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Abstract. In this paper we discuss an M/M/C queueing system with dif-
ferentiated server vacations and vacation interruptions. We offer two types

of vacation strategies for the C servers of the system with distinct durations,
which are namely type 1 and type 2 vacations where servers can go for a

vacation of type 1 only after serving at least one customer who entered into

the system and they can take type 2 vacations if all the C-queues are empty
when they returned from the vacations. We also assume that both types of

vacations can be interrupted when the number of customers in the system

reaches some predefined thresholds where each type of vacation has a thresh-
old different from the other. We derive the expressions for the steady-state

probabilities of various states and the average waiting time generated in the

system. Further, we analyse the impacts of complete vacation interruptions
on the mean delay of the system with various choices of parameters. Also

numerically examine the relationship between thresholds, number of servers,

durations of vacations and the average waiting time generated in the system.

1. Introduction

Queueing system subject to server vacations is the area of interest for many
upcoming researchers due to its immense applications in real-life situations. The
current generation has to compete for more to get favorable outcomes. Nowadays,
the main aim of service providers in all streams is to offer better service for the
customers within a limited time due to the tough competitions occur in the field
of service providing. Queueing models possess a vital role in designing the service
structure and for deciding the procedures for treating the customers to get better
outputs.

Queueing system with server vacation is one in which a server may become
unavailable for a certain period of time from the primary service center and the
time that the server is away from the service area is termed as a vacation or a
break in a queueing system. There are many factors affect a server to take a va-
cation which includes power-saving mode, machine break downs, the insufficient
workload in human behaviour, the secondary task assigned for the servers, post
service processing, refreshment times, etc. The concept of vacations into the tradi-
tional model of queueing systems was first introduced by the researchers Levi and
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Yenchiali[11]. An exhaustive survey on vacation models was done by Doshi[4, 5]
and a detailed interpretation of the model was discussed in the book of Takagi[17].
Several researchers like Tian and Zhang[18] had shown interest in vacation policies
in queueing systems and extend this notion a while.

There are three major types of vacation policies in queueing systems which
are namely single vacation, multiple vacations and working vacations. In single
vacation scheme, the server takes a vacation of random duration when the queue
is empty. At the end of his vacation, he returns to the queue and if he finds at
least one customer is waiting in the queue he immediately starts to serve them
by exhaustive, gated or limited service policy. Whereas in multiple vacations
scheme, the server immediately takes another vacation if he finds no customer
in the queue when he returned from a vacation. In working vacation strategies
the server has to work with a different rate rather than completely stopping the
service during a vacation. This concept was first discussed by Servi and Finn[15]
while modeling a wavelength division multiplexing optical access network with an
M/M/1 queue. Many researchers attracted into the working vacation policies in
queueing systems and provided a lot of fruitful theories related to that concept.
Baba[2] approached a GI/M/1 queue with working vacations by using matrix
analytical method. Further Wu and Takagi[21] generalized the model described by
Servi and Finn to an M/G/1 queue with general working vacation. Tian et al.[19]
analyzed the discrete-time Geo/Geo/1 queue with multiple working vacations.

Server vacations in a queueing system can be applied to handle the situations
where the servers wish to utilize their idle time for different purposes which may
or may not be related to the assigned jobs for them. Jain and Upadhyaya[9] ob-
tained the steady-state probabilities of the number of failed machines in the sys-
tem together with some performance measures by using matrix recursive method
for multiple vacations policies. Some researchers elaborated the working vaca-
tion strategies into batch arrival queues, Xu et al.[22] discussed a batch arrival
MX/M/1 queue with single working vacation. But Baba[3] studied MX/M/1
with multiple working vacations. In both the papers, they derived the probabil-
ity generating function of the stationary system length distribution corresponding
to vacations under consideration. For a batch arrival queueing system Jain and
Agrawal[8] presented the queue size distribution and other performance measures
with modified Bernoulli vacation under N - policy using the generating function
methodology.

Ibe and Isijola[6] introduced new type of vacations called differentiated vaca-
tions which distiguish the durations of consecutive vacations offered for the server
in multiple vacations queueing systems. Recently Vyshna Unni and Julia Rose
Mary[20] studied about queueing systems with multiple servers under differenti-
ated working vacations. In majority of service sectors occur situations like the
server has to return from a vaction when the wave of customers in the system
crosses the limit. Li and Tian[12] analyzed this scenario and termed it as va-
cation interruptions in queueing systems and they studied M/M/1 queues with
vacation interruption policies. They also discussed about discrete time GI/Geo/1
queue under working vacations and vacation interruptions[13]. Further lot of com-
prehensive studies realted to vacation interruption policies emerged. Zhang and
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Hou[23] discussed about the M/G/1 queue with working vacations and vacation
interruptions. By using Erlang-k type distribution Ayyappan et al.[1] analyzed
M/M/1 retrail queueing system with vacation interruptions. Krishnamoorthy
and Sreenivasan[10] studied M/M/2 queueing system with heterogeneous servers
where one server is always available and the other goes on a working vacation if
there are no customers in the system. Sreenivasan et al.[16] introduced the concept
of threshold for vacations interruptions while analysing a single server queueing
model in which the customers arrive according to a Markovian arrival process.
Ibe and Isijola(2014)[7] analyzed M/M/1 queueing systems with differentiated
vacations and vacation interruptions.

Queueing systems with vacation interruption under differentiated vacations can
be widely used to model many physical situations, for example in a hospital the
vacation taken by the doctor must be interrupted in an emergency situation like
accident, fire attack and so on. The corresponding doctor will come back to the
normal working level without any hesitation if we provide the opportunity of differ-
entiated vacations for him and hence fast and better treatment will obtain for the
patient. Similarly, the leave sanctioned for a soldier may suddenly get cancelled to
handle some public defense like terrorist attack. Like these scenarios, if we model
the system with more service providers the customer’s impatient rate will get de-
creased tremendously. As a result, the rating and the profit of the service sectors
will improve. Thus, queueing system with more than one server under differen-
tiated vacation and vacation interruption will open a vast platform for the new
explorations in the theory of queue. Hence in this paper we introduced the vaca-
tion interruption policies into multiple servers queueing system with differentiated
vacations.

We assume that the system consists of C servers and for each of them has the
opportunity for taking two types of vacations with different durations, namely type
1 and type 2 vacations. The servers can opt for the type 1 of vacation only after
serving atleast one customer. Hence type 1 vacation can be started by the servers
if each of them has completed a busy period of nonzero duration. But the servers
can go for a vacation of type 2 if there are no customers are waiting in any of the
C- queues for the service when they return from a vacation. We consider the model
with vacation interruption strategies and so the C- servers of the recommended
model are forced to return from the vacations when the number of customers in
the system reaches some predefined thresholds. Thus depending upon the flow of
customers the servers may come back to the normal working level before the period
of vacations end. By analysing the characteristics of a differentiated vacation
queueing system its quite trivial that when an interruption of vacation in such
system is desired interrupt type 2 vacation first. Thus we assume that in the
proposed queueing model both types of vacations can be interrupted by ensuring
that the type 2 vacation of servers will be interrupted first, because it takes after a
busy period of zero duration. We refer to this as a complete vacation interruption
policy in a multiple server queueing systems under differentiated vacations.
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The rest of the paper is organized as follows. Section 2 describes the recom-
mended model with its state transition diagram. Section 3 analyses the steady-
state probabilities and the average waiting time generated in the system. Nu-
merical results are discussed in section 4 with graphical interpretations and the
obained results are concluded in section 5.

2. System model

We consider a multiple vacations queueing system with C- servers where
the customers arrive according to a Poisson process with rate λ and the service
take place according to an exponential distribution with mean 1

µ , where µ > λ.

Depending upon the number of customers have treated by each server during their
busy schedule we offer two types of vacation policies for the servers of the system,
which are namely type 1 and type 2 vacations. The former vacation is taken by
the servers after completing a non zero busy period of each of them, i.e., type 1
vacations can be started by the servers if each of them has serverd atleast one
customer entered into the system. But type 2 vacations can be taken after a busy
period of zero duration. In other words servers can go for a vacation of type 2
if no customers are waiting in any of the C-queues for service when they retured
from a vacation. Note that the servers can repeat type 2 vacations till they find
atleast one non empty queue among the C- queues of the system. We assume that
the durations of type 1 and type 2 vacations are exponentially distributed with
means 1

ω1
and 1

ω2
respectively. We define the state of the system as (k, s), where

k is the number of customers in the system and s is defined as follows

s =

 0, if all the servers are in active mode
1, if all the servers are in type 1 vacation
2, if all the servers are in type 2 vacation

We formulate the model by also introducing the complete vacation interruption
strategies among the servers of the system; in which both types of vacation can be
interrupted but while considering the nature of the vacations that we allowed in
the system make sense to interrupt a type 2 vacation before interrupting a type 1
vacation. Suppose that a type 2 vacation can be interrupted when the number of
customers in the system reaches the threshold value k2 and a type 1 vacation can
be interrupted when the number of customers in the system reaches the threshold
k1. Since the considered queueing model is occupied with C- servers, we assume
that the vacation interruptions will take place only after the number of customers
exceeds the number of servers in the system, i.e., k1 ≥ k2 > C. Thus the system
can be modelled by a continuous time Markov chain with state transition diagram
drawn as in Fig. 1. While look into the diagram its obvious that when the system
is in state (k2 − 1, 2), the next customer arrival forces the type 2 vacations to end
and a transition to the state (k2, 0) take place. Simillarly when the system is in
the state (k1 − 1, 1) the next customer arrival forces the type 1 vacation to end
and a transition to the state (k1, 0) take place.
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diagram.jpg

Figure 1. State Transition-rate Diagram

3. Steady-state Analysis

Let Pk,s denote the steady-state probability that the system is in the state
(k, s) where k ∈ N and s = 0, 1, 2. By overviewing the state transition diagram of
the recommended model given in Fig. 1 we derive the following theorem regarding
the steady-state probabilities and average queue length of the model.

Theorem 3.1. Under complete vacation interruption policies the steady-state
probabilities Pk,s for different values of s are given by

(i)

Pk,0 =



(
ρk−1

k! +
∑k−2

i=0
ρk−i−1(i+1)!

k!

[
ζ1η

i+1
1 + ζ2η

i+1
2

])
P1,0 if k ≤ C

((
ρ
C

)k−C
A(C, 0) +

∑k−C
i=1

(
ρ
C

)i [
ζ1η

k−i
1 + ζ2η

k−i
2

])
P1,0 if C + 1 ≤ k ≤ k2((

ρ
C

)k−k2
A(k2, 0) +

ρζ1η
k2
1

Cη1−ρ

[
ηk−k2
1 −

(
ρ
C

)k−k2
])

P1,0 if k2 ≤ k ≤ k1

((
ρ
C

)k−k1
A(k1, 0)

)
P1,0 if k ≥ k1

(ii) Pk,1 = ζ1η
k
1P1,0, k = 0, 1, ...k1 − 1

(iii) Pk,2 = ζ2η
k
2P1,0,k = 0, 1, ...k2 − 1

where C is the number of servers in the system, ρ = λ
µ is the offered load, ζ1 =

µ
(λ+ω1)

, ζ2 = µω1

λ(λ+ω1)
, η1 = λ

λ+ω1
< 1, η2 = λ

λ+ω2
< 1,

A(C, 0) =
ρC−1

C!
+

C−2∑
i=0

ρC−i−1(i+ 1)!

C!

[
ζ1η

i+1
1 + ζ2η

i+1
2

]
,

A(k2, 0) =
( ρ

C

)k2−C

A(C, 0) +

k2−C∑
i=1

( ρ

C

)i [
ζ1η

k2−i
1 + ζ2η

k2−i
2

]
,
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A(k1, 0) =
( ρ

C

)k1−k2

A(k2, 0) +
ρζ1η

k2
1

Cη1 − ρ

[
ηk1−k2
1 −

( ρ

C

)k1−k2
]
.

The steady-state probability P1,0 = 1
S1+S2+S3+S4+S5+S6

, where

S1 =

C∑
k=1

(
ρk−1

k!
+

k−2∑
i=0

ρk−i−1(i+ 1)!

k!

[
ζ1η

i+1
1 + ζ2η

i+1
2

])

S2 =
ρ

C − ρ

(
1−

( ρ

C

)k2−1−C
)
A(C, 0) +

k2−1∑
k=C+1

{
ρζ1η

C
1

Cη1 − ρ

[
ηk−C
1 −

( ρ

C

)k−C
]

+
ρζ2η

C
2

Cη2 − ρ

[
ηk−C
2 −

( ρ

C

)k−C
]}

S3 = A(K2, 0)
C

C − ρ

(
1−

( ρ

C

)k1−k2
)

+
ρζ1η

k2
1

Cη1 − ρ

{
1− ηk1−k2

1

1− η1
− C

C − ρ

(
1−

( ρ

C

)k1−k2
)}

S4 = C
C−ρA(K1, 0), S5 =

1−η
k1
1

1−η1
and S6 =

1−η
k2
1

1−η2
.

The average queue length of the system is given by E(m) = Q1+Q2+Q3+Q4+Q5,
where

Q1 =

k2−1∑
k=C

(k − C)Pk,0 =

{
Cρ

(C − ρ)2
A(C, 0)

(
(k2 − 1− C)

( ρ

C

)k2−C

− (k2 − C)
( ρ

C

)k2−1−C

+ 1

)

+

k2−1∑
k=C+1

(k − C)

{
ρζ1η

C
1

Cη1 − ρ

[
ηk−C
1 −

( ρ

C

)k−C
]
+

ρζ2η
C
2

Cη2 − ρ

[
ηk−C
2 −

( ρ

C

)k−C
]}}

P1,0

Q2 =

k1−1∑
k=k2

(k − C)Pk,0 =

{
A(k2, 0)

{
Cρ

(C − ρ)2

[
(k1 − k2 − 1)

( ρ

C

)k1−k2

− (k1 − k2)
( ρ

C

)k1−k2−1

+ 1

]

+
C(k2 − C)

(
1− ( ρ

C
)k1−k2

)
C − ρ

}
+

ρζ1η
k2
1

Cη1 − ρ

 (k2 − C)
(
1− ηk1−k2

1

)
1− η1

+
η1
(
(k1 − k2 − 1)ηk1−k2

1 − (k1 − k2)η
k1−k2−1
1 + 1

)
(1− η1)2

−
C(k2 − C)

(
1−

(
ρ
C

)k1−k2
)

C − ρ

− Cρ

(C − ρ)2

[
(k1 − k2 − 1)

( ρ

C

)k1−k2

− (k1 − k2)
( ρ

C

)k1−k2−1

+ 1

]}}
P1,0

Q3 =

∞∑
k=k1

(k − C)Pk,0 =

{(
C(C − ρ)(k1 − C) + Cρ

(C − ρ)2

)
A(k1, 0)

}
P1,0

Q4 =

k1−1∑
k=C

(k − C)Pk,1 =

{
ζ1η

C+1
1

(
(k1 − C − 1)ηk1−C

1 − (k1 − C)ηk1−C−1
1 + 1

(1− η1)2

)}
P1,0
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Q5 =

k2−1∑
k=C

(k − C)Pk,2 =

{
ζ2η

C+1
2

(
(k2 − C − 1)ηk2−C

2 − (k2 − C)ηk2−C−1
2 + 1

(1− η2)2

)}
P1,0

With the aid of E(m) the average waiting time that a customer spends in the system(or
mean delay) is given by

E(v) =
E(m)

λ
+

1

µ

Proof. : By applying the global balances in Fig. 1 we obtain

µP1,0 = (λ+ ω1)P0,1 (3.1)

λP0,2 = ω1P0,1. (3.2)

λPk−1,1 = (λ+ ω1)Pk,1, k = 1, 2, . . . , k1 − 1 (3.3)

λPk−1,2 = (λ+ ω2)Pk,2, k = 1, 2, . . . , k2 − 1 (3.4)

Hence

P0,1 =
µ

(λ+ ω1)
P1,0 = ζ1P1,0, (3.5)

P0,2 =
ω1

λ
P0,1 = ζ2P1,0, (3.6)

Pk,1 =

(
λ

λ+ ω1

)k

P0,1 = ζ1η
k
1P1,0, k = 0, 1, . . . k1 − 1 (3.7)

Pk,2 =

(
λ

λ+ ω2

)k

P0,2 = ζ2η
k
2P1,0, k = 0, 1, . . . k2 − 1 (3.8)

where ζ1 = µ
(λ+ω1)

, ζ2 = µω1

λ(λ+ω1)
. η1 = λ

λ+ω1
< 1 and η2 = λ

λ+ω2
< 1.

By considering the local balances for the steady-state probabilities of busy pe-
riods we get

λPk−1,0 + λPk−1,1 + λPk−1,2 = kµPk,0, k ≤ C (3.9)

and

λPk−1,0 + λPk−1,1 + λPk−1,2 = CµPk,0, C + 1 ≤ k ≤ k2 (3.10)

By letting ρ = λ
µ and by using equations (3.7) and (3.8) we can write the equations

(3.9) and (3.10) as

Pk,0 =
ρ

k

(
Pk−1,0 + ζ1η

k−1
1 P1,0 + ζ2η

k−1
2 P1,0

)
, k ≤ C (3.11)

and

Pk,0 =
ρ

C

(
Pk−1,0 + ζ1η

k−1
1 P1,0 + ζ2η

k−1
2 P1,0

)
, C + 1 ≤ k ≤ k2. (3.12)

respectively. By solving equations (3.11) and (3.12) recursively we obtain,

Pk,0 =

(
ρk−1

k!
+

k−2∑
i=0

ρk−i−1(i+ 1)!

k!
[ζ1η

i+1
1 + ζ2η

i+1
2 ]

)
P1,0, k ≤ C (3.13)
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and

Pk,0 =

(( ρ

C

)k−C

A(C, 0) +

k−C∑
i=1

( ρ

C

)i
[ζ1η

k−i
1 + ζ2η

k−i
2 ]

)
P1,0,

C + 1 ≤ k ≤ k2. (3.14)

where A(C, 0) is defined by

A(C, 0) =
ρC−1

C!
+

C−2∑
i=0

ρC−i−1(i+ 1)!

C!

[
ζ1η

i+1
1 + ζ2η

i+1
2

]
. (3.15)

Simillarly by considering the local balance for the busy state when k2+1 ≤ k ≤ k1,
we obtain

λPk−1,0 + λPk−1,1 = CµPk,0. (3.16)

By solving equation (3.16) recursively we get,

Pk,0 =

(( ρ

C

)k−k2

A(k2, 0) +
ρζ1η

k2
1

Cη1 − ρ

[
ηk−k2
1 −

( ρ

C

)k−k2
])

P1,0 (3.17)

where

A(k2, 0) =
( ρ

C

)k2−C

A(C, 0) +

k2−C∑
i=1

( ρ

C

)i [
ζ1η

k2−i
1 + ζ2η

k2−i
2

]
(3.18)

From equation (3.17) we have

Pk1,0 =

((
ρ
C

)k1−k2
A(k2, 0) +

ρζ1η
k2
1

Cη1−ρ

[
ηk1−k2
1 −

(
ρ
C

)k1−k2
])

P1,0

= A(k1, 0)P1,0 (say) (3.19)

By observing the local balance for k > k1 we can write

λPk−1,0 = CµPk,0 (3.20)

That is

Pk,0 =
ρ

C
Pk−1,0 (3.21)

By using equation (3.19) solve the above equation recursively. Then we get

Pk,0 =

(( ρ

C

)k−k1

A(k1, 0)

)
P1,0, k ≥ k1 (3.22)

To find the value of P1,0 applying the law of total probability,
i.e.,

∞∑
k=1

Pk,0 +

k1−1∑
k=0

Pk,1 +

k2−1∑
k=0

Pk,2 = 1. (3.23)

i.e.,

C∑
k=1

Pk,0 +

k2−1∑
k=C+1

Pk,0 +

k1−1∑
k=k2

Pk,0 +

∞∑
k=k1

Pk,0 +

k1−1∑
k=0

Pk,1 +

k2−1∑
k=0

Pk,2

= 1. (3.24)

48



SHORT TITLE FOR RUNNING HEADING 9

By substituting the respective probabilities in the above summations and by fol-
lowing some algebraic manupulations in each summation we can derive that the
steady-state probability

P1,0 =
1

S1 + S2 + S3 + S4 + S5 + S6
(3.25)

where

S1 =

C∑
k=1

(
ρk−1

k!
+

k−2∑
i=0

ρk−i−1(i+ 1)!

k!

[
ζ1η

i+1
1 + ζ2η

i+1
2

])
(3.26)

S2 =
ρ

C − ρ

(
1−

( ρ

C

)k2−1−C
)
A(C, 0)

+

k2−1∑
k=C+1

{
ρζ1η

C
1

Cη1 − ρ

[
ηk−C
1 −

( ρ

C

)k−C
]
+ (3.27)

ρζ2η
C
2

Cη2 − ρ

[
ηk−C
2 −

( ρ

C

)k−C
]}

(3.28)

S3 = A(K2, 0)
C

C − ρ

(
1−

( ρ

C

)k1−k2
)
+

ρζ1η
k2
1

Cη1 − ρ

{
1− ηk1−k2

1

1− η1
− C

C − ρ

(
1−

( ρ

C

)k1−k2
)}

(3.29)

S4 =
C

C − ρ
A(K1, 0) (3.30)

S5 =
1− ηk1

1

1− η1
(3.31)

and

S6 =
1− ηk2

1

1− η2
(3.32)

The average queue length of the queueing system with C- service channels can be
calculated by

E(m) =

∞∑
K=C

(k − C)Pk (3.33)

But for the proposed model E(m) is given by

E(m) =

k2−1∑
k=C

(k − C)Pk,0 +

k1−1∑
k=k2

(k − C)Pk,0 +

∞∑
k=k1

(k − C)Pk,0

+

k1−1∑
k=C

(k − C)Pk,1 +

k2−1∑
k=C

(k − C)Pk,2 (3.34)

Consider each summation in the above equation seperately with their correspond-
ing probabilities and by evaluating them with some algebraic calculations we find,
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k2−1∑
k=C

(k − C)Pk,0 =

{
Cρ

(C − ρ)2
A(C, 0)

(
(k2 − 1− C)

( ρ

C

)k2−C

−(k2 − C)
( ρ

C

)k2−1−C

+ 1

)
+

k2−1∑
k=C+1

(k − C)

{
ρζ1η

C
1

Cη1 − ρ

[
ηk−C
1 −

( ρ

C

)k−C
]
+

ρζ2η
C
2

Cη2 − ρ

[
ηk−C
2 −

( ρ

C

)k−C
]}}

P1,0 (3.35)

k1−1∑
k=k2

(k − C)Pk,0 =

{
A(k2, 0)

{
Cρ

(C − ρ)2

[
(k1 − k2 − 1)

( ρ

C

)k1−k2

− (k1 − k2)
( ρ

C

)k1−k2−1

+ 1

]

+
C(k2 − C)

(
1− ( ρ

C )k1−k2
)

C − ρ

}
+

ρζ1η
k2
1

Cη1 − ρ

 (k2 − C)
(
1− ηk1−k2

1

)
1− η1

+
η1

(
(k1 − k2 − 1)ηk1−k2

1 − (k1 − k2)η
k1−k2−1
1 + 1

)
(1− η1)2

−
C(k2 − C)

(
1−

(
ρ
C

)k1−k2
)

C − ρ

− Cρ

(C − ρ)2

[
(k1 − k2 − 1)

( ρ

C

)k1−k2

− (k1 − k2)
( ρ

C

)k1−k2−1

+ 1

]}}
P1,0

(3.36)

∞∑
k=k1

(k − C)Pk,0 =

{(
C(C − ρ)(k1 − C) + Cρ

(C − ρ)2

)
A(k1, 0)

}
P1,0 (3.37)

k1−1∑
k=C

(k − C)Pk,1 =

{
ζ1η

C+1
1

(
(k1 − C − 1)ηk1−C

1 − (k1 − C)ηk1−C−1
1 + 1

(1− η1)2

)}
P1,0

(3.38)

k2−1∑
k=C

(k − C)Pk,2 =

{
ζ2η

C+1
2

(
(k2 − C − 1)ηk2−C

2 − (k2 − C)ηk2−C−1
2 + 1

(1− η2)2

)}
P1,0

(3.39)

By substituting the equations (3.35), (3.36), (3.37),(3.38) and (3.39) in (3.34) we
obtain the formula for calculating E(m) of the recommended model. Finally, from
Little’s formula[14] the average waiting time (E(v)) generated in the system is
given by

E(v) =
E(m)

λ
+

1

µ
(3.40)

This completes the proof. □
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4. Numerical Analysis

In this section we investigate the effect of parameter measures such as the
mean durations of vacations, thresholds for vacation interruptions and number
of severs on the average waiting time generated in the system under complete
vacation interruption policies. Thoughout the discussion we fix the service rate µ
as 0.25 and assume two values for the number of servers (C), C = 2 and C = 3.
As mentioned earlier under complete vacation interruption policies both types of
vacations can be interrupted accordingly when the number of customers in the
system reaches k2 and k1 for type 2 and type 1 vacations respectively. First we
fix the value of k2 as 6 and varies the value of k1 as 10,15 and 20 respectively in
three different cases of vacation durations: when the duration (1/ω1) of type 1
vacation is longer than type 2 vacation (1/ω2) (i.e., ω1 < ω2), when both vacation
types are of the same durations (i.e., ω1 = ω2) and when the duration of type 1
vacation is shorter than type 2 vacation (i.e., ω1 > ω2). Figures 2, 3 and 4 depict
the variations of E(v) against the offered load ρ for the three respective cases.

From figure 2 it can be observed that for each value of C, E(v) decreases
correspondingily as the value of k1 decreases. Thus when ω1 < ω2 the early
interruption of type 1 vacation has a significant impact on the average waiting
time generated by both 2 and 3 servers. Figure 3 reveals that when ω1 = ω2 there
does not occur any remarkable changes in E(v) by varing k1 in the system. Thus
interrupting vacations of same mean durations with larger values of k1 will not
satisfy the customers by avoiding the excess mean delay originated in the system.
Figure 4 picturized that when ω1 > ω2 also the variations of k1 does not affect
E(v) significantly. But there is a considerable reduction in the value of E(v) for
each value of ρ when ω1 ≥ ω2. This is due to the fact that we are interrupting first
a vacation whose duration is equal or longer than the other vacation type. Thus it
can be concluded that among the three cases of vacation durations E(v) is more
responsive to the variations of k1 only when ω1 < ω2. But in all the three cases
the average waiting time generated by 2 servers is greater than that of 3 servers.

Next we fix the value of k1 as 20 and varies the value of k2 as 6,8 and 10
respectively for the same 3 cases of vacation durations as above. By analysing the
graphs given in figure 5 which interpret the behaviour of E(v) for ω1 > ω2 it can
be observed that the average waiting time of the system reduces systematically
when k2 decreases in its value. So the early interruption of a vacation with longer
duration can reduce mean delay of the system remarkably.

Figures 6 and 7 show the performance of the system for ω1 < ω2 and ω1 = ω2

respectively. By examine these figures it can be concluded that interrupting first
a vacation of shorter or equal duration does not make that much significant effect
on the average waiting time as ω1 > ω2. Hence we conclude that k2 has the most
notable impact on the system delay when ω1 > ω2. The entire analysis enable
us to realize that the complete vacation interruption become more effective in the
recommended model when ω1 > ω2 with early interruption of type 2 vacation.
Moreover by increasing the number of servers in the system, it is practicable to
enlarge the thresholds of k1 and k2 which results in not extending the mean delay
of the system noticeably.
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g1-eps-converted-to.pdf

Figure 2. Mean time in the system by varing ρ for ω1 = 0.05,
ω2 = 0.1 and k2 = 6

g2-eps-converted-to.pdf

Figure 3. Mean time in the system by varing ρ for ω1 = 0.1 = ω2

and k2 = 6

g3-eps-converted-to.pdf

Figure 4. Mean time in the system by varing ρ for ω1 = 0.1,
ω2 = 0.05 and k2 = 6

g4-eps-converted-to.pdf

Figure 5. Mean time in the system by varing ρ for ω1 = 0.1,
ω2 = 0.05 and k1 = 20

g5-eps-converted-to.pdf

Figure 6. Mean time in the system by varing ρ for ω1 = 0.05,
ω2 = 0.1 and k1 = 20
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g6-eps-converted-to.pdf

Figure 7. Mean time in the system by varing ρ for ω1 = 0.1 = ω2

and k1 = 20

5. Conclusion

In this paper we proposed a multiple servers differentiated vacation queue-
ing system with complete vacation interruption strategies. Hence the servers of
the system can be interrupted during any types of vacations under consideration.
We derived the formulas for calculating the steady-state probabilities and the aver-
age waiting time generated in the recommended model. The results indicate that
under complete vacation interruption policies the average waiting time is greately
affected by the vacation termination when ω1 > ω2 and modestly affected by the
the vacation termination when ω1 < ω2. The graphical interpretations show that
when both types of vacations have unequal durations the average waiting time
will be increased gradually as the thresholds k1 and k2 increase. So the early in-
terruption of both types of vacation have significant impact on the mean delay of
the system. In other words the vacation termination has no appreciable advantage
over there was no termination with higher values of k1 and k2. The most signif-
icant conclusion from the entire analysis is by increasing the number of servers
in the system, it is possible to make delay for the vacation interruption without
affecting the average waiting time generated in the system noticeably.

The recommended model can be widely applied in many real life situations for
example it can be introduced in medical centers to handle effectively the pan-
demic situation like COVID-19. As we all know that the COVID-19 pandemic has
frightened the entire people of the world. The intense contagious of COVID-19
had tremendously shaken and impasse the whole countries of the world. Current
situation indicates that there is going to be an imbalance between demand and
availability of hospital beds, ICU beds, ventilators, PPE and trained medical per-
sonals throughout the country. Therefore, in such circumstances, authorities will
find it difficult to provide appropriate health care facilities to all sections of soci-
ety and the COVID effected people. So, the hospitals need indispensable medical
facilities and well preparedness to face the pandemic outbreak. For proper care
and preventions, transmission of infection, it is important to train doctors, nurses,
technicians, support staff and sanitation workers in each hospital quickly. Through
these toilsome acts we could restrain the spreading of virus at least to an extent.
Hence as soon possible we have to arrange more hospitals with all needs to fight
against the next wave of corona virus. Let us model the intensive care units with
the concept of differentiated vacation and vacation interruption of complete type.
Since the pandemic like COVID-19 is an easily spreading disease, organize the
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emergency rooms for the patients with more hygienic and high facilities like venti-
lators, PPE, well trained doctors, nurses, lab technicians and all. Once a patient
was occupied in an emergency room the type 1 vacation can be used to sanitize,
sterilize and to arrange the equipment with some necessary clean ups for the next
rush of patients. Where as type 2 vacation can be made useful for the actual rest
of staffs in the emergency room provided the mandatory setups and clean ups have
been done already. Moreover, the interruption of both type1 and type 2 vacations
in accordance with the predefined thresholds will help to handle the next wave of
patients systematically without any inconvenience for both patients and medical
staffs. The concept of differentiated vacations and vacation interruption can also
be applied in between doctors, nurses, pharmacists, ambulance drivers and so on.
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