

MULTI-POINT BOUNDARY VALUE PROBLEM FOR SECOND ORDER DIFFERENTIAL EQUATIONS ON MANIFOLDS

P.S. ZYKOV AND L.S KRYZHEVICH

ABSTRACT. We investigate the multi-point boundary value problem for second order differential equation of the form

$$\frac{D}{dt}\dot{m}(t) = F(t, m(t), \dot{m}(t)),$$

$$m(0) = m_0; \quad \dot{m}(1) = \sum_{i=1}^q \beta_i \Gamma_{m(1)} \dot{m}(t_i),$$

on a complete Riemannian manifold, where $\frac{D}{dt}$ is the covariant derivative of Levi-Civita connection and $F(t, m(t), \dot{m}(t))$ is a vector field (it has either less than linear, linear or quadratic growth in velocity). A generalization to the problem of the same sort subjected to a non-holonomic constraint, is also presented.

1. Introduction

Let M be a finite-dimensional complete Riemannian manifold and TM be its tangent bundle with the natural projection $\pi : TM \to M$. Consider a map $F: R \times TM \to TM$ such that for any point (m, X) (this means that $X \in T_mM$, i.e., X is a tangent vector to M at the point $m \in M$) the relation $\pi F(t, m, X) =$ $\pi(m, X) = m$ holds. Take $\beta_i \in R$, $t_i \in (0, 1)$, i = 1, ..., q. By $\Gamma_{m(1)}$ denote the operator of parallel translation along the curve $m(\cdot)$ to the point m(1) and by $\Gamma_{m(0)}$ denote the operator of parallel translation along the curve $m(\cdot)$ to the point m(0). This paper is concerned with the problem of existence of a solution for the multipoint boundary value problem:

$$\frac{D}{dt}\dot{m}(t) = F(t, m(t), \dot{m}(t)), \qquad (1.1)$$

$$m(0) = m_0; \quad \dot{m}(1) = \sum_{i=1}^{q} \beta_i \Gamma_{m(1)} \dot{m}(t_i).$$
 (1.2)

We suppose that F have less than linear, linear or quadratic growth in X. The main aim of the paper is to find conditions that guarantee the solvability for the boundary value problem (1.1) - (1.2) with right-hand sides as mentioned above, i.e., to find a C^1 – curve m(t), $t \in [0, 1]$, satisfying (1.1) - (1.2) on [0, 1]. In

Date: Date of Submission February 11, 2022 ; Date of Acceptance June 14, 2022 , Communicated by Yuri E. Gliklikh.

²⁰¹⁰ Mathematics Subject Classification. Primary 58C06; Secondary 34B15; 70G45.

Key words and phrases. Riemannian manifolds; boundary value problem; multi-point boundary value problem.

P.S. ZYKOV AND L.S KRYZHEVICH

the last section of the article we explore multi-point boundary value problem for systems with constraints. Similar boundary value problem for equation on \mathbb{R}^n with right-hand side satisfying Caratheodorys conditions was investigated in [1] and [2].

2. Mathematical machinery

In this section we modify some constructions from [2], [3] and [4] for the problem under consideration. Take $m_0 \in M$, and let $v : [0,1] \to T_{m_0}M$ be a continuous curve. It is shown in [3] that there exists a unique C^1 -curve $m : [0,1] \to M$ such that $m(0) = m_0$ and the vector $\dot{m}(t)$ is parallel along $m(\cdot)$ to the vector $v(t) \in T_{m_0}M$ at any $t \in [0,1]$.

Denote the curve m(t) constructed above from the curve v(t), by the symbol Sv(t). Thus we have defined a continuous operator S that sends the Banach space $C^0([0,1], T_{m_0}M)$ of continuous maps (curves) from [0,1] to $T_{m_0}M$ into the Banach manifold $C^1([0,1], M)$ of C^{1-} maps from [0,1] to M. Denote by Γ_{m^*} the operator of parallel translation of vectors along $m(\cdot)$ at the point m^* . Suppose that F(t,m,X) is a continuous force field. Let $1 \neq \sum_{i=1}^{q} \beta_i$. Define the operator

$$B: C^{0}([0,1], T_{m_{0}}M) \to C^{0}([0,1], T_{m_{0}}M)$$

by the formula:

$$B(v) = \frac{1}{1 - \sum_{i=1}^{q} \beta_i} \Big[\sum_{i=1}^{q} \beta_i \int_0^{t_i} \Gamma_{m_0} F(s, Sv(s), \frac{d}{ds} Sv(s)) ds - \int_0^1 \Gamma_{m_0} F(s, m(s), \frac{d}{ds} Sv(s)) ds \Big] + \int_0^t (\Gamma_{m_0} F(s, m(s), \frac{d}{ds} Sv(s)) ds, \quad (2.1)$$

where $t \in [0, 1]$. It is shown in [3] that operator ΓS is compact. Since ΓS is compact and F is continious it is easy to see that B is compact.

Let $u(t) \in C^0([0, 1], T_{m_0}M)$ be a fixed point of operator B. Let us show that m(t) = S(u(t)) is the desired solution of BVP (1.1)–(1.2). Firstly, the equality $\dot{u}(t) = \Gamma_{m_0}F(t, S(u), \frac{d}{dt}S(u))$ holds for all points t at which the derivative exists. Using the properties of the covariant derivative and the definition of u, one can show that $\dot{u}(t)$ is parallel to $\frac{D}{dt}\dot{m}(t)$ along $m(\cdot)$ and $\Gamma F(t, S(u), \frac{d}{dt}S(u))$ is parallel to $F(t, m(t), \dot{m}(t))$. Hence, $\frac{D}{dt}\dot{m}(t) = F(t, m(t), \dot{m}(t))$ and curve m(t) = S(u) satisfies (1.1). Secondly, by direct calculations we get: $\Gamma_{m(1)}\beta_1 B'(u)(t_1) + \Gamma_{m(1)}\beta_2 B'(u)(t_2) + \ldots + \Gamma_{m(1)}\beta_q B'(u)(t_q) = B'(u)(1)$, hence S(u(t)) satisfies (1.2). Following lemmas can be easily proven by simple algebraic transformations.

Lemma 2.1. Suppose $1 - \sum_{i=1}^{q} \beta_i > 0$ and

$$c < \frac{(1 - \sum_{i=1}^{q} \beta_i)}{(2 + \sum_{i=1}^{q} (|\beta_i| t_i - \beta_i))},$$
(2.2)

then the following inequality holds:

$$\frac{1}{1 - \sum_{i=1}^{q} \beta_i} \Big(\sum_{i=1}^{q} |\beta_i| c\varepsilon t_i + c\varepsilon \Big) + c\varepsilon < \varepsilon$$

Lemma 2.2. Suppose $1 - \sum_{i=1}^{q} \beta_i < 0$ and

$$c < \frac{|1 - \sum_{i=1}^{q} \beta_i|}{(\sum_{i=1}^{q} (|\beta_i| t_i + \beta_i))},$$
(2.3)

then the following inequality holds:

$$\frac{1}{|1 - \sum_{i=1}^{q} \beta_i|} \left(\sum_{i=1}^{q} |\beta_i| c\varepsilon t_i + c\varepsilon \right) + c\varepsilon < \varepsilon$$

Lemma 2.3. Suppose $1 - \sum_{i=1}^{q} \beta_i > 0$ and

$$a < \frac{(1 - \sum_{i=1}^{q} \beta_i)}{(2 + \sum_{i=1}^{q} (|\beta_i| t_i - \beta_i))\varepsilon},\tag{2.4}$$

then the following inequality holds:

$$\frac{1}{1 - \sum_{i=1}^{q} \beta_i} \Big(\sum_{i=1}^{q} |\beta_i| a\varepsilon^2 t_i + a\varepsilon^2 \Big) + a\varepsilon^2 < \varepsilon$$

Lemma 2.4. Suppose $1 - \sum_{i=1}^{q} \beta_i < 0$ and

$$a < \frac{|1 - \sum_{i=1}^{q} \beta_i|}{\left(\sum_{i=1}^{q} (|\beta_i| t_i + \beta_i)\right)\varepsilon},\tag{2.5}$$

then the following inequality holds:

$$\frac{1}{|1-\sum_{i=1}^{q}\beta_i|} \Big(\sum_{i=1}^{q} |\beta_i| a\varepsilon^2 t_i + a\varepsilon^2\Big) + a\varepsilon^2 < \varepsilon$$

Definition 2.5. The force field F(t, m, X) is said to have less than linear growth in X if for any compact $\Theta \subset M$ and interval [0, 1] the relation:

$$\lim_{\|X\| \to \infty} \frac{\|F(t, m, X)\|}{\|X\|} = 0$$
(2.6)

holds uniformly in $t \in [0, 1]$ and $m \in \Theta$.

Remark 2.6. Let force field F satisfy definition 2.5. For every real c > 0, there exists a real K > 0 such that for all X, $||X|| \ge K$ implies that ||F(t, m, Y)|| < c||X|| if $||Y|| \le ||X||$.

Definition 2.7. The force field F(t, m, X) is said to have linear growth in X if for any compact $\Theta \subset M$ and interval [0, 1] the relation:

$$\lim_{\|X\| \to \infty} \frac{\|F(t, m, X)\|}{\|X\|} = c(t, m)$$
(2.7)

holds uniformly in $t \in [0, 1]$ and $m \in \Theta$, if $c(t, m) \ge 0$ - is a continuous real-valued function on $[0, 1] \times \Theta$, that is not identically equal to zero.

Remark 2.8. From the definition (2.7) it follows that there exists a number L such that for any $||X|| \ge L$ at any point of M and any $t \in [0, 1]$ we have $||F(t, m, Y)|| \le c(t, m)||X||$ if $||Y|| \le ||X||$.

Remark 2.9. By Δ denote a set of a curves S(v) such that $v \in U_L \subset C^0(I, T_{m_0}M)$. It is easy to see that there exists a compact $\Xi \subset M$ such that $\Delta \subset \Xi$.

Remark 2.10. Let Ξ be the compact from remark 2.9. Then there exists real number c such that on $[0,1] \times \Xi$ the following inequality holds : $c(t,m) \leq c$.

Definition 2.11. The force field F(t, m, X) is said to have quadratic growth in X if for any compact $\Theta \subset M$ and any finite interval [0, 1] the relation:

$$\lim_{\|X\| \to \infty} \frac{\|F(t, m, X)\|}{\|X\|^2} = a(t, m)$$
(2.8)

holds uniformly in $t \in [0, 1]$ and $m \in \Theta$, if $a(t, m) \ge 0$ - is a continuous real-valued function on $[0,1] \times \Theta$, that is not identically equal to zero.

Remark 2.12. From the definition (2.11) it follows that there exists a number Q such that for any $||X|| \ge Q$ at any point of M and any $t \in [0,1]$ we have $||F(t, m, Y)|| \le a(t, m)||X||^2$ if $||Y|| \le ||X||$.

Remark 2.13. By Δ denote a set of a curves S(v) such that $v \in U_Q \subset C^0(I, T_{m_0}M)$. It is easy to see that there exists a compact $\Phi \subset M$ such that $\Delta \subset \Phi$.

Remark 2.14. Let Φ be the compact from remark 2.13. Then there exists a real number a such that on $[0,1] \times \Xi$ the following inequality holds : $a(t,m) \leq a$.

3. Main statements

In this section we investigate the existence of solutions of problem 1.1-1.2 with right-hand side satisfing conditions 2.5, 2.7 or 2.11.

Theorem 3.1. Let the force field F(t, m, X) have less than linear growth in X (See Definition (2.5)). Then for the multi-point boundary value problem (1.1)-(1.2) there exists a solution m(t).

Proof. Part 1. Suppose $1 - \sum_{i=1}^{q} \beta_i > 0$. Take $c < \frac{(1 - \sum_{i=1}^{q} \beta_i)}{(2 + \sum_{i=1}^{q} (|\beta_i| t_i - \beta_i))}$ from Lemma 2.1. Take K from Remark 2.6 Then the following inequality holds:

$$||B(v)|| \le \frac{1}{1 - \sum_{i=1}^{q} \beta_i} \left(\sum_{i=1}^{q} \beta_i cK t_i + cK \right) + cK \le K.$$
(3.1)

Thus B sends the ball U_Q into itself and from the Schauder principle it follows

that it has a fixed point $u^* \in U_Q$. Then $m(t) = S(u^*(t))$ is the desired solution. Part 2 Suppose $1 - \sum_{i=1}^q \beta_i < 0$ and $c < \frac{|1 - \sum_{i=1}^q \beta_i|}{(\sum_{i=1}^q (|\beta_i| t_i + \beta_i))}$. The proof of this case follows from the same scheme of arguments as that for part 1.

Theorem 3.2. Let the force field F(t,m,X) have a linear growth in X (See Definition (2.7)) and for number the c from 2.10 the following inequality holds: $c < \frac{(1-\sum_{i=1}^{q}\beta_i)}{(2+\sum_{i=1}^{q}(|\beta_i|t_i-\beta_i))} \text{ (in case } 1-\sum_{i=1}^{q}\beta_i > 0) \text{ or } c < \frac{|1-\sum_{i=1}^{q}\beta_i|}{(\sum_{i=1}^{q}(|\beta_i|t_i+\beta_i))} \text{ (in case } 1-\sum_{i=1}^{q}\beta_i < 0) \text{ Then for the multi-point boundary value problem (1.1)-(1.2)}$ there exists a solution m(t).

Proof. Let L and c be from Remarks 2.8 and 2.10 respectively.

Part 1. Suppose conditions of the Lemma 2.1 holds. For the operator B defined on $U_L \subset C^0([0, 1], T_{m_0}M)$ the following inequality holds:

$$||B(v)|| \le \frac{1}{1 - \sum_{i=1}^{q} \beta_i} \left(\sum_{i=1}^{q} \beta_i cLt_i + cL \right) + cL \le L.$$
(3.2)

Thus B sends the ball U_Q into itself and from the Schauder principle it follows that it has a fixed point $u^* \in U_Q$. Then $m(t) = S(u^*(t))$ is the desired solution.

Part 2. Suppose conditions of the Lemma 2.2 holds. The proof of this case follows from the same scheme of arguments as that for part 1. \Box

Theorem 3.3. Let the force field F(t, m, X) have a quadratic growth in X (See Definition (2.11)) and for number a and Q from Remarks 2.14 and 2.12, respectively, the following inequality holds: $a < \frac{(1-\sum_{i=1}^{q}\beta_i)}{(2+\sum_{i=1}^{q}(|\beta_i|t_i-\beta_i))Q}$ (in case $1-\sum_{i=1}^{q}\beta_i > 0$) or $a < \frac{|1-\sum_{i=1}^{q}\beta_i|}{(\sum_{i=1}^{q}(|\beta_i|t_i+\beta_i))Q}$ (in case $1-\sum_{i=1}^{q}\beta_i < 0$) Then for the multi-point boundary value problem (1.1)–(1.2) there exists a solution m(t).

Proof. Let Q and a be from Remarks 2.12 and 2.14 accordingly.

Part 1. Suppose conditions of the Lemma 2.3 holds. For the operator B defined on $U_Q \subset C^0([0,1], T_{m_0}M)$ the following inequality holds:

$$||B(v)|| \le \frac{1}{1 - \sum_{i=1}^{q} \beta_i} \left(\sum_{i=1}^{q} \beta_i a Q^2 t_i + a Q^2 \right) + a Q^2 \le Q.$$
(3.3)

Thus B sends the ball U_Q into itself and from Schauders principle it follows that it has a fixed point $u^* \in U_Q$. Then $m(t) = S(u^*(t))$ is the desired solution.

Part 2. Suppose conditions of the Lemma 2.4 holds. The proof of this case follows from the same scheme of arguments as that for part 1.

4. Systems with linear constraints

In this section, we show how to generalize existence theorems of previous section to systems with constraints. We refer the reader, say, to [3] for preliminary material about systems with constraints. Here we introduce only some notions necessary for understanding the constructions.

Definition 4.1. A linear constraint in the system is a smooth distribution (i.e., a subbundle of the tangent bundle) β on M.

If the distribution β is integrable, the constraint is called holonomic and non-holonomic in the other case.

Definition 4.2. A tangent vector is called admissible if it lies in the distribution β . A curve in M is admissible if all its tangent vectors are admissible.

A constraint β imposes a restriction on the motion of the system. Namely, all its solutions must be admissible.

Let $Q: TM \to \beta$ be the operator of orthogonal projection (with respect to the Riemannian metric on M) of the tangent spaces on their subspaces β , i.e.,

we have $P_m : T_m M \to \beta_m$ for every $m \in M$. Introduce the so-called reduced covariant derivative along a curve by the formula $\frac{\overline{D}}{dt} = P \frac{D}{dt}$. In fact it is generated by the so-called *reduced connection* (see [3]). Below in this section we use the parallel translation of admissible vectors along admissible curves generated by the reduced connection. Let M be a complete Riemannian manifold equipped with a constraint β . Instead of operators S and Γ we will use their constraint analogs S^{β} and Γ^{β} (see [3]). We investigate the BVP of the form:

$$\frac{D}{dt}\dot{m}(t) = PF(t, m(t), \dot{m}(t)), \qquad (4.1)$$

$$m(0) = m_0; \quad \dot{m}(1) = \sum_{i=1}^q \alpha_i \Gamma^{\beta}_{m(1)} \dot{m}(t_i),$$
 (4.2)

Suppose $1 \neq \sum_{i=1}^{q} \beta_i$. Let us define the operator $B^{\beta} : C^0([0,1],\beta_{m_0}) \to C^0([0,1],\beta_{m_0}M)$ by the formula:

$$B^{\beta}(v) = \frac{1}{1 - \sum_{i=1}^{q} \alpha_{i}} \Big[\sum_{i=1}^{q} \alpha_{i} \int_{0}^{t_{i}} \Gamma_{m_{0}}^{\beta} F(s, S^{\beta}v(s)) \frac{d}{ds} S^{\beta}v(s)) ds - \int_{0}^{1} \Gamma_{m_{0}}^{\beta} F(s, m(s)) \frac{d}{ds} S^{\beta}v(s)) ds \Big] + \int_{0}^{t} (\Gamma_{m_{0}}^{\beta} F(s, m(s)), \frac{d}{ds} S^{\beta}v(s)) ds \quad (4.3)$$

where $t \in [0, 1]$. Similarly to the operator B, defined by 2.1, one can show that B^{β} is compact and fixed point of B^{β} is a solution to boundary value problem 4.1 - 4.2. Notions of less than linear, linear, quadratic growth can be defined for the case of systems with constraints in the same way as in 2.5, 2.7, 2.11.

Theorem 4.3. Let the force field PF(t, m, X) have less than linear growth in X (See Definition (2.5)). Then for the multi-point boundary value problem (4.1)–(4.2) there exists a solution m(t).

Theorem 4.4. Let the force field PF(t, m, X) have a linear growth in X (See Definition (2.7)) and for number c from Remark 2.10 the following inequality holds: $c < \frac{(1-\sum_{i=1}^{q} \alpha_i)}{(2+\sum_{i=1}^{q} (|\alpha_i|t_i-\alpha_i|))}$ (in case $1-\sum_{i=1}^{q} \alpha_i > 0$) or $c < \frac{|1-\sum_{i=1}^{q} \alpha_i|}{(\sum_{i=1}^{q} (|\alpha_i|t_i+\alpha_i|))}$ (in case $1-\sum_{i=1}^{q} \alpha_i > 0$) or $c < \frac{(1-\sum_{i=1}^{q} \alpha_i)}{(\sum_{i=1}^{q} (|\alpha_i|t_i+\alpha_i|))}$ (in case $1-\sum_{i=1}^{q} \alpha_i > 0$) or $c < \frac{(1-\sum_{i=1}^{q} \alpha_i)}{(\sum_{i=1}^{q} (|\alpha_i|t_i+\alpha_i|))}$ (in case $1-\sum_{i=1}^{q} \alpha_i < 0$) Then for the multi-point boundary value problem (4.1)–(4.2) there exists a solution m(t).

Theorem 4.5. Let the force field PF(t,m,X) have a quadratic growth in X (See Definition (2.11)) and for number a and Q from Remarks 2.14 and 2.12, respectively, the following inequality holds: $a < \frac{(1-\sum_{i=1}^{q} \alpha_i)}{(2+\sum_{i=1}^{q} (|\alpha_i|t_i-\alpha_i))Q}$ (in case $1-\sum_{i=1}^{q} \alpha_i > 0$) or $a < \frac{|1-\sum_{i=1}^{q} \alpha_i|}{(\sum_{i=1}^{q} (|\alpha_i|t_i+\alpha_i|))Q}$ (in case $1-\sum_{i=1}^{q} \alpha_i < 0$) Then for the multi-point boundary value problem (4.1)–(4.2) there exists a solution m(t).

The proof of these theorems follows from the same scheme of arguments as that for theorems 3.1, 3.2, 3.3.

MULTI-POINT BOUNDARY VALUE PROBLEM

References

- Ntouyas S. K., Sficas Y. G. and Tsamatos P. Ch. Boundary Value Problems for Functional Differential Equations. *Journal of mathematical analysis and applications*, **199**, (1996), 213-230.
- [2] Ntouyas S.K. and Tsamatos P.CH.: Multi-point boundary value problems for ordinary differential equations. ANALELE STIINTIFICE ALE UNIVERSITATII AL.I.CUZA IASI Tomul XLV, s.I a, Matematica, 1999, f.1.
- [3] Gliklikh Yuri. E.: Global and stochastic analysis with applications to mathematical Physics. London, Springer-Verlag, 2011.
- [4] Zykov P.S. Boundary value problem for functional differential inclusions on manifolds, *Global and Stochastic Analysis*, 7, No. 1 (2020), 1-9.

P.S. ZYKOV AND L.S KRYZHEVICH: KURSK STATE UNIVERSITY, KURSK, RUSSIA *E-mail address*: petya39b@gmail.com

33