
STOCHASTIC DIFFERENTIAL EQUATIONS WITH

NON-INSTANTANEOUS IMPULSES, NON-LOCAL CONDITIONS

AND INFINITE DELAY

HUGO LEIVA, MIGUEL NARVAEZ, MIGUEL NARVAEZ, AND CELSO G. RECALDE*

Abstract. For a system of differential equations modeling a problem, im-

pulses, delays, non-local conditions and noises are intrinsic phenomena that
under certain conditions do not change certain properties of the system,

such as stability, synchronization, controllability. In other words, if these

elements, not taken into account in many mathematical models, are added
as disturbances of the system, the existences of solution and controllability

hold through. In this regard, we study the existence and uniqueness of so-

lutions for retarded stochastic differential equations with non-instantaneous
impulses, non-local conditions and infinite delay. To this end, first of all, we

select the phase space adequately in such a way that it satisfies the axiomatic
theory formulated by Hale and Kato to study differential equations with in-

finite delay. Then the problem of the existence of solutions is reduced to the

problem of finding the fixed points of an operator equation; to do so, we apply
Karakosta’s Fixed Point Theorem, which is an Extension of Krasnosel’skii’s

Fixed Point Theorem. After that, under certain conditions, we prove that

the solutions of our problem are unique. Next, we study the prolongation
of solutions, and we prove that, under certain conditions, these solutions are

globally defined. Finally, we present an example to illustrate our results.

♣ Note to author: Use 2000 Mathematics Subject Classification.

1. Introduction

For a system of differential equations modeling a real life problem, impulses,
delays, non-local conditions and noises are intrinsic phenomena that under certain
conditions do not change certain properties of the system, such as stability, syn-
chronization and controllability. That is, if we consider these elements as distur-
bances of the system, it turns out that the existences of solution and controllability
hold through under these influences not taken into account in many mathemat-
ical models that represent extremely important problems in the area of applied
mathematics. On the other hand, stochastic differential equations result from the
generalization of ordinary differential equations and partial differential equations.
This is due to the need to include noises into the equation in order to have more
realistic models. Example of stochastic models, come from financial markets or
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financial derivatives in which the price of the underlying assets evolve randomly,
for which normal distributions are used in their modeling. Other stochastic mod-
els also emerge in population dynamics where the model of the number of births
and deaths can be seen as a counting process, say (Nt)t∈R is the population size
subject to a birth rate λ and a death rate µ. Other examples can be found in
epidemiological contagion. But, it turns out that to have a more accuracy model,
which considers these intrinsic phenomena that appears naturally in the real life
problem, we must include abrupt changes or impulses, nonlocal conditions and
delays. That is to say, the stochastic differential equation along is not enough
to have a mathematical model caring out all these phenomena. That is why sto-
chastic differential equations has intensified study in recent years in which each
model studied includes instantaneous or non-instantaneous impulses or non-local
condition and delay, or even all of the previous ones. For more information about
this one can see [7] and nearby references.
Without further ado, in this work we will study the existence and uniqueness of
solutions for the following semi linear stochastic differential equations with multi-
plicative noise, non-instantaneous impulses, non-local conditions and infinite delay


dz(t) = {A(t)z(t) + f(t, zt)}dt+ σ(t, zt)dW (t), t ∈ Ik, k = 0, 1, 2, · · · ,
z(s) + g(z)(s) = ϕ(s), s ∈ (−∞, 0],

z(t) = Gk(t, z(t
−
k )), t ∈ Jk, k = 1, 2, · · · ,

(1.1)

where A(t) ∈ Rn×n is a continuous matrix, I0 = (0, t1], Ik = (sk, tk+1], Jk =
(tk, sk], 0 = t0 = s0 < t1 < s1 < t2 < s2 < · · · < sk < tk+1 −→ ∞, as
k −→ ∞. g : Q → Q, ϕ : (−∞, 0] × Ω −→ Rn, f : (0,+∞) × Q −→ Rn,
σ : (0,+∞) × Q −→ Rn×n, are given functions satisfying some assumptions,
Gk : [tk, sk]×Rn −→ Rn for k = 1, 2, 3, · · · , represents the impulsive effect of the
system (1.1), {W (s) : s ≥ 0} is an n-dimensional Wiener process defined on the
probability space (Ω,F , P ) with an increasing family Ft of sub-σ-algebra of F .

The advantage of having nonlocal conditions is that measurements at more
places can be incorporated to get better accuracy models. For more details and
physical interpretations see [3, 4, 5, 6, 21] and references therein. ϕ ∈ Q, Q is
the phase space to be specified later. Gk : Jk × Rn −→ Rn, k = 1, 2, 3, · · · ,
are continuous and represents the impulsive effect in the system (1.1), i.e., we are
considering that the system can have abrupt changes that stay there for an interval
of time. These alterations in state might be due to certain external factors, which
cannot be well described by pure ordinary stochastic differential equations, (see,
for instance, [11] and reference therein). For this type of problems the phase space
for initial functions plays an important role in the study of both qualitative and
quantitative theory, for more details, in the non stochastic case without impulses
and non local conditions, we refer to Hale and Kato [8], Hino et al [9] and Shin
[18, 19]. Here, zt(θ) = z(t + θ) for θ ∈ (−∞, 0] illustrate the history of the state
up to the time t, and also remembers much of the historical past of ϕ, carrying
part of the present to the past.
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2. Preliminaries

This section is dedicated mainly to select the appropriate phase space Q where
our problem will be set, which satisfies the axiomatic theory proposed by Hale
and Kato to study differential equations with infinite delay; this is on the one
hand, while on the other hand, throughout this paper we will use the following
standard notations. Let (Ω,F , P ) be a complete probability space with measure
P on Ω and filtration {Fs, s ≥ 0} generated by an n-dimensional Wiener process
{W (s), s ≥ 0} defined on (Ω,F , P ). The filtration satisfies Fs ⊂ F for s ≥ 0.

If z(·, ·) : (0, τ ] × Ω → Rn, then for any t ≥ 0, zt(·, ·) : (−∞, 0] × Ω → Rn is
given by,

zt(s, ω) = z(t+ s, ω), s ∈ (−∞, 0], ω ∈ Ω.

We will define the linear space of measurable random functions ϕ(t, ω), denoted by
CP = CP((−∞, 0]×Ω;Rn), as the linear space of almost surely (a.s.) normalized
piecewise continuous paths. i.e., the restriction of ϕ(·, ω) to the interval [a, 0] is
measurable with respect to F0 on and piecewise continuous on any [a, 0], a < 0,
which can be written as follows:

CP = {φ : (−∞, 0]× Ω −→ Rn : F0 −measurable and

φ|[a,0] is a.s. piecewise continuous function, ∀a < 0

}
.

Now, we will define the phase space Ch for our system (1.1). By using some
ideas from [15], we consider a function h : R → R+ such that

a) h(0) = 1,
b) h(−∞) = +∞,
c) h is decreasing.

Remark 2.1. A particular function h is h(s) = exp (−as), with a > 0.

Using a function h of the foregoing type, we define the following linear space of
functions:

Ch =

{
ϕ : ϕ ∈ CP and sup

s≤0

E(∥ϕ(s)∥2Rn)

h(s)
<∞

}
,

the space Ch endowed with the norm

∥ϕ∥Ch
=

(
sup
s≤0

E∥ϕ(s)∥2Rn

h(s)

)1/2

, ϕ ∈ Ch,

is a Banach space(see [22]).

Proof. It is enough to show that Ch is a complete normed space. Let {ϕn} be
a Cauchy sequence in Ch with probability 1. Now, from {ϕn} one can extract a
subsequence that converges for almost every (t, ω). To do so, we take n1 = 1 and
define nk inductively as the smallest n > nk−1 such that

sup
s≤0

E∥ϕm(s, ω)− ϕm′(s, ω)∥2

h(s)
< 2−3r for all m > n, m′ > n.
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Then, applying Chebyshev inequality, we get that

P

{
ω :

∥ϕnr+1
(s, ω)− ϕnr

(s, ω)∥
h(s)

> 2−r

}
≤

E∥ϕnr+1
(s, ω)− ϕnr

(s, ω)∥2

h(s)2−2r
< 2−r.

Then, the series
∞∑
r=0

P

{
ω :

∥ϕnr+1(s, ω)− ϕnr (s, ω)∥
h(s)

> 2−r

}
≤

∞∑
r=0

2−r <∞,

and by Borel-Cantelli theorem, the series
∞∑
r=1

∥ϕnr+1
(s, ω)− ϕnr

(s, ω)∥
h(s)

<∞,

almost surely converges uniformly in s ∈ (−∞, 0].

Let ψnr (s, ω) =
ϕnr (s,ω)

h(s) and N = {ω : ∥ψnr+1(s, ω)− ψnr (s, ω)∥ = ∞},
then, if we put

ψ(s, ω) =

{
ψn1

(s, ω) +
∑∞

k=0(ψnk+1
(s, ω)− ψnk

(s, ω)), ω ∈ Ω \ N ,
0, ω ∈ N ,

we obtain ψnk
converge to ψ almost surely. A standard argument yields to the

conclusion that the whole sequence {ψn} converges to ψ. To finish the proof it is
enough to see that hψ ∈ Ch. □

Now, we shall consider the space CPτ of Fτ -adapted processes defined on
(−∞, τ ], for a fixed τ > 0:

CPτ =

{
z : (−∞, τ ]× Ω → Rn : z

∣∣∣
(−∞,0]

∈ Ch, z
∣∣∣
(tk,tk+1]

is continuous for all

ω ∈ Ω, k = 0, 1, · · · , p; sp−1 < τ, z0 ∈ Ch, and there exist z(t+k ), z(t
−
k ) with

z(t−k ) = z(tk), k = 1, 2, · · · , p and sup
t∈[0,τ ]

E∥z(t)∥2Rn <∞
}
.

Lemma 2.2. CPτ is a Banach space endowed with the norm

∥z∥2CPτ
= ∥z(s)∥2Ch

+ sup
0≤s≤τ

(
E ∥z(s)∥2Rn

)
(2.1)

The set
Q := Ch,

equipped with the norm
∥z∥Q := ∥z∥Ch

,

will be our phase space.
It is not hard to verify that Q satisfies the Hale and Kato axiomatic theory [8] for
the phase space of retarded differential equations with infinite delay, but defined
as in the book [9]:

(A1) If z ∈ CPτ and z0 ∈ Q, then for every t ∈ [0, τ ] the following conditions
hold:
(i) zt is in Q;
(ii) ∥z(t)∥CPτ

≤ H∥zt∥Q;
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(iii) ∥zt∥Q ≤ K(t) sup{∥z(s)∥CPτ : 0 < s ≤ t}+M(t)∥z0∥Q, where H ≥ 0
is a constant, K, M : [0,∞) → [0,∞), K is continuous and M is
locally bounded, and H, K, M are independent of z.

(A2) For the function z in (A1), zt is a Q−valued function on [0, τ ].
(A3) The space Q is complete.

The following result is stronger than axiom (A1)-iii), and is due to the fact that
the function h is defined in the all real line:

Lemma 2.3. For all function z ∈ CPτ the following estimate holds for all
t ∈ [0, τ ]:

∥zt∥Q ≤ ∥z∥CPτ = ∥z∥.

Proof.

∥zt∥2Q = sup
θ≤0

E∥zt(θ)∥2

h(θ)
= sup

θ≤0

E∥z(t+ θ)∥2

h(θ)
= sup

θ≤0

E∥z(t+ θ)∥2

h(t+ θ)

h(t+ θ)

h(θ)

≤ sup
θ≤0

E∥z(t+ θ)∥2

h(t+ θ)
= sup

l≤t

E∥z(l)∥2

h(l)
≤ sup

l≤0

E∥z(l)∥2

h(l)
+ sup

0≤l≤t
E∥z(l)∥2

≤ ∥z∥2Q + sup
0≤s≤τ

E∥z(s)∥2 = ∥z∥2CPτ
.

□

3. Main Results

In this section, we shall prove that under suitable conditions on f , Gk, g and σ,
the Problem (1.1) admits a mild solution on (−∞, τ ], for some τ > 0, given, for
k = 1, 2, · · · , by

z(t) =



S(t, 0)[ϕ(0)− g(z)(0)] +

∫ t

0

S(t, s)f(s, zs)ds

+

∫ t

0

S(t, s)σ(s, zs)dW (s), t ∈ I0 = (0, t1]

S(t, sk)z(sk) +

∫ t

sk

S(t, s)f(s, zs)ds+

∫ t

0

S(t, s)σ(s, zs)dW (s), t ∈ Ik

Gk(t, z(t
−
k )), t ∈ Jk,

ϕ(t)− g(z)(t), t ∈ (−∞, 0]

(3.1)

where S(t, s) is the evolution operator o transition matrix associated with the
linear system defined below.

Remark 3.1. It is necessary to consider the condition z(t) = Gk(t, z(t
−
k )) for t ∈

(tk, sk] = Jk and k = 1, 2, · · · , since in this case z(t+k )) = Gk(tk, z(t
−
k )).

Additionally, the solution z shall be defined on each sk by:

z(sk) = z(s+k ) := z(s−k ) = Gk(sk, z(t
−
k )).
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We denote by Φ the fundamental matrix of the linear system

z′(t) = A(t)z(t), t ∈ R (3.2)

i.e., 
dΦ(t)

dt
= A(t)Φ(t),

Φ(0) = I.

Then the evolution operator S(t, s) is defined by S(t, s) = Φ(t)Φ−1(s), t, s ∈ R.
For τ > 0, we consider the following bound for the evolution operator

M = sup
t,s∈(0,τ ]

∥S(t, s)∥.

Definition 3.2. Given ϕ ∈ Q, an Rn-valued process {z(t), t ∈ (−∞, τ ]} is called
a mild solution of Eq.(1.1) if

(1) z(·) ∈ CPτ .
(2) For arbitrary t ∈ (∞, τ ], we have the Eq. (3.1). It is to be understood

that (3.1) hold P -a.s.,that is, for any fixed t there is an Ωt ∈ Ft of full
P -measure such that (3.1) hold for all ω ∈ Ω.

3.1. Existence and uniqueness Theorems. In this subsection, we shall
assume the hypotheses that will allow us to prove the existence and uniqueness of
solutions for problem (1.1).

H1. The functions f : R+ ×Q −→ Rn and σ : R+ ×Q → Rn×n satisfies the
following conditions for ∀φ1, φ2 ∈ Q, ∀t ∈ Ik:
i) ∥f(t, φ1)−f(t, φ2)∥2Rn+∥σ(t, φ1)−σ(t, φ2)∥2Rn×n ≤ K(∥φ1∥Q , ∥φ2∥Q) ∥φ1−φ2∥2Q
where

∥σ(t, φ1)∥Rn×n =

 n∑
i=1

n∑
j=1

|σij(t, φ1)|2
1/2

,

ii) ∥f(t, φ)∥2Rn + ∥σ(t, φ)∥2Rn×n ≤ ψ̃(∥φ∥2Q),∀φ ∈ Q, where K : R+ × R+ → R+

and ψ̃ : R+ → R+ are continuous and increasing functions respectively.
H2. The impulse Gk : [tk, sk] × Rn → Rn satisfies the following conditions:

There exist constants L > 0 such that for all k = 1, 2, ..., y, z ∈ Rn, ℓ, t ∈ Jk we
have that Gk(t, 0) = 0 and

i) E ∥Gk(t, y))− Gk(ℓ, z)∥2Rn ≤ L
{
|t− ℓ|2 + ∥y − z∥2Rn

}
.

ii) The function g : Q → Rn satisfies the following condition: There exist constant
dq > 0 such that

E ∥g(x)− g(y)∥2Rn ≤ dq ∥x− y∥2Q , ∀x, y ∈ Q,

with g(0) = 0 and

M2L+ dq <
1

2
H3. There exist τ, ρ > 0 such that

3M2

{
(dq + L) (∥ϕ̃∥+ ρ)2 + τ(τ + 1)ψ̃((∥ϕ̃∥+ ρ)2)

}
<
ρ

2
,
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where the function ϕ̃ ∈ CPτ is defined for ϕ ∈ Q by

ϕ̃ =


S(t, 0)ϕ(0), t ∈ I0,

ϕ(t), t ∈ R−,

0, t ∈ Ik,

0, t ∈ Jk.

(3.3)

To prove our main existence theorem, we shall use some ideas from [12, 13]
where the following known result is applied.

Theorem 3.3. (See [10]) (G.L. Karakostas Fixed Point Theorem) Let Z and Y
be Banach spaces and D be a closed convex subset of Z, and let C : D → Y be a
continuous operator such that C(D) is a relatively compact subset of Y . Let

T : D × C(D) → D

is a continuous operator such that the family {T(·, y) : y ∈ C(D)} is an equicon-
tractive family. Then, the operator equation

T(z,C(z)) = z

admits a solution on D.

The following closed and convex set will be considered

D = D(ρ, τ, ϕ̃) =
{
y ∈ CPτ : ∥y − ϕ̃∥CPτ

≤ ρ
}
, (3.4)

where the function ϕ̃ is defined in (3.3).

Theorem 3.4. Let’s consider an initial function ϕ ∈ Q such that the hypothesis
H1-H3 hold. Then, the system (1.1) admits a mild solution on (−∞, τ ].

Proof. Let’s consider the following operators:

T :CPτ × CPτ −→ CPτ ,

C :CPτ −→ CPτ ,

where

T(z, y)(t) =


ϕ(t)− g(z)(t), t ∈ (−∞, 0],

y(t), t ∈ I0,

y(t) + S(t, sk)Gk(sk, z(t
−
k )), t ∈ Ik,

Gk(t, z(t
−
k )), t ∈ Jk,

and

C(z)(t)=



S(t, 0)[ϕ(0)− g(z)]+

∫ t

0

S(t, s)f(s, zs)ds+

∫ t

0

S(t, s)σ(s, zs)dW (s), t∈I0,∫ t

sk

S(t, s)f(s, zs)ds+

∫ t

sk

S(t, s)σ(s, zs)dW (s), t ∈ Ik,

ϕ(t), t ∈ (−∞, 0],

0, t ∈ Jk.
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Now, the problem to find a solution of (1.1) is reduced to the problem of finding
a solution of the operator equation

T(z,C(z)) = z.

We will apply Karakostas Fixed Point Theorem to find solutions of such equation.
In fact, let us verify that the operators C and T satisfies the assumptions presented
in Theorem 3.3. To do so, the proof will be divided in several steps:

Step 1: C is a continuous operator. In order to prove this, we shall use the
hypotheses (H1-i), (H2-ii) and Lemma 2.3. For z, y ∈ CPτ and the function h
considered in the definition of our phase space, in this regard we have:

• Let s ∈ (−∞, 0], then

E∥C(z)(s)− C(y)(s)∥2Rn = E∥ϕ(s)− ϕ(s)∥2Rn = 0. (3.5)

Now,

∥C(z)− C(y)∥2Q = sup
s≤0

E∥C(z)(s)− C(y)(s)∥2Rn

h(s)
= 0.

Therefore, for s ∈ (−∞, 0] we get that

∥C(z)− C(y)∥2Q = ∥C(z)− C(y)∥2Q = 0. (3.6)

• Next, let’s consider t ∈ I0:

E∥C(y)(t)− C(z)(t)∥2Rn = E

∥∥∥∥S(t, 0)g(z)(0)− S(t, 0)g(y)(0) +

∫ t

0

S(t, s)f(s, zs)ds

−
∫ t

0

S(t, s)f(s, ys)ds+

∫ t

0

S(t, s)σ(s, zs)dW (s)−
∫ t

0

S(t, s)σ(s, ys)dW (s)

∥∥∥∥2
Rn

≤ E

(∥∥∥∥S(t, 0)g(z)(0)−S(t, 0)g(y)(0)

∥∥∥∥+∥∥∥∥∫ t

0

S(t, s)f(s, zs)ds−
∫ t

0

S(t, s)f(s, ys)ds

∥∥∥∥
+

∥∥∥∥∫ t

0

S(t, s)σ(s, zs)dW (s)−
∫ t

0

S(t, s)σ(s, ys)dW (s)

∥∥∥∥)2

≤ 3E

∥∥∥∥S(t, 0)g(z)(0)− S(t, 0)g(y)(0)

∥∥∥∥2 + 3E

∥∥∥∥∫ t

0

S(t, s){f(s, zs)− f(s, ys)}ds
∥∥∥∥2

+ 3E

∥∥∥∥ ∫ t

0

S(t, s){σ(s, zs)− σ(s, ys)}dW (s)

∥∥∥∥2
≤ 3M2E

∥∥∥∥g(z)(0)− g(y)(0)

∥∥∥∥2
Rn

+ 3M2t

∫ t

0

E∥f(s, zs)− f(s, ys)∥2Rnds

+ 3M2

∫ t

0

E

∥∥∥∥σ(s, zs)− σ(s, ys)

∥∥∥∥2
Rn×n

ds

≤ 3M2dq∥y − z∥2Q + 3M2t

∫ t

0

K(∥zs∥2Q, ∥ys∥2Q)∥ys − zs∥2Qds

+ 3M2

∫ t

0

K(∥zs∥2Q, ∥ys∥2Q)∥zs − ys∥2Qds
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≤ 3M2dq∥y − z∥2Q + 3M2t1

∫ t

0

K(∥z∥2CPτ
, ∥y∥2CPτ

)∥y − z∥2CPτ
ds

+ 3M2

∫ t

0

K(∥z∥2CPτ
, ∥y∥2CPτ

)∥z − y∥2CPτ
ds

≤
(
3M2dq + 3M2(t21 + t1)K(∥z∥2CPτ

, ∥y∥2CPτ
)

)
∥y − z∥2CPτ

.

Hence, on t ∈ I0 we get

E∥C(y)(t)−C(z)(t)∥2Rn ≤
(
3M2dq +3M2(t21+ t1)K(∥z∥2CPτ

, ∥y∥2CPτ
)

)
∥y− z∥2CPτ

.

• Now, let’s consider t ∈ Ik, for k = 1, 2, ...p.

E∥C(z)(t)− C(y)(t)∥2Rn

= E

∥∥∥∥∫ t

sk

S(t, s)(f(s, zs)− f(s, ys))ds+

∫ t

sk

S(t, s)(σ(s, zs)− σ(s, ys))dW (s)

∥∥∥∥2
Rn

≤ 2

∫ t

sk

∥S(t, s)∥2ds
∫ t

sk

E∥f(s, zs)− f(s, ys)∥2Rnds

+ 2

∫ t

sk

∥S(t, s)∥2E∥σ(s, zs)− σ(s, ys)∥2Rn×nds

≤ 2M2(t− sk)

∫ t

sk

K(∥zs∥2Q, ∥ys∥2Q)∥zs − ys∥2Qds

+ 2M2

∫ t

sk

K(∥zs∥2Q, ∥ys∥2Q)∥zs − ys∥2Qds

≤ 2M2(t− sk)
2K(∥z∥2CPτ

, ∥y∥2CPτ
)∥z − y∥2CPτ

+ 2M2(t− sk)K(∥z∥2CPτ
, ∥y∥2CPτ

)∥z − y∥2CPτ

≤ 2M2(τ2 + τ)K(∥z∥2CPτ
, ∥y∥2CPτ

)∥z − y∥2CPτ
.

Thus, on Ik we get that

∥C(z)(t)− C(y)(t)∥2CPτ
≤ 2M2(τ2 + τ)K(∥z∥2CPτ

, ∥y∥2CPτ
)∥z − y∥2CPτ

. (3.7)

Since E∥C(z)(t)−C(y)(t)∥2Rn = 0 for t ∈ Jk, k = 1, 2, ..., from (3.5), (3.6) and (3.7),
we have that C is locally Lipschitz, which implies the continuity of the operator C.

Step 2: C maps bounded sets of CPτ into bounded sets of CPτ . It is enough
to prove that for any R > 0 there exists r > 0 such that for each y ∈ BR ={
z ∈ CPτ : ∥z∥2CPτ

≤ R
}
, we have that ∥C(y)∥2CPτ

≤ r. Indeed, let’s consider
z ∈ BR. Then, by to Lemma 2.3 and hypotheses (H1)-ii)-(H2)-ii), we obtain the
following:

• For t ∈ (−∞, 0], we obtain that

E∥C(z)(t)∥2Rn = E∥ϕ(t)∥2Rn ,

which implies

∥C(z)∥2CPτ
= ∥C(z)∥2Q = ∥ϕ∥2Q := R1. (3.8)
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• For t ∈ I0, we have obtain that,

E∥C(z)(t)∥2Rn ≤ 3E ∥S(t, 0) {ϕ(0)− g(z)(0)}∥2+3

∫ t

0

∥S(t, s)∥2ds
∫ t

0

E∥f(s, zs)∥2Rnds

+ 3

∫ t

0

∥S(t, s)∥2E∥σ(s, zs)∥2Rn×n

≤ 3M2E∥ϕ(0)− g(z)(0)∥2 + 3M2ψ̃(∥z∥2CPτ
)(t2 + t)

≤ 3M2E∥ϕ(0)∥2Rn + 3M2E∥g(z)(0)∥2Rn + 3M2ψ̃(∥z∥2CPτ
)(t2 + t)

≤ 3M2E∥ϕ(0)∥2Rn + 3M2dq∥z∥2Q + 3M2ψ̃(∥z∥2CPτ
)(t21 + t1)

≤ 3M2E∥ϕ(0)∥2Rn + 3M2dq∥z∥2CPτ
+ 3M2ψ̃(∥z∥2CPτ

)(t21 + t1)

≤ 3M2E∥ϕ(0)∥2Rn + 3M2dqR+ 3M2ψ̃(R)(t21 + t1) := R2

• For t ∈ Ik, we have that

E∥C(z)(t)∥2Rn ≤ 2M2(t− sk)

∫ t

sk

E∥f(s, zs)∥2Rnds+ 2M2

∫ t

sk

E∥σ(s, zs)∥2Rn×nds

≤ 2M2τ2ψ̃(∥z∥2CPτ
) + 2M2τψ̃(∥z∥2CPτ

)

≤ 2M2ψ̃(∥z∥2CPτ
)τ(τ + 1)

≤ 2M2ψ̃(R)τ(τ + 1) := R3.

Letting r = R1 +R2 +R3, we get that ∥C(z)∥2CPτ
≤ r.

Step 3: C maps bounded sets of CPhτ into equicontinuous sets of PWτ .
Let’s consider BR as it was previously defined in the foregoing step. We shall prove
that C(BR) is an equicontinuous family. Since the equicontinuity on (−∞, 0] is
trivial, we only need to prove the equicontinuity in the remain part. Let’s take
y ∈ BR, and consider Lemma 2.3 and hypotheses (H1)-ii), (H2)-ii). Then, we get
that

• For t1, t2 ∈ I0 such that 0 < t1 < t2, it turns out that

E∥C(y)(t2)− C(y)(t1)∥2Rn

= E

∥∥∥∥S(t2, 0) {ϕ(0)− g(y)}+
∫ t2

0

S(t2, s)f(s, ys)ds+

∫ t2

0

S(t2, s)σ(s, ys)dW (s)

−S(t1, 0) {ϕ(0)− g(y)} −
∫ t1

0

S(t1, s)f(s, ys)ds−
∫ t1

0

S(t1, s)σ(s, ys)dW (s)

∥∥∥∥2
Rn

≤ 5E∥
(
S(t2, 0)− S(t1, 0)

)
{ϕ(0)−g(y)} ∥2Rn

+ 5E

∥∥∥∥∫ t1

0

[S(t2, s)−S(t1, s)]f(s, ys)ds

∥∥∥∥2
Rn

+ 5E

∥∥∥∥∫ t2

t1

S(t2, s)f(s, ys)ds

∥∥∥∥2
Rn

+ 5E∥
∫ t1

0

[S(t2, s)− S(t2, s)]σ(s, ys)dW (s)

∥∥∥∥2
Rn

+ 5E

∥∥∥∥∫ t2

t1

S(t2, s)σ(s, ys)dW (s)

∥∥∥∥2
Rn
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≤ 5∥S(t2, 0)− S(t1, 0)∥2E∥ϕ(0)− g(y)(0)∥2Rn

+ 5

∫ t1

0

∥S(t2, s)− S(t1, s)∥2Rnds

∫ t1

0

E∥f(s, ys)∥2Rnds

+ 5

∫ t2

t1

∥S(t2, s)∥2Rnds

∫ t2

t1

E∥f(s, ys)∥2Rnds

+ 5

∫ t1

0

∥S(t2, s)− S(t1, s)∥2RnE∥σ(s, ys)∥2Rn×nds

+ 5

∫ t2

t1

∥S(t2, s)∥2RnE∥σ(s, ys)∥2Rn×nds

≤ 10∥S(t2, 0)− S(t1, 0)∥2Rn{E∥ϕ(0)∥2Rn + dq∥y∥2CPτ
}

+5M2{(t2−t1)2+(t2−t1)}ψ̃(∥y∥2CPτ
)+5ψ̃(∥y∥2CPτ

)(t1+1)

∫ t1

0

∥S(t2, s)−S(t1, s)∥2ds

≤ 10∥S(t2, 0)− S(t1, 0)∥2Rn

(
E∥ϕ(0)∥2Rn + dqR

)
+ 5M2ψ̃(R){(t2−t1)2 + (t2 − t1)}

+ 5ψ̃(R)(t1 + 1)

∫ t1

0

∥S(t2, s)− S(t1, s)∥2Rnds,

by the continuity of the evolution operator, we have that

E∥C(y)(t2)− C(y)(t1)∥2Rn → 0 as t2 → t1, (3.9)

independently on y ∈ BR.
• For t1, t2 ∈ Ik such that 0 < t1 < t2, we have that

E∥C(y)(t2)− C(y)(t1)∥2Rn = E

∥∥∥∥ ∫ t2

sk

S(t2, s)f(s, ys)ds−
∫ t1

sk

S(t1, s)f(s, ys)ds

+

∫ t2

sk

S(t2, s)σ(s, ys)dW (s)−
∫ t1

sk

S(t1, s)σ(s, ys)dW (s)

∥∥∥∥2
≤ 4

∫ t1

sk

∥S(t2, s)− S(t1, s)∥2ds
∫ t1

sk

E∥f(s, ys)∥2ds

+ 4

∫ t2

t1

∥S(t2, s)∥2ds
∫ t2

t1

E∥f(s, ys)∥2ds+4

∫ t1

sk

∥S(t2, s)− S(t1, s)∥2E∥σ(s, ys)∥2Rn×nds

+ 4

∫ t2

t1

∥S(t2, s)∥2E∥σ(s, ys)∥2Rn×nds

≤ 4ψ̃(∥y∥2CPτ
){(t1 − sk) + 1}

∫ t1

sk

∥S(t2, s)− S(t1, s)∥2ds

+ 4M2ψ̃(∥y∥2CPτ
)(t2 − t1)[(t2 − t1) + 1]

≤4ψ̃(R){(t1−sk)+1}
∫ t1

sk

∥S(t2, s)− S(t1, s)∥ds+ 4M2ψ̃(R)(t2 − t1)[(t2 − t1) + 1].

The continuity of S(t, s) implies that

E∥C(y)(t2)− C(y)(t1)∥2Rn → 0 as t2 → t1, (3.10)

independently on the chosen y.
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Hence, by (3.9) and (3.10), the operator C maps bounded sets of CPτ into
equicontinuous sets of CPτ , i.e., C(BR) is an equicontinuous family.

Step 4: The subset C(D) is relatively compact in CPτ . In fact, let D ⊂ CPτ

be the bounded set defined in (3.4). Without loss of generality, we can assume
that tp ≤ τ . By steps 2 and 3, C(D) it is bounded uniform and equicontinuous
in CPhτ . Let us take a sequence {yn}n∈N ⊆ C(D). Observe that yn|(−∞,0] = ϕ

for all n ∈ N, then by Arzelá-Ascoli Theorem applied to
{
yn|(0,t1]

}
n∈N ⊂ C(D),

there exist an uniformly convergent subsequence {y1n}n∈N on (−∞, t1]. Let’s con-
sider now the sequence {y1n}n∈N on the interval (t1, t2], which is also bounded
and equicontinuous. Then, applying Arzelá-Ascoli Theorem, it has a convergent
subsequence {y2n}n∈N on (t1, t2]. This sequence is actually an uniformly conver-
gent subsequence of {yn}n∈N on (−∞, t2]. We continue this process iteratively
over each interval (t2, t3], · · · , (tp, τ ] and finally arrived to the conclusion that the
subsequence {ypn}n∈N ⊆ {yn}n∈N is uniformly convergent on the whole interval

(−∞, τ ]. This implies that C(D) is compact, and therefore C(D) is relatively
compact .

Step 5:
The family {T(·, y) : y ∈ C(D)} is equicontractive.

Let us take z, x ∈ CPτ and y ∈ C(D). Also, consider Lemma 2.3 and (H2), then

• Let us chose t ∈ (−∞, 0]. Then

E ∥T(z,C(y))(t)− T(x,C(y))(t)∥2Rn

h(t)
=

E ∥g(z)(t)− g(x)(t)∥2Rn

h(t)

≤ ∥g(z)− g(x)∥2Q
≤ dq ∥z − y∥2Q
≤ dq∥z − x∥2CPτ

≤ 1

2
∥z − x∥2CPτ

.

By taking the supremum on t ∈ (−∞, 0], we have that,

∥T(z,C(y))− T(x,C(y))∥2Q ≤ 1

2
∥z − x∥2CPτ

. (3.11)

• Let t ∈ I0. Then we have that

∥T(z,C(y)(t))− T(x,C(y))(t)∥ = ∥C(y)(t)− C(y))(t)∥ = 0.

• Let t ∈ Ik. Then we have that

E ∥T(z,C(y))(t)−T(x,C(y))(t)∥2Rn=
∥∥S(t,sk)Gk(sk,z(t

−
k ))−S(t, sk)Gk(sk, x(t

−
k ))

∥∥2
Rn

≤M2
∥∥Gk(sk, z(t

−
k ))− Gk(sk, x(t

−
k ))

∥∥2
Rn

≤M2L∥z(t−k )− x(t−k )∥
2
Rn

≤ 1

2
∥z − x∥2CPτ
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Thus,

E ∥T(z,C(y))(t)− T(x,C(y))(t)∥2Rn ≤ 1

2
∥z − x∥2CPτ

, t ∈ Ik. (3.12)

• Consider t ∈ Jk. Then we get

E ∥T(z,C(y))(t)− T(x,C(y))(t)∥2Rn ≤
∥∥Gk(t, z(t

−
k ))− Gk(t, x(t

−
k ))

∥∥2
Rn

≤ L∥z(t−k )− x(t−k )∥
2
Rn

≤ 1

2
∥z − x∥2CPτ

.

Hence,

E ∥T(z,C(y))(t)− T(x,C(y))(t)∥2Rn ≤ 1

2
∥z − x∥2CPτ

. (3.13)

Therefore, from the foregoing inequalities and (3.13), we get that

∥T(z,C(y))− T(x,C(y))∥2CPτ
<

1

2
∥z − x∥2CPτ

,

which is a contraction independently of y ∈ C(D). So , the family {T(·, y) :
y ∈ C(D)} is equicontractive.

Step 6: Let D defined in (3.4), we will prove that T(D,C(D) ⊆ D. In fact, let

us consider z ∈ D(ρ, τ, ϕ̃) and take into account Lemma 2.3, hypotheses (H1)-ii),
(H2)-ii) and (H3).

• Consider t ∈ (−∞, 0]. Then we have the following estimate

1

h(t)
E∥T(z,C(z))(t)− ϕ̃(t)∥2Rn =

1

h(t)
E∥g(z)∥2Rn

≤ dq∥z∥2Q
≤ dq∥z∥2CPτ

≤ dq(∥ϕ̃∥CPτ
+ ρ)2 < ρ/2 < ρ.

• Next, for t ∈ I0, we get that

E∥T(z,C(z))(t)− ϕ̃(t)∥2Rn

= E

∥∥∥∥− S(t, 0)g(z)(0) +

∫ t

0

S(t, s)f(s, zs)ds+

∫ t

0

S(t, s)σ(s, zs)dW (s)

∥∥∥∥2
Rn

≤3E

∥∥∥∥S(t, 0)g(z)(0)∥∥∥∥2
Rn

+3E

∥∥∥∥∫ t

0

S(t, s)f(s, zs)ds

∥∥∥∥2
Rn

+3E

∥∥∥∥∫ t

0

S(t, s)σ(s, zs)dW (s)

∥∥∥∥2
Rn

≤ 3M2E∥g(z)(0)∥2Rn + 3M2t

∫ t

0

E∥f(s, zs)∥2Rnds+ 3M2

∫ t

0

E∥σ(s, zs)∥2Rn×nds

≤ 3M2E∥g(z)∥2Q + 3M2t2ψ̃(∥z∥2CPτ
) + 3M2tψ̃(∥z∥2CPτ

)

≤ 3M2dq ∥z∥2Q + 3M2ψ̃(∥z∥2CPτ
)t(t+ 1)

≤ 3M2dq ∥z∥2CPτ
+ 3M2ψ̃(∥z∥2CPτ

)t(t+ 1)
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≤ 3M2dq ∥z∥2CPτ
+ 3M2ψ̃(∥z∥2CPτ

)τ(τ + 1)

≤ 3M2{dq(∥ϕ̃∥CPτ
+ ρ)2 + ψ̃((∥ϕ̃∥CPτ

+ ρ)2)τ(τ + 1)}
< ρ/2 < ρ.

• Next, if t ∈ Ik, we get that

E∥T(z,C(z))(t)− ϕ̃(t)∥2Rn ≤ 3∥S(t, sk)∥2∥Gk(sk, z(t
−
k ))∥

2
Rn

+ 3

∫ t

sk

∥S(t, s)∥2ds
∫ t

sk

E ∥f(s, zs)∥2Rn ds+ 3

∫ t

sk

∥S(t, s)∥2E ∥σ(s, zs)∥2Rn×n

≤ 3M2{L(∥ϕ̃∥CPτ
+ ρ)2 + τ(τ + 1)ψ̃((∥ϕ̃∥CPτ

+ ρ)2)} < ρ/2 < ρ

• Finally, if t ∈ Jk, we get that

E∥T(z,C(z))(t)− ϕ̃(t)∥2Rn = E∥Gk(t, z(t
−
k ))∥

2
Rn

≤ LE∥z(t−k )∥
2
Rn ≤ LE∥z∥2CPτ

≤ L(∥ϕ̃∥CPτ + ρ)2 < ρ/2 < ρ

Hence, T(D,C(D)) ⊆ D.

Since Step 1, Step 4 and Step 5 hold, the conditions of Karakostas Fixed
Point Theorem are satisfied for the closed and convex set given in (3.4), and the
proof of Theorem 3.4 immediately follows by applying Theorem 3.3. □

Theorem 3.5. (Uniqueness) In addition to the conditions of Theorem (3.4), we
suppose that for ρ, τ > 0 the following inequality holds

3M2

[
τ(τ + 1)K((∥ϕ̃∥+ ρ)2, (∥ϕ̃∥+ ρ)2) + (dq + L)

]
<

1

2
,

then, the problem (1.1) has only one solution on (−∞, τ ].

Proof. Let z1 and z2 be two solutions of problem (1.1). Then, we have that the
following estimate holds for t ∈ (−∞, 0]:

1

h(t)
E∥z1(t)− z2(t)∥2Rn =

1

h(t)
E∥g(z2)(t)− g(z1)(t)∥2Rn

≤ dq∥z2 − z1∥2Q
≤ dq∥z2 − z1∥2CPτ

<
1

2
∥z2 − z1∥2CPτ

.

Now, let t ∈ (0, t1], then we get

E∥z2(t)− z1(t)∥2Rn

=

∥∥∥∥S(t, 0)[ϕ(0)− g(z2)(0)] +

∫ t

0

S(t, s)f(s, z2s)ds+

∫ t

0

S(t, s)σ(s, z2s)dW (s)

− S(t, 0)[ϕ(0)− g(z1)(0)]−
∫ t

0

S(t, s)f(s, z1s)ds−
∫ t

0

S(t, s)σ(s, z1s)dW (s)

∥∥∥∥
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≤ 3E∥S(t, 0)[g(z1)(0)− g(z2)(0)]∥2Rn + 3E∥
∫ t

0

S(t, s)(f(s, z2s)− f(s, z1s))ds∥2Rn

+ 3E∥
∫ t

0

S(t, s)(σ(s, z2s)− σ(s, z1s))dW (s)∥2Rn

≤ 3M2E∥[g(z1)(0)− g(z2)(0)]∥2Rn + 3M2

∫ t

0

E∥(f(s, z2s)− f(s, z1s))∥2Rnds

+ 3M2

∫ t

0

E∥(σ(s, z2s)− σ(s, z1s))∥2Rn×nds

≤ 3M2dq∥z1 − z2∥2CPτ
+ 3M2t(t+ 1)K(∥z2∥2CPτ

, ∥z1∥2CPτ
)∥z2 − z1∥2CPτ

= [3M2dq + 3M2t(t+ 1)K(∥z2∥2CPτ
, ∥z1∥2CPτ

)]∥z2 − z1∥2CPτ

≤ 3M2

[
dq + τ(τ + 1)K((∥ϕ̃∥CPτ + ρ)2, (∥ϕ̃∥CPτ + ρ)2)

]
∥z2 − z1∥2CPτ

≤ 1

2
∥z2 − z1∥2CPτ

.

• Now, we consider t ∈ Ik. Then

E∥z2(t)− z1(t)∥2Rn = E

∥∥∥∥S(t, sk)Gk(sk, z
2(t−k )) +

∫ t

sk

S(t, s)f(s, z2s)ds

+

∫ t

sk

S(t, s)σ(s, z2s)dW (s)− S(t, sk)Gk(sk, z
1(t−k ))−

∫ t

sk

S(t, s)f(s, z1s)ds

−
∫ t

sk

S(t, s)σ(s, z1s)dW (s)

∥∥∥∥2
Rn

≤ 3M2E∥Gk(sk, z
2(t−k ))− Gk(sk, z

1(t−k ))∥
2
Rn

+ 3M2(tk+1 − sk)

∫ tk+1

sk

E∥f(s, z2s)− f(s, z1s)∥2Rnds

+ 3M2

∫ tk+1

sk

E∥σ(s, z2s)− σ(s, z1s)∥2Rn×nds

≤ 3M2L∥z2 − z1∥2CPτ

+ 3M2(tk+1−sk)[(tk+1−sk)+1]K(∥z2∥2CPτ
, ∥z1∥2CPτ

)∥z2 − z1∥2CPτ

≤ 3M2

[
L+ (tk+1 − sk)[(tk+1 − sk) + 1]K((∥ϕ̃∥+ ρ)2, (∥ϕ̃∥+ ρ)2)

]
∥z2 − z1∥2CPτ

≤ 3M2

[
L+ τ(τ + 1)K((∥ϕ̃∥+ ρ)2, (∥ϕ̃∥+ ρ)2)

]
∥z2 − z1∥2CPτ

≤ 1

2
∥z2 − z1∥2CPτ
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• Consider t ∈ Jk. Then we have that

E∥z2(t)− z1(t)∥2Rn = E∥Gk(t, z
2(t−k ))− Gk(t, z

1(t−k ))∥
2
Rn

≤ L∥z2 − z1∥2CPτ

<
1

2
∥z2 − z1∥2CPτ

.

Hence, from the foregoing inequalities and the last expression, we get that

∥z2 − z1∥2CPτ
< ∥z2 − z1∥2CPτ

,

which implies that z1 = z2. □

3.2. Prolongation of Solutions. In this subsection we shall study the prolon-
gation of the solutions of problem (1.1). To do so, we will consider the following

subset D̃ of CPτ :
D̃ = {y ∈ CPτ : ∥y∥2CPτ

≤ ρ}. (3.14)

Hence,it turns out that for all z ∈ D, we have that z(t)−ϕ̃(t) ∈ D̃ for −∞ < t ≤ τ .

Definition 3.6. We will say that (−∞, τ1) is a maximal interval of existence of
the solution z(·) of problem (1.1) if there is not solution of the (1.1) on (−∞, τ2)
with τ2 > τ1.

Theorem 3.7. Suppose that the conditions of Theorem (3.5) hold. If z is a
solution of problem (1.1) on (−∞, τ1) and τ1 is maximal, then either τ1 = +∞ or

there exists a sequence τn → τ1 as n→ ∞ such that z(τn)− ϕ̃(τn) → ∂D̃.

Proof. Suppose, for the purpose of contradiction, that τ1 < ∞ and there exist a
neighborhoodN of ∂D̃ such that z(t)−ϕ̃(t) does not enter in it, for 0 < s2 ≤ t < τ1.

We can take N = D̃\B, where B is a closed subset of D̃, then z(t)− ϕ̃(t) ∈ B for

0 < sp−1 < t < τ1. We need to prove that lim
t→τ−

1

{z(t)− ϕ̃(t)} = z1 − ϕ̃(τ1) ∈ B.

For that purpose, it enough to prove that lim
t→τ−

1

z(t) = z1. We will divide the

proof in two cases:
First, suppose that 0 < sp−1 < tp ≤ t < τ1.

• Consider t, ℓ > 0 such that

0 < tp < ℓ < t < τ1 ≤ sp.

In this case t, l ∈ Jp and

E∥z(t)− z(ℓ)∥2Rn = E∥Gp(t, z(t
−
p ))− Gp(ℓ, z(t

−
p ))∥2Rn

≤ L
{
|t− ℓ|2 + ∥z(t−p )− z(t−p ))∥2Rn

}
= L|t− ℓ|2.

Then

E∥z(t)− z(ℓ)∥2Rn ≤ L|t− ℓ|2 → 0 as t, ℓ→ 0.

Therefore, lim
t→τ−

1

z(t) = z1 exists in Rn, and since B is closed, z1 − ϕ̃(τ1) belongs

to B.
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• Suppose that 0 < sp−1 < τ1 ≤ tp. Indeed, if we consider 0 < sp−1 < ℓ < t <
τ1 ≤ tp, then by Cauchy’s inequality, for all t, ℓ ∈ Ip−1 we obtain the following
estimate

E∥z(t)− z(ℓ)∥2Rn = E

∥∥∥∥(S(t, sp−1)− S(ℓ, sp−1)

)
Gp−1(sp−1, z(t

−
p−1))

+

∫ ℓ

sp−1

(
S(t, s)− S(ℓ, s)

)
f(s, zs)ds+

∫ t

ℓ

S(t, s)f(s, zs)ds

+

∫ ℓ

sp−1

(
S(t, s)− S(ℓ, s)

)
σ(s, zs)dW (s) +

∫ t

ℓ

S(t, s)σ(s, zs)dW (s)

∥∥∥∥2
Rn

≤ 5E

∥∥∥∥(S(t, sp−1)− S(ℓ, sp−1)

)
Gp−1(sp−1, z(t

−
p−1))

∥∥∥∥2
Rn

+ 5E

∥∥∥∥∫ ℓ

sp−1

(
S(t, s)− S(ℓ, s)

)
f(s, zs)ds

∥∥∥∥2
Rn

+ 5E

∥∥∥∥∫ t

ℓ

S(t, s)f(s, zs)ds

∥∥∥∥2
Rn

+ 5E

∥∥∥∥∫ ℓ

sp−1

(
S(t, s)− S(ℓ, s)

)
σ(s, zs)dW (s)

∥∥∥∥2
Rn

+5E

∥∥∥∥∫ t

ℓ

S(t, s)σ(s, zs)dW (s)

∥∥∥∥2
Rn

≤ 5E

∥∥∥∥S(t, sp−1)− S(ℓ, sp−1)

∥∥∥∥2
Rn

∥∥∥∥Gp−1(sp−1, z(t
−
p−1))

∥∥∥∥2
Rn

+ 5

∫ ℓ

sp−1

∥S(t, s)− S(ℓ, s)∥2Rnds

∫ ℓ

sp−1

E∥f(s, zs)∥2Rnds

+5

∫ t

ℓ

∥S(t, s)∥2Rnds

∫ t

ℓ

E∥f(s, zs)∥2Rnds+5

∫ ℓ

sp−1

∥S(t, s)−S(ℓ, s)∥2RnE∥σ(s, zs)∥2Rn×nds

+ 5

∫ t

ℓ

∥S(t, s)∥2RnE∥σ(s, zs)∥2Rn×nds

≤ 5

∥∥∥∥S(t, sp−1)− S(ℓ, sp−1)

∥∥∥∥2
Rn

L

[
∥z∥2CPτ

]
+

[ ∫ ℓ

sp−1

∥S(t, s)− S(ℓ, s)∥2Rnds

+

∫ t

ℓ

∥S(t, s)∥2Rnds

]
10(τ1 + 1)ψ̃(∥z∥2Q)

≤ 5

∥∥∥∥S(t, sp−1)− S(ℓ, sp−1)

∥∥∥∥2
Rn

LR+

[ ∫ ℓ

sp−1

∥S(t, s)− S(ℓ, s)∥2Rnds

+

∫ t

ℓ

∥S(t, s)∥2Rnds

]
5(τ1 + 1)ψ̃(R)

Since S(t, s) is uniformly continuous for t ≥ 0, then E∥z(t)−z(ℓ)∥2Rn goes to zero

as ℓ→ τ1. Therefore, lim
t→τ1

z(t) = z1 exists in Rn, and since B is closed, z1 − ϕ̃(τ1)

belongs to B, which is a contradiction with the maximality of τ1. In fact, we have
that z1 ∈ B+ ϕ̃(τ1) which is contained in the interior of the ball D̃+ ϕ̃(τ1). Hence,
z(·) can be extended to (−∞, τ1]. In this regard, for ϵ small enough, the following
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initial value problem admit only one solutions on (−∞, τ1 + ϵ) of the initial value
problem

{
dv(t) = {A(t)v(t) + f(t, vt)}dt+ σ(t, vt)dW (t), t ∈ (τ1, τ1 + ϵ)

v(s) + g(v)(s) = z(s), s ∈ (−∞, τ1],
(3.15)

This is a contradiction with the maximality of τ1. So, the proof is completed □

Corollary 3.8. Under the conditions of Theorem (3.5), and assuming the follow-
ing condition

∥f(t, ϕ)∥2Rn + ∥σ(t, ϕ)∥2Rn×n ≤ µ(t)(1 + ∥ϕ∥2Q), ϕ ∈ Q, t ∈ R, (3.16)

where µ(·) is a continuous function on (−∞,∞), the unique solution of problem
(1.1) exists on (−∞,∞).

Proof. We will divide the proof in two cases:
• Suppose that 0 ≤ sp−1 < tp < τ1. Then 0 ≤ sp−1 < tp < t < τ1 ≤ sp. Then,

E∥z(t)∥2Rn = ∥Gp(t, z(t
−
p )∥2Rn ≤ LE∥z(t−p )∥2Rn <∞.

Consequently

E∥z(t)∥2Rn ≤ ∞, t ∈ Jp.

• Suppose that 0 ≤ sp−1 ≤ t ≤ τ1 ≤ tp. Then, for t ∈ Ip−1 we have that

E∥z(t)∥2Rn = E

∥∥∥∥S(t, sp−1)Gp−1(sp−1, z(t
−
p−1)) +

∫ t

sp−1

S(t, s)f(s, zs)ds

+

∫ t

sp−1

S(t, s)σ(s, zs)dW (s)

∥∥∥∥2
Rn

≤ 3∥S(t, sp−1)Gp−1(sp−1, z(t
−
p−1))∥2Rn + 3E∥

∫ t

sp−1

S(t, s)f(s, zs)ds∥2Rn

+ 3E∥
∫ t

sp−1

S(t, s)σ(s, zs)dW (s)∥2Rn

≤ 3∥S(t, sp−1)∥2∥Gp−1(sp−1, z(t
−
p−1))∥2Rn+3

∫ t

sp−1

∥S(t, s)∥2ds
∫ t

sp−1

E∥f(s, zs)∥2Rnds

+ 3E

∫ t

sp−1

∥S(t, s)∥2∥σ(s, zs)∥2Rn×nds

≤ 3M2L∥z(t−p−1)∥2Rn + 3M2(t− sp−1)

∫ t

sp−1

µ(s)(1 +E∥z(s)∥2Rn)ds

+ 3M2

∫ t

sp−1

µ(s)(1 +E∥z(s)∥2Rn)ds
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≤
(
3M2L∥z(t−p−1)∥2Rn + 3M2(τp − sp−1)

∫ τp

sp−1

µ(s)ds

)
+

∫ t

sp−1

3M2(τp − sp−1)µ(s)E∥z(s)∥2Rnds

+ 3M2

∫ τp

sp−1

µ(s)ds+ 3M2

∫ t

sp−1

E∥z(s)∥2Rnds

= 3M2

[
L∥z(t−p−1)∥2Rn +

(
(τp − sp−1) + 1

)∫ τp

sp−1

µ(s)ds

]
+

∫ t

sp−1

3M2

[(
τp − sp−1

)
µ(s) + 1

]
E∥z(s)∥2Rnds.

Then, applying Gronwall Inequality (see [11, 16, 17, 20]), we obtain that

E∥z(t)∥2Rn ≤ 3M2

[
L∥z(t−p−1)∥2Rn

+

(
(τp − sp−1) + 1

)∫ τp

sp−1

µ(s)ds

]
exp

{∫ t

sp−1

3M2

[
(τp − sp−1)µ(s) + 1

]
ds

}
.

The two cases imply that ∥z(t)∥Rn remains bounded as t → τ1, and applying
Theorem 3.7 we get the result. □

4. An Example

This section is devoted to present an example to illustrate our result. Consider
the following stochastic non-instantaneous impulsive differential equations with
delay and non local condition: For all k = 1.2, 3, . . . we have



dz(t) = −z(t) + e
−

zt(−1)

10(t+ 5)3 +
zt(−1)

10(t+ 5)3
dW (t), t ∈ Ik,

z(s) +

(
1 +

sin z

302

)
(s) = ϕ(s), s ∈ (−∞, 0],

z(t) =
sin(z(t−k ))

4(tk + 8)4
· cos(t− tk), t ∈ Jk.

(4.1)

In this case, we have that the terms involving system (1.1) are given by:

A(t) = −1, f(t, z) = exp{− z

10(t+ 5)3
}, σ(t, z) =

z

10(t+ 5)3
, g(z) = 1 +

sin(z)

302

and Gk(t, z) =
sin(z)

4(tk + 84)
· cos(t− tk). Then we have,
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E |f(t, z)− f(t, x)|2 = E

∣∣∣∣∣∣e
− z

10(t+ 5)3 − e
− x

10(t+ 5)3

∣∣∣∣∣∣
2

≤ 1

102 · 56
E |z − x|2 ,

E |σ(t, z)− σ(t, x)|2 = E

∣∣∣∣ z

10(t+ 5)3
− x

10(t+ 5)3

∣∣∣∣2 ≤ 1

102 · 56
E|z − x|2, (4.2)

E |Gk(t, z)− Gk(t, x)|2 ≤ 1

42(t+ 84)2
E |sin(z)− sin(x)|2 ≤ 1

42 · 88
E |z − x|2 ,

E |g(z)− g(x)|2 =
1

304
E |sin(z)− sin(x)|2 ≤ 1

304
E |z − x|2 ,

In this case, we have that

q = 1, S(t, s) = e−(t− s), M = 1, K =
2

102 · 56
,

and

E |f(t, z)|2 +E |σ(t, z)|2

≤ 2E |f(t, z)− f(t, 0)|2 + 2E |f(t, 0)|2 + 2E|σ(t, z)− σ(t, 0)|2 + 2E|σ(t, 0)|2

≤ 2

102 · 56
E |z|2 + 2 +

2

102 · 56
E |z|2 =

4

102 · 56
E |z|2 + 2.

(4.3)

Therefore, if we put ψ̃(ξ) =
4

102 · 56
ξ + 2, with ξ ≥ 0, then

E |f(t, z)|2 +E |σ(t, z)|2 ≤ ψ̃(E|z|2).

Now, for ε > 0 small enough, let’s take as the initial function

ϕ(s) = εcos(s), s ∈ R,

and define

ϕ̃(t) =

{
e−tϕ(0) , t ≥ 0
ϕ(t) t ∈ (−∞, 0].

Then we have that

ψ̃

((∥∥∥ϕ̃∥∥∥+ ρ
)2

)
=

(∥∥∥ϕ̃∥∥∥+ ρ

)2

102 · 56
+ 2

≤ (ε+ ρ)2

102 · 56
+ 2.

Therefore, the last condition of the hypothesis H2-ii) is satisfied. In fact,

M2L+ dq = L+ dq

=

(
1

42 · 88
+

1

304

)
= 0, 000001238 < 0, 5. (4.4)
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Since Gk(t, 0) = 0 then, the condition of the hypothesis H3) is satisfied. In fact,
the following inequality

3M2

{
(dq + L) (∥ϕ̃∥+ ρ)2 + τ(τ + 1)ψ̃(∥ϕ̃∥+ ρ)2

}
= 3

{
(dq + L) (∥ϕ̃∥+ ρ)2 + τ(τ + 1)ψ̃((∥ϕ̃∥+ ρ)2)

}
≤ 3

{(
1

42 · 88
+

1

304

)
(ϵ+ ρ)2 + τ(τ + 1)(

(ε+ ρ)2

102 · 56
+ 2)

}
,

holds for infinitely many values of τ , ρ and ε. In particular, we can take for
example, τ = 1

16 , ρ = 1 and ε = 1, and we get

3

{(
1

42 · 88
+

1

304

)
(ϵ+ ρ)2 + τ(τ + 1)(

(ε+ ρ)2

102 · 56
+ 2)

}
= 3

{(
1

42 · 88
+

1

304

)
4 +

5

16

(
4

102 · 56
+ 2

)}
= 3

{(
4

1024
+

4

810000

)
+

17

256

(
4

1562500
+ 2

)}
(4.5)

=
9732288

829440000
+

204

400000000
+

102

256
= 0, 012 + 0, 00000051 + 0, 398

≤ 1
2

Thus, by (4.3),(4.2),(4.4),(4.5), we have that H1)-H3) holds. So, Theorem 3.4
ensures the existence of solutions for problem (4.1).

5. Conclusion and Final Remark

In this work, we study the existence and uniqueness of solutions for retarded sto-
chastic semilinear equations with infinite delay, infinitely many non-instantaneous
impulses, and nonlocal conditions. First, We set the problem in a natural Banach
phase space satisfying Hale-Kato axiomatic Theory about the phase space for re-
tarded ordinary differential equations with unbounded delay. Second, we assume
that the nonlinear terms are locally Lipschitz, and to achieve the existence of
solutions, Karakosta’s Fixed Point Theorem is applied, which is an Extension of
Krasnosel’skii’s Fixed Point Theorem. After that, under some additional condi-
tions, the uniqueness is proved as well. Next, assuming some bound on the non-
linear terms the global existence is proved by applying the Gronwall inequality.
Finally, we present an example as an application of our method.
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