n.

This completes the proof. □

A 4× 5 - rook graph is displayed in figure 4.

MA4.PNG

Figure 4. K1,3 ⊠K1,4

Remark 2.7. From the above theorem, we can see that ARMS-product of star graphs is isomorphic
to the cartesian product of two complete graphs. That is,

K1,m ⊠K1,n
∼= Km+1□ Kn+1.

Theorem 2.8. Let G1 and G2 be two Eulerian graphs, then G1 ⊠G2 is totally disconnected.

Proof. Let G1 and G2 be two Eulerian graphs with vertex sets V1 = {u1, u2, . . . , um} and V2 =
{v1, v2, . . . , vn}. Euler’s theorem states that a nonempty connected graph is Eulerian if and only if
it has no vertices of odd degree [5]. Hence, for any two vertices (ui, vj) and (uk, vl) ∈ G1 ⊠G2, we
have gcd (dG1(ui), dG1(uk)) and gcd (dG2(vj), dG2(vl)) is always an even integer which is at least 2.
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Hence no two vertices in G1 ⊠G2 are adjacent. This results into a (mn, 0) graph, which is totally
disconnected. □

Theorem 2.9. For any connected graph G1 and a connected r-regular graph G2 with r ≥ 2, G1⊠G2

is disconnected.

Proof. The proof of this theorem trivially holds. Since gcd (dG2(vi), dG2(vj)) = r ≥ 2 for all
vertices vi, vj ∈ V2 and i, j = 1, 2, . . . , n where V2 is the vertex set of the r-regular graph G2 and
n = |G2|. □

Theorem 2.10. Let G1 be an r-regular graph on m vertices and G2 be an s-regular graph on n
vertices, where r, s ≥ 2. Then G1 ⊠G2 is a totally disconnected graph.

Proof. Let V1 = {u1, u2, . . . , um} and V2 = {v1, v2, . . . , vn} be the vertex sets of G1 and G2

respectively, with dG1
(ui) = r, and dG2

(vj) = s ∀ i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Consider
any two vertices (ui, vj) and (uk, vl) in G1 ⊠ G2. Then (ui, vj) and (uk, vl) are adjacent if ei-
ther ui = uk and gcd(dG2

(vj), dG2
(vl)) = 1 or gcd(dG1

(ui), dG1
(uk)) = 1 and vj = vl. But

gcd(dG2(vj), dG2(vl)) = s ̸= 1. Also gcd(dG1(ui), dG1(uk)) = r ̸= 1. So there are no edges in
G1 ⊠G2, resulting into an empty graph on mn vertices. □

Theorem 2.11. Let G1 be a graph with at least one pendant vertex and G2 be an r-regular graph
on n vertices, where r ≥ 2. Then G1 ⊠G2 is the union of n isomorphic components.

Proof. Let V1 = {u1, u2, . . . , um} be the vertex set of G1 and let u1 be the pendant vertex. Let
V2 = {v1, v2, . . . , vn} with dG2

(vj) = r ∀ j = 1, 2, . . . , n. Let (ui, vj) and (uk, vl) be the vertices
of G1 ⊠ G2. Then (ui, vj) is adjacent to (uk, vl) if either ui = uk and gcd (dG2

(vj), dG2
(vl)) = 1

or gcd (dG1
(ui), dG1

(uk)) = 1 and vj = vl. But since gcd (dG2
(vj), dG2

(vl)) = r ̸= 1, so the only
possible adjacency is from the condition that gcd (dG1

(ui), dG1
(uk)) = 1 and vk = vl. Since u1 is a

pendant vertex gcd (deg(u1), deg(uk)) = 1 ∀ k = 2, 3, . . . ,m. That is, (ui, v1) is adjacent to (uk, v1).
Similarly, (ui, v2) is adjacent to (uk, v2) ∀ i, k = 1, 2, . . . , n, i ̸= k and so on. (ui, vn) is adjacent
to (uk, vn) ∀ i ̸= k, i, k = 1, 2, . . . n. This results into n components. We have to show that they
are isomorphic to each other. For this consider two arbitrary components G(p) and G(q) having the
vertex sets

V (G(p)) = {(ui, vp) ∀ i = 1, 2, . . . ,m}

V (G(q)) = {(uk, vq) ∀ k = 1, 2, . . . ,m} .

Clearly |V (G(p))|= |V (G(q))|= m.
Consider the map defined by f : V (G(p)) −→ V (G(q)),

f ((ui, vp)) = (ui, vq).

Claim: f is bijective.
For this consider f ((ui, vp)) = f ((uk, vp)). Since f ((ui, vp)) = (ui, vq) and f ((uk, vp)) = (uk, vq)

this implies that (ui, vq) = (uk, vq). So ui = uk. Hence, (ui, vp) = (uk, vp), which shows that the

map f is one-to-one. As i = 1, 2, . . . ,m, range of f is exactly V (G(q)), which is nothing but the
co-domain of f , which implies that f is onto. This shows that the map is bijective.
Claim: f is structure preserving.

For, we have to show that f preserves adjacency and non-adjacency. Take two vertices (ui, vp)

and (uk, vp) from G(p). Now, we have two cases.
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Case 1: (ui, vp) and (uk, vp) are adjacent
Since (ui, vp) is adjacent to (uk, vp), it is evident that gcd (dG1(ui), dG1(uk)) = 1 ∀ i, k = 1, 2, . . . ,m
and i ̸= k. Consider f ((ui, vp)) = (ui, vq) and f ((uk, vp)) = (uk, vq). Since gcd (dG1

(ui), dG1
(uk)) =

1, from the definition of the ARMS-product of graphs, the vertices f ((ui, vp)) and f ((uk, vp)) are
adjacent. This shows that f preserves adjacency.

Case 2: (ui, vp) and (uk, vp) are non-adjacent.
Since (ui, vp) is not adjacent to (uk, vp), we can infer that gcd (dG1(ui), dG1(uk)) ̸= 1 ∀ i, k =
1, 2, . . . ,m and i ̸= k. This implies that f ((ui, vp)) = (ui, vq) and f ((uk, vp)) = (uk, vq) are not
adjacent. This shows that f preserves non-adjacency.
From both cases, we have G(p) ∼= G(q). Since p and q are arbitray, the result holds. This completes
the proof. □

Theorem 2.12. For n ≥ 3,

Pm ⊠ Cn
∼=

{
nK2,m = 2

nK1,1,m−2,m ≥ 3.

Proof. Let V (Pm) = {u1, u2, . . . , um} and V (Cn) = {v1, v2, . . . , vn} be the vertex sets of Pm and
Cn respectively.
Case 1: m = 2

Here P2 ⊠ Cn has vertex set V (P2 ⊠ Cn) = {(ui, vj) ∀ i = 1, 2, j = 1, 2, . . . , n}. Since Cn is 2-
regular, two vertices (ui, vj) and (uk, vl) in P2 ⊠ Cn are adjacent if gcd(dP2(ui), dP2(uk)) = 1 and
vj = vl. Since dP2

(u1) = dP2
(u2) = 1, vertices (u1, vj) and (u2, vj) are adjacent ∀ j = 1, 2, . . . , n.

This gives n isomorphic copies of P2 in which (u1, vj) and (u2, vj) are the end vertices, ∀ j =
1, 2, . . . , n. Again since dCn

(vj) = 2 ∀ j = 1, 2, . . . , n, vertices (u1, vj) is not adjacent to (u1, vk) for
any j, where j = 1, 2, . . . , n. A similar result holds for the vertex u2. Hence P2 ⊠ Cn is the union
of n copies of P2.
Case 2: m ≥ 3

As in the case 1, V (Pm ⊠Cn) = {(ui, vj) ∀ i = 1, 2, . . . ,m, j = 1, 2, . . . , n}. Assume that for the
path Pm, dPm

(u1) = dPm
(um) = 1 and dPm

(ui) = 2 ∀ i = 2, 3, . . . ,m− 1. In this case two vertices
(ui, vj) and (uk, vl) are adjacent if gcd(dPm

(ui), dPm
(uk)) = 1 and vj = vl ∀ i, k = 1, 2, . . . ,m, j, l =

1, 2, . . . , n.
Consider the following partitions of V (Pm ⊠ Cn).
For all j = 1, 2, . . . , n,

U1 = {(u1, vj)}
U2 = {(um, vj)}
U3 = {(ui, vj) ∀ i = 2, 3, . . . ,m− 1} .

Since u1 and u2 are the pendant vertices, the vertex in U1 is adjacent to the vertex in U2 ∀ j =
1, 2, . . . , n. Again using the same arguement the vertices in U3 is adjacent to U1 and U2 ∀ i =
2, 3, . . . ,m − 1 and j = 1, 2, . . . , n. Clearly for a fixed j, the graph having vertices U1, U2 and U3

is the complete tripartite graph K1,1,m−2. Since j varies from 1 to n, there are n such isomorphic
components. Hence Pm ⊠Cn is the union of n isomorphic copies of K1,1,m−2. Hence the proof. □

Theorem 2.13. Let G1 = Km,n with gcd(m,n) = 1 and G2 be an r-regular graph on p vertices,
r ≥ 2, then

G1 ⊠G2
∼= pKm,n.

53



AKHIL B.*, ROY JOHN, MANJU V. N., AND G. SURESH SINGH

Proof. Proof immediately follows from theorem 2.3. □

3. The Limit Graph of a Graph

In many different fields of mathematics, graph theory is used. Among these fields one is Real
Analysis. In Real Analysis, the concept of limit plays an important role. We aim to define relatively
a new concept in graph theory called limit graph of a given graph. Further we categorise graphs,
based on whether or not they have a unique limit graph. In this section we introduce the concept
of limit graph of a graph and determine the limit graphs of certain standard graphs.

Definition 3.1. Let G = (V,E) be a connected graph on n vertices, n ≥ 2 and S ⊂ V (G). Let
H = ⟨S⟩ be a connected subgraph of G with minimal order and size such that N(S) = V (G). This
H is said to be the limit graph of G and is denoted by lim(G).

Remark 3.2. (1) Every graph has at least one limit graph.
(2) Limit graph of G need not be unique.

Remark 3.3. Let G be a graph and H = ⟨S⟩ be a limit graph of G. This H is unique if for any S′

satisfying the properites of S, and H ′ = ⟨S′⟩, then H ′ ∼= H.

Figure 5 is an example for a graph with unique limit graphs.
For this consider the subsets S1 = {v1, v6}, and S2 = {v4, v6}. Here ⟨S1⟩ ∼= ⟨S2⟩ ∼= K2. Hence

lim(G) is K2.

limit1.PNG

Figure 5. G

Figure 6 is an example of a graph without a unique limit graph.
In this graph, we can find two sets S1, S2 ⊂ V (G) with the same cardinality with N(S1) =

N(S2) = V (G) whose induced subgraphs have the same order and size which are non-isomorphic.
Here S1 = {v3, v4, v5, v6} and S2 = {v1, v4, v5, v6}.
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limit2.PNG

Figure 6. G

limit3.PNG

Figure 7. ⟨S1⟩ and ⟨S2⟩, Two non-
isomorphic subgraphs of G having least or-
der and size with N(S1) = N(S2) = V (G)

3.1. Some Standard Graphs with unique Limit Graphs. In this section, we determine some
classes of graphs which posses a unique limit graph and determine the correseponding limit graphs.

Proposition 3.4. For n ≥ 3, lim(Pn) is Pn−2.

Proof. Let V (Pn) = {v1, v2, . . . , vn} and assume that each vi is adjacent to vi+1, i = 1, 2, . . . , n− 1.
Take all the internal vertices of Pn. That is, S = {vi, ∀ i = 2, 3, . . . , n− 1}. Then N(S) = V (Pn)
also ⟨S⟩ have minimal order and size. Otherwise, the induced subgraph of a set without taking at
least one internal vertex leads to a disconnected graph. □

Proposition 3.5. For n ≥ 3, lim(Cn) is Pn−2.

Proof. It is similar to the proof of proposition 3.4. □

Proposition 3.6. For n ≥ 2, lim(Kn) is K2.

Proof. The proof is trivial. Since all the induced subraphs of Kn with vertex sets consisting of two
of its vertices are isomorphic to each other. □

Proposition 3.7. For m,n ≥ 1, lim(Km,n) is K2.

Proof. Let V1 and V2 be the two partite sets of Km,n where m,n ≥ 1. Let {u1, u2, . . . , um} be
the vertex set of V1 and {v1, v2, . . . , vn} be the vertex set of V2. Choose one vertex from V1 and
one from V2. The induced subgraph of G with these two vertices have minimal order and size and
whose one neighhbourhood is V (Km,n). All such induced subgraphs are isomorphic to K2. Hence
lim(Km,n) is K2. □
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Theorem 3.8. For the Petersen graph G, lim(G) is K1,3.

Proof. Let G = (V,E) be the Petersen graph, where the vertex set and edge set is given by
V (G) = {ai, bi, 1 ≤ i ≤ 5} and E(G) = {aiai+1, aibi, bibi+2, 1 ≤ i ≤ 5}, where the subscripts are
expressed as integer modulo 5. Now we are considering sets which satisfies the conditions given in
the definition of the limit graph. Sets with cardinalities 1, 2 and 3 never satisfies the requirements.
Hence the minimal cardinality of a set S, which satisfies N(S) = V (G) is 4. There are

(
10
4

)
possibilities. But among these, only 5 sets Si, i = 1, 2, 3, 4, 5 will induces a subgraph ⟨Si⟩ which is
connected and having minimal order and size with N(Si) ∼= V (G). Those sets are given by

Si = {ai, bi, bi+2, bi+3} , i = 1, 2, 3, 4, 5

where the subscripts are taken integer modulo 5. The subgraphs induced by the sets Si, i =
1, 2, 3, 4, 5 are all isomorphic to each other and no other set with same cardinality produces a
subgraph which satisfies all the conditions of limit graph which is not isomorphic to ⟨Si⟩. Here
⟨Si⟩ = K1,3. Hence lim(G) is K1,3. □

peter.PNG

Figure 8. Petersen graph

Theorem 3.9. For any tree G, limit graph of G is unique.

Proof. Let G be a tree with n vertices. Let v1, v2, . . . , vk be the pendant vertices and u1, u2, . . . , ul

be the internal vertices, so that k + l = n.
Case 1: When k = 1

Consider Si = {v1, ui} , 1 ≤ i ≤ l. All the ⟨Si⟩ are isomorphic to each other and is the graph
with minimal order and size such that N(Si) = V (G). In this case the resulting graph is a star
graph. Hence lim(G) is K2.
Case 2: When k ≥ 2

Consider the subgraph of G obtained by removing all the pendant vertices from G. We will show
that this subgraph is the limit graph of G. The removal of all the pendant vertices doesn’t change
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the connectivity of the subgraph, since the path between all the internal vertices are unique even
after the removal of pendant vertices. Also the subgraph so formed is unique (since we are removing
all the pendant vertices from G). So in this case we can take S = {ui ∀ 1 ≤ i ≤ l}. The resulting
graph ⟨S⟩ meets all the requirements for the limit graph of G. Hence this subgraph obtained by
deleting all the pendent vertices is unique. □

Example 3.10. The following example shows that removal of all pendant vertices from G results
into the limit graph of G.

tree1.PNG

Figure 9. A tree G

tree2.PNG

Figure 10. lim(G)

Corollary 3.11. Let T be a complete binay tree of height h, then the limit graph of T is again a
complete binary tree with height h− 1.

Next, we discuss some graph theoretical operations on graphs in which the resulting graph has
a unique limit graph.

Theorem 3.12. Let G be a connected graph with at least 2 vertices and H be any simple graph,
then lim(G⊙H) is G.

Proof. Let G be a connected graph with |G|= n and |H|= r ≥ 1. Let v1, v2, . . . , vn be the vertices
of G. Then G ⊙ H is a connected graph with |G ⊙ H|= n(r + 1). Take S = V (G). Then
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N(S) = V (G⊙H). Also by assumption ⟨S⟩ is connected and no proper subset of S cannot satisfy
the requirements of limit graph of G⊙H. Hence lim(G⊙H) is G. □

Theorem 3.13. For any two graphs G,H, lim(G ∨H) = K2.

Proof. LetG be a graph with vetex set {v1, v2, . . . , vm} and the vertex set of graphH is {u1, u2, . . . , un},
where m,n ≥ 1. Then G∨H is a connected graph with m+n vertices and each vi in G is adjacent
to uj in H where i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Take S = {vi, uj}, where i = 1, 2, . . . ,m, j =
1, 2, . . . , n. Then S is a connected minimal ordered set with N(S) = V (G ∨H). We can see that
the graph induced by S is K2. Also, the graph induced by the vertex set S′ = {vk, ul}, where i ̸= k
and j ̸= l is ⟨S′⟩ ∼= ⟨S⟩. Hence lim(G ∨H) is K2. □

3.2. Graphs with more than one Limit Graph. In this section we determine some graphs
having different non-isomorphic limit graphs.

Theorem 3.14. For m ≥ 5, n ≥ 2 limit graph of Tm,n is not unique.

Proof. Let the vertices of Cm,m ≥ 5 be labeled as v1, v2, . . . , vm and that of Pn, n ≥ 2 is u1, u2, . . . , un.
Let the bridge connecting Cm and Pn is v1u1. Consider the sets, for 1 ≤ k ≤ m− 1

Sk = {ui, vj ,∀ 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m, j ̸= k + 1, k + 2} .

Clearly N(Sk) = V (Tm,n) and all the induced graphs, ⟨Sk⟩ have order n+m−2 and size n+m−3.
But the induced graph of S1, Sm−1 is not isomorphic with that of Sk where 2 ≤ k ≤ m− 2. Hence
the limit graph of Tm,n is not unique. □

Definition 3.15. Consider Pm,m ≥ 2 and Cn, n ≥ 3. Adjoin Cn to each vertices of Pm. The
resulting graph is denoted by Gm,n.

An example is given below.

no limit.PNG

Figure 11. G4,4

Theorem 3.16. For m ≥ 2, n ≥ 5 limit graph of Gm,n is not unique.
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Proof. Let v1, v2, . . . , vm be the vertices of Pm and {vi, uij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n− 1}, be
the vertices of each Cn adjoined to the ith vertex of Pn. Consider the two sets S1, S2 ⊂ V (Gm,n):

S1 = {vi, uij , ∀i = 1, 2, . . . ,m, j = 1, 2, . . . , n− 3}
S2 = {vi, uij , ∀i = 1, 2, . . . ,m, j = 1, 4, . . . , n− 1, j ̸= 2, 3} .

Clearly |S1|= |S2|= m(n − 2) and ⟨S1⟩, ⟨S2⟩ have the same size given by mn − 2m − 1. Also
⟨S1⟩, and ⟨S2⟩ are connected with N(S1) = N(S2) = V (Gm,n). But ⟨S1⟩ ≇ ⟨S2⟩. Since Pm is a
path in Gm,n every vertices of Pm should be included in the set and lim(Cn) is Pn−2, so n − 2
vertices must be chosen fom the vertices of each Cn. Hence no other sets with fewer cardinality can
satisfy affirmatively the conditions for the limit graph of Gm,n. Hence limit graph of Gm,n is not
unique. □
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