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Abstract. We investigate the multi-point boundary value problem for sec-
ond order differential equation of the form

D

dt
ṁ(t) = F (t,m(t), ṁ(t)),

m(0) = m0; ṁ(1) =

q∑
i=1

βiΓm(1)ṁ(ti),

on a complete Riemannian manifold, where D
dt

is the covariant derivative of

Levi-Civita connection and F (t,m(t), ṁ(t)) is a vector field (it has either less

than linear, linear or quadratic growth in velocity). A generalization to the
problem of the same sort subjected to a non-holonomic constraint, is also
presented.

1. Introduction

Let M be a finite-dimensional complete Riemannian manifold and TM be its
tangent bundle with the natural projection π : TM → M . Consider a map
F : R × TM → TM such that for any point (m,X) (this means that X ∈ TmM ,
i.e., X is a tangent vector to M at the point m ∈ M) the relation πF (t,m,X) =
π(m,X) = m holds. Take βi ∈ R, ti ∈ (0, 1), i = 1, ..., q. By Γm(1) denote the
operator of parallel translation along the curve m(·) to the point m(1) and by
Γm(0) denote the operator of parallel translation along the curve m(·) to the point
m(0). This paper is concerned with the problem of existence of a solution for the
multipoint boundary value problem:

D

dt
ṁ(t) = F (t,m(t), ṁ(t)), (1.1)

m(0) = m0; ṁ(1) =

q∑
i=1

βiΓm(1)ṁ(ti). (1.2)

We suppose that F have less than linear, linear or quadratic growth in X. The
main aim of the paper is to find conditions that guarantee the solvability for the
boundary value problem (1.1) – (1.2) with right-hand sides as mentioned above,
i.e., to find a C1 – curve m(t), t ∈ [0, 1], satisfying (1.1) – (1.2) on [0, 1]. In
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the last section of the article we explore multi-point boundary value problem for
systems with constraints. Similar boundary value problem for equation on Rn

with right-hand side satisfying Caratheodorys conditions was investigated in [1]
and [2].

2. Mathematical machinery

In this section we modify some constructions from [2], [3] and [4] for the problem
under consideration. Take m0 ∈ M , and let v : [0, 1] → Tm0M be a continuous
curve. It is shown in [3] that there exists a unique C1–curve m : [0, 1] → M
such that m(0) = m0 and the vector ṁ(t) is parallel along m(·) to the vector
v(t) ∈ Tm0M at any t ∈ [0, 1].

Denote the curve m(t) constructed above from the curve v(t), by the symbol
Sv(t). Thus we have defined a continuous operator S that sends the Banach
space C0([0, 1], Tm0M) of continuous maps (curves) from [0, 1] to Tm0M into the
Banach manifold C1([0, 1],M) of C1– maps from [0, 1] to M . Denote by Γm∗ the
operator of parallel translation of vectors along m(·) at the point m∗. Suppose
that F (t,m,X) is a continuous force field. Let 1 ̸=

∑q
i=1 βi. Define the operator

B : C0([0, 1], Tm0M) → C0([0, 1], Tm0M)

by the formula:

B(v) =
1

1−
∑q

i=1 βi

[ q∑
i=1

βi

∫ ti

0

Γm0F (s, Sv(s),
d

ds
Sv(s))ds−

−
∫ 1

0

Γm0F (s,m(s),
d

ds
Sv(s))ds

]
+

∫ t

0

(Γm0F (s,m(s),
d

ds
Sv(s))ds, (2.1)

where t ∈ [0, 1]. It is shown in [3] that operator ΓS is compact. Since ΓS is
compact and F is continious it is easy to see that B is compact.

Let u(t) ∈ C0([0, 1], Tm0M) be a fixed point of operator B. Let us show that
m(t) = S(u(t)) is the desired solution of BVP (1.1)–(1.2). Firstly, the equality
u̇(t) = Γm0

F (t, S(u), d
dtS(u)) holds for all points t at which the derivative ex-

ists. Using the properties of the covariant derivative and the definition of u, one
can show that u̇(t) is parallel to D

dtṁ(t) along m(·) and ΓF (t, S(u), d
dtS(u)) is

parallel to F (t,m(t), ṁ(t)). Hence, D
dtṁ(t) = F (t,m(t), ṁ(t)) and curve m(t) =

S(u) satisfies (1.1). Secondly, by direct calculations we get: Γm(1)β1B
′(u)(t1) +

Γm(1)β2B
′(u)(t2)+ ...+Γm(1)βqB

′(u)(tq) = B′(u)(1), hence S(u(t)) satisfies (1.2).
Following lemmas can be easily proven by simple algebraic transformations.

Lemma 2.1. Suppose 1−
∑q

i=1 βi > 0 and

c <
(1−

∑q
i=1 βi)

(2 +
∑q

i=1(|βi|ti − βi))
, (2.2)

then the following inequality holds:

1

1−
∑q

i=1 βi

( q∑
i=1

|βi|cεti + cε
)
+ cε < ε
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Lemma 2.2. Suppose 1−
∑q

i=1 βi < 0 and

c <
|1−

∑q
i=1 βi|

(
∑q

i=1(|βi|ti + βi))
, (2.3)

then the following inequality holds:

1

|1−
∑q

i=1 βi|

( q∑
i=1

|βi|cεti + cε
)
+ cε < ε

Lemma 2.3. Suppose 1−
∑q

i=1 βi > 0 and

a <
(1−

∑q
i=1 βi)

(2 +
∑q

i=1(|βi|ti − βi))ε
, (2.4)

then the following inequality holds:

1

1−
∑q

i=1 βi

( q∑
i=1

|βi|aε2ti + aε2
)
+ aε2 < ε

Lemma 2.4. Suppose 1−
∑q

i=1 βi < 0 and

a <
|1−

∑q
i=1 βi|

(
∑q

i=1(|βi|ti + βi))ε
, (2.5)

then the following inequality holds:

1

|1−
∑q

i=1 βi|

( q∑
i=1

|βi|aε2ti + aε2
)
+ aε2 < ε

Definition 2.5. The force field F (t,m,X) is said to have less than linear growth
in X if for any compact Θ ⊂ M and interval [0, 1] the relation:

lim
∥X∥ →∞

∥F (t,m,X)∥
∥X∥

= 0 (2.6)

holds uniformly in t ∈ [0, 1] and m ∈ Θ.

Remark 2.6. Let force field F satisfy definition 2.5. For every real c > 0, there
exists a realK > 0 such that for allX, ∥X∥ ≥ K implies that ∥F (t,m, Y )∥ < c∥X∥
if ∥Y ∥ ≤ ∥X∥.

Definition 2.7. The force field F (t,m,X) is said to have linear growth in X if
for any compact Θ ⊂ M and interval [0, 1] the relation:

lim
∥X∥ →∞

∥F (t,m,X)∥
∥X∥

= c(t,m) (2.7)

holds uniformly in t ∈ [0, 1] and m ∈ Θ, if c(t,m) ≥ 0 - is a continuous real-valued
function on [0, 1]×Θ, that is not identically equal to zero.

Remark 2.8. From the definition (2.7) it follows that there exists a number L such
that for any ∥X∥ ≥ L at any point of M and any t ∈ [0, 1] we have ∥F (t,m, Y )∥ ≤
c(t,m)∥X∥ if ∥Y ∥ ≤ ∥X∥.
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Remark 2.9. By ∆ denote a set of a curves S(v) such that v ∈ UL ⊂ C0(I, Tm0M).
It is easy to see that there exists a compact Ξ ⊂ M such that ∆ ⊂ Ξ.

Remark 2.10. Let Ξ be the compact from remark 2.9. Then there exists real
number c such that on [0, 1]× Ξ the following inequality holds : c(t,m) ≤ c.

Definition 2.11. The force field F (t,m,X) is said to have quadratic growth in
X if for any compact Θ ⊂ M and any finite interval [0, 1] the relation:

lim
∥X∥ →∞

∥F (t,m,X)∥
∥X∥2

= a(t,m) (2.8)

holds uniformly in t ∈ [0, 1] and m ∈ Θ, if a(t,m) ≥ 0 - is a continuous real-valued
function on [0, 1]×Θ, that is not identically equal to zero.

Remark 2.12. From the definition (2.11) it follows that there exists a number
Q such that for any ∥X∥ ≥ Q at any point of M and any t ∈ [0, 1] we have
∥F (t,m, Y )∥ ≤ a(t,m)∥X∥2 if ∥Y ∥ ≤ ∥X∥.

Remark 2.13. By ∆ denote a set of a curves S(v) such that v ∈ UQ ⊂ C0(I, Tm0M).
It is easy to see that there exists a compact Φ ⊂ M such that ∆ ⊂ Φ.

Remark 2.14. Let Φ be the compact from remark 2.13. Then there exists a real
number a such that on [0, 1]× Ξ the following inequality holds : a(t,m) ≤ a.

3. Main statements

In this section we investigate the existence of solutions of problem 1.1-1.2 with
right-hand side satisfing conditions 2.5, 2.7 or 2.11.

Theorem 3.1. Let the force field F (t,m,X) have less than linear growth in X
(See Definition (2.5)). Then for the multi-point boundary value problem (1.1)–
(1.2) there exists a solution m(t).

Proof. Part 1. Suppose 1−
∑q

i=1 βi > 0. Take c <
(1−

∑q
i=1 βi)

(2+
∑q

i=1(|βi|ti−βi))
from Lemma

2.1. Take K from Remark 2.6 Then the following inequality holds:

∥B(v)∥ ≤ 1

1−
∑q

i=1 βi

( q∑
i=1

βicKti + cK
)
+ cK ≤ K. (3.1)

Thus B sends the ball UQ into itself and from the Schauder principle it follows
that it has a fixed point u∗ ∈ UQ. Then m(t) = S(u∗(t)) is the desired solution.

Part 2 Suppose 1 −
∑q

i=1 βi < 0 and c <
|1−

∑q
i=1 βi|

(
∑q

i=1(|βi|ti+βi))
. The proof of this

case follows from the same scheme of arguments as that for part 1.
�

Theorem 3.2. Let the force field F (t,m,X) have a linear growth in X (See
Definition (2.7)) and for number the c from 2.10 the following inequality holds:

c <
(1−

∑q
i=1 βi)

(2+
∑q

i=1(|βi|ti−βi))
(in case 1 −

∑q
i=1 βi > 0) or c <

|1−
∑q

i=1 βi|
(
∑q

i=1(|βi|ti+βi))
(in case

1 −
∑q

i=1 βi < 0) Then for the multi-point boundary value problem (1.1)–(1.2)
there exists a solution m(t).

30



MULTI-POINT BOUNDARY VALUE PROBLEM 5

Proof. Let L and c be from Remarks 2.8 and 2.10 respectively.
Part 1. Suppose conditions of the Lemma 2.1 holds. For the operator B defined

on UL ⊂ C0([0, 1], Tm0M) the following inequality holds:

∥B(v)∥ ≤ 1

1−
∑q

i=1 βi

( q∑
i=1

βicLti + cL
)
+ cL ≤ L. (3.2)

Thus B sends the ball UQ into itself and from the Schauder principle it follows
that it has a fixed point u∗ ∈ UQ. Then m(t) = S(u∗(t)) is the desired solution.

Part 2. Suppose conditions of the Lemma 2.2 holds. The proof of this case
follows from the same scheme of arguments as that for part 1. �
Theorem 3.3. Let the force field F (t,m,X) have a quadratic growth in X (See
Definition (2.11)) and for number a and Q from Remarks 2.14 and 2.12, re-

spectively, the following inequality holds: a <
(1−

∑q
i=1 βi)

(2+
∑q

i=1(|βi|ti−βi))Q
(in case 1 −∑q

i=1 βi > 0) or a <
|1−

∑q
i=1 βi|

(
∑q

i=1(|βi|ti+βi))Q
(in case 1 −

∑q
i=1 βi < 0) Then for the

multi-point boundary value problem (1.1)–(1.2) there exists a solution m(t).

Proof. Let Q and a be from Remarks 2.12 and 2.14 accordingly.
Part 1. Suppose conditions of the Lemma 2.3 holds. For the operator B defined

on UQ ⊂ C0([0, 1], Tm0M) the following inequality holds:

∥B(v)∥ ≤ 1

1−
∑q

i=1 βi

( q∑
i=1

βiaQ
2ti + aQ2

)
+ aQ2 ≤ Q. (3.3)

Thus B sends the ball UQ into itself and from Schauders principle it follows that
it has a fixed point u∗ ∈ UQ. Then m(t) = S(u∗(t)) is the desired solution.

Part 2. Suppose conditions of the Lemma 2.4 holds. The proof of this case
follows from the same scheme of arguments as that for part 1.

�

4. Systems with linear constraints

In this section, we show how to generalize existence theorems of previous section
to systems with constraints. We refer the reader, say, to [3] for preliminary material
about systems with constraints. Here we introduce only some notions necessary
for understanding the constructions.

Definition 4.1. A linear constraint in the system is a smooth distribution (i.e.,
a subbundle of the tangent bundle) β on M.

If the distribution β is integrable, the constraint is called holonomic and non-
holonomic in the other case.

Definition 4.2. A tangent vector is called admissible if it lies in the distribution
β. A curve in M is admissible if all its tangent vectors are admissible.

A constraint β imposes a restriction on the motion of the system. Namely, all
its solutions must be admissible.

Let Q : TM → β be the operator of orthogonal projection (with respect to
the Riemannian metric on M) of the tangent spaces on their subspaces β, i.e.,
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we have Pm : TmM → βm for every m ∈ M . Introduce the so-called reduced

covariant derivative along a curve by the formula D
dt = P D

dt . In fact it is generated
by the so-called reduced connection (see [3]). Below in this section we use the
parallel translation of admissible vectors along admissible curves generated by the
reduced connection. Let M be a complete Riemannian manifold equipped with a
constraint β. Instead of operators S and Γ we will use their constraint analogs Sβ

and Γβ(see [3]). We investigate the BVP of the form:

D̄

dt
ṁ(t) = PF (t,m(t), ṁ(t)), (4.1)

m(0) = m0; ṁ(1) =

q∑
i=1

αiΓ
β
m(1)ṁ(ti), (4.2)

Suppose 1 ̸=
∑q

i=1 βi. Let us define the operator Bβ : C0([0, 1], βm0) →
C0([0, 1], βm0M) by the formula:

Bβ(v) =
1

1−
∑q

i=1 αi

[ q∑
i=1

αi

∫ ti

0

Γβ
m0

F (s, Sβv(s),
d

ds
Sβv(s))ds−

−
∫ 1

0

Γβ
m0

F (s,m(s),
d

ds
Sβv(s))ds

]
+

∫ t

0

(Γβ
m0

F (s,m(s),
d

ds
Sβv(s))ds (4.3)

where t ∈ [0, 1]. Similarly to the operator B, defined by 2.1, one can show that
Bβ is compact and fixed point of Bβ is a solution to boundary value problem 4.1
- 4.2. Notions of less than linear, linear, quadratic growth can be defined for the
case of systems with constraints in the same way as in 2.5, 2.7, 2.11.

Theorem 4.3. Let the force field PF (t,m,X) have less than linear growth in X
(See Definition (2.5)). Then for the multi-point boundary value problem (4.1)–
(4.2) there exists a solution m(t).

Theorem 4.4. Let the force field PF (t,m,X) have a linear growth in X (See
Definition (2.7)) and for number c from Remark 2.10 the following inequality holds:

c <
(1−

∑q
i=1 αi)

(2+
∑q

i=1(|αi|ti−αi))
(in case 1−

∑q
i=1 αi > 0) or c <

|1−
∑q

i=1 αi|
(
∑q

i=1(|αi|ti+αi))
(in case

1 −
∑q

i=1 αi < 0) Then for the multi-point boundary value problem (4.1)–(4.2)
there exists a solution m(t).

Theorem 4.5. Let the force field PF (t,m,X) have a quadratic growth in X
(See Definition (2.11)) and for number a and Q from Remarks 2.14 and 2.12,

respectively, the following inequality holds: a <
(1−

∑q
i=1 αi)

(2+
∑q

i=1(|αi|ti−αi))Q
(in case 1 −∑q

i=1 αi > 0) or a <
|1−

∑q
i=1 αi|

(
∑q

i=1(|αi|ti+αi))Q
(in case 1 −

∑q
i=1 αi < 0) Then for the

multi-point boundary value problem (4.1)–(4.2) there exists a solution m(t).

The proof of these theorems follows from the same scheme of arguments as that
for theorems 3.1, 3.2, 3.3.
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