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Abstract. In this paper we consider an inverse problem for determining
the source function in fractional equation with Riemann-Liouville derivative.
Using the classical Fourier method, we prove the uniqueness and the existence
theorem for this inverse problem.

1. Introduction

In recent years, due to the application of fractional equations in physics, biol-
ogy and engineering, there is a significant interest in studying them. Fractional
equations have been studied by numerous mathematicians. More data about that
can be found in the works ([1] - [9]).

In this work the existence and inverse problems are studied for the equation of
fractional order by time and the elliptical part with an abstract operator.

Let H be a separable Hilbert space with the scalar product (·, ·) and the norm
|| · || and A : H → H be an arbitrary unbounded positive selfadjoint operator in H.
Suppose that A has a complete in H system of orthonormal eigenfunctions {vk}
and a countable set of nonnegative eigenvalues λk. It is convenient to assume that
the eigenvalues do not decrease as their number increases, i.e. 0 < λ1 ≤ λ2 · ·· →
+∞.

Using the definitions of a strong integral and a strong derivative, fractional ana-
logues of integrals and derivatives can be determined for vector-valued functions
(or simply functions) h : R+ → H, while the well-known formulae and properties
are preserved (see, for example, [1]). Recall that the fractional integration of order
σ < 0 of the function h(t) defined on [0,∞) has the form

∂σ
t h(t) =

1
Γ(−σ)

t∫

0

h(ξ)
(t− ξ)σ+1

dξ, t > 0, (1.1)

provided the right-hand side exists. Here Γ(σ) is Euler’s gamma function. Using
this definition one can define the Riemann - Liouville fractional derivative of order
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ρ, m− 1 < ρ < m, as

∂ρ
t h(t) =

dm

dtm
∂ρ−m

t h(t).

Note that if ρ = m, then fractional derivatives coincides with the ordinary
classical derivative of the m order.

Let ρ ∈ (m − 1,m) be a fixed number and let C((a, b); H) stand for a set of
continuous functions u(t) of t ∈ (a, b) with values in H.

Let τ be an arbitrary real number. We introduce the power of operator A,
acting in H according to the rule

Aτh =
∞∑

k=1

λτ
khkvk,

where hk is the Fourier coefficients of a function h ∈ H: hk = (h, vk). Obviously,
the domain of this operator has the form

D(Aτ ) = {h ∈ H :
∞∑

k=1

λ2τ
k |hk|2 < ∞}.

For elements of D(Aτ ) we introduce the norm

||h||2τ =
∞∑

k=1

λ2τ
k |hk|2 = ||Aτh||2,

and together with this norm D(Aτ ) turns into a Hilbert space.
For ρ and an arbitrary complex number µ, by Eρ,µ(z) we denote the Mittag-

Leffler function with two parameters:

Eρ,µ(z) =
∞∑

n=0

zn

Γ(ρn + µ)
. (1.2)

If the parameter µ = 1, then we have the classical Mittag-Leffler function: Eρ(z) =
Eρ,1(z).

We also need some estimates for the Mittag-Leffler function. For sufficiently
large t one has the asymptotic estimate (see, examples, [4], p. 13, [2], p. 75)

Eρ,ρ+1(−t) =
1
t

(
1 + O

(
1
t

))
, t > 1, (1.3)

and for any complex number µ one has

0 < |Eρ,µ(−t)| ≤ C

1 + t
, t > 0. (1.4)

Proposition 1.1. Let m− 1 < ρ < m and λ > 0. Then for all positive t one has

∂ρ−j
t

(
tρ−jEρ,ρ−j+1(−λtρ)

)
= Eρ(−λtρ), j = 1, 2, ...,m. (1.5)

Proof. If j = 1, 2, ...,m − 1 the equation (1.5) follows from the formula (4.10.14)
in ([2]). if j = m by definition of the fractional integration (1.1) we have

∂ρ−m
t

(
tρ−mEρ,ρ−m+1(−λtρ)

)
=

1
Γ(m− ρ)

t∫

0

ξρ−mEρ,ρ−m+1(−λξρ)
(t− ξ)ρ−m+1

dξ =
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=
1

Γ(m− ρ)

∞∑

k=0

(−λ)k

Γ(ρk + ρ−m + 1)

t∫

0

ξρ−m+ρk

(t− ξ)ρ−m+1
dξ =

=
1

Γ(m− ρ)

∞∑

k=0

(−λ)k

Γ(ρk + ρ−m + 1)
tρk

1∫

0

sρ−m+ρk(1− s)−ρ+m−1ds.

On the other hand, using the properties of Euler’s beta function B(a, b), we obtain
1∫

0

sρ−m+ρk(1− s)−ρ+m−1ds = B(ρ−m + ρk + 1, m− ρ) =

=
Γ(ρ−m + ρk + 1)Γ(m− ρ)

Γ(ρk + 1)
.

By virtue of the definition of the Mittag-Leffler function Eρ(z) this implies the
statement of the proposition. ¤

Proposition 1.2. The Mittag-Leffler function of negative argument Eρ(−x) is
monotonically decreasing function for all 0 < ρ < 1 and

0 < Eρ(−x) < 1. (1.6)

Consider the following problem
{

∂ρ
t u(t) + Au(t) = f, t > 0;

lim
t→0

∂ρ−j
t u(t) = ϕj , j = 1, 2, ...,m

(1.7)

where functions f(t) ∈ C((0,∞); H) and ϕj ∈ H. These problems are also called
the forward problems.

Definition 1.3. A function u(t) ∈ C((0,∞); H) with the properties ∂ρ
t u(t),

Au(t) ∈ C((0,∞); H) and satisfying conditions (1.7) is called the solution of the
problem (1.7).

In the present paper we prove the existence and uniqueness theorems for solu-
tions of problems (1.7).

Theorem 1.4. Let functions ϕj and f ∈ H. Then the problem (1.7) has a unique
solution and this solution has the following form

u(t) =
∞∑

k=1




m∑

j=1

ϕjktρ−jEρ,ρ−j+1(−λktρ) + fk tρEρ,ρ+1(−λktρ)


 vk. (1.8)

where are fk, ϕjk – the Fourier coefficients of the functions f and ϕj respectively.

Proof. Existence. In the section we will prove existence and uniqueness solution
of problem (1.7). It is not hard to verify that the series (1.8) is a formal solution
to problem (1.7) (see, for example, [2], p. 173). In order to prove that function
(1.8) is actually a solution to the problem, it remains to substantiate this formal
statement, i.e. to show that the operators A and ∂ρ

t can be applied term-by-term
to series (1.8).
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Let Sn(t) be the partial sum of series (1.8). First, we prove that series (1.8) are
converges. Due to the Parseval equality we may write

||Sn(t)||2 =
n∑

k=1

∣∣∣∣∣∣

m∑

j=1

ϕjktρ−jEρ,ρ−j+1(−λktρ) + fk tρEρ,ρ+1(−λktρ)

∣∣∣∣∣∣

2

.

Then, we have

||Sn(t)||2 ≤
m∑

j=1

n∑

k=1

|ϕjktρ−jEρ,ρ−j+1(−λktρ)|2+

+
n∑

k=1

|fk tρEρ,ρ+1(−λktρ)|2 =
m∑

j=1

S1
nj + S2

n.

where

S1
nj =

n∑

k=1

|ϕjktρ−jEρ,ρ−j+1(−λktρ)|2,

S2
n =

n∑

k=1

|fk tρEρ,ρ+1(−λktρ)|2.

Using inequality (1.4) estimate each sum

S1
nj ≤

n∑

k=1

|ϕjk|2t2ρ−2j

∣∣∣∣
1

1 + λktρ

∣∣∣∣
2

≤ 1
λ2

1t
2j

n∑

k=1

|ϕjk|2.

and

S2
n ≤

n∑

k=1

|fk|2t2ρ

∣∣∣∣
1

1 + λktρ

∣∣∣∣
2

≤ 1
λ2

1

n∑

k=1

|fk|2

If ϕj , f ∈ H then sum (1.8) is converges and u(t) ∈ C((0,∞); H).
Now let’s estimate Au(t)

ASn(t) =
n∑

k=1




m∑

j=1

ϕjktρ−jEρ,ρ−j+1(−λktρ) + fk tρEρ,ρ+1(−λktρ)


 λkvk. (1.9)

Due to the Parseval equality we may write

||ASn(t)||2 =
n∑

k=1

λ2
k

∣∣∣∣∣∣

m∑

j=1

ϕjktρ−jEρ,ρ−j+1(−λktρ) + fk tρEρ,ρ+1(−λktρ)

∣∣∣∣∣∣

2

.

Then, we have

||ASn(t)||2 ≤
m∑

j=1

n∑

k=1

λ2
k|ϕjktρ−jEρ,ρ−j+1(−λktρ)|2+

+
n∑

k=1

λ2
k|fk tρEρ,ρ+1(−λktρ)|2 =

m∑

j=1

AS1
nj + AS2

n.
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Using inequality (1.4) estimate each sum

AS1
nj =

n∑

k=1

λ2
k|ϕjktρ−jEρ,ρ−j+1(−λktρ)|2 ≤

≤
n∑

k=1

λ2
k|ϕjk|2t2ρ−2j

∣∣∣∣
1

1 + λktρ

∣∣∣∣
2

≤ 1
t2j

n∑

k=1

|ϕjk|2.

and

AS2
n =

n∑

k=1

λ2
k|fk tρEρ,ρ+1(−λktρ)|2 ≤

n∑

k=1

λ2
k|fk|2t2ρ

∣∣∣∣
1

1 + λktρ

∣∣∣∣
2

≤
n∑

k=1

|fk|2.

Hence, if ϕj , f ∈ H we obtain Au(t) ∈ C((0,∞); H).

Further, from equation (1.7) one has ∂ρ
t Sn(t) = −ASn(t) +

n∑
k=1

fk(t)vk, t > 0.

Therefore, from the above reasoning, we have ∂ρ
t u(t) ∈ C((0,∞); H).

Now, let’s estimate ∂ρ−j
t u(t), j = 1, 2, ...,m we use (1.5) to create the following

equation

∂ρ−j
t Sn(t) =

n∑

k=1




m∑

j=1

ϕjkEρ(−λktρ) + fk tjEρ,j+1(−λktρ)


 vk, j = 1, 2, ...,m.

(1.10)
Due to the Parseval equality we may write

||∂ρ−j
t Sn(t)||2 =

n∑

k=1

∣∣∣∣∣∣

m∑

j=1

ϕjkEρ(−λktρ) + fk tjEρ,j+1(−λktρ)

∣∣∣∣∣∣

2

≤

≤
m∑

j=1

n∑

k=1

|ϕjkEρ(−λktρ)|2 +
n∑

k=1

|fk tjEρ,j+1(−λktρ)|2 =
m∑

j=1

I1j + I2.

Using inequality (1.6) estimate each sum

I1j ≤
n∑

k=1

|ϕjk|2

and

I2 ≤
n∑

k=1

|fk|2 t2j .

Therefore, if ϕj , f ∈ H, then (1.10) are converges. Thus, we have completed the
rationale that (1.8) is a solution to the problem (1.7).

Uniqueness. The uniqueness of the solution can be proved by the standard
technique based on completeness of the set of eigenfunctions {vk} in H (see, ex-
ample [5]).

Let us prove that, if u(t) is a solution to the homogeneous problem:

∂ρ
t u(t) + Au(t) = 0, t > 0; (1.11)

lim
t→0

∂ρ−j
t u(t) = 0 j = 1, 2, ..., m, (1.12)
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then u(t) ≡ 0.
Let u(t) be a solution to this problem and uk(t) = (u(t), vk). Then, by virtue

of equation (1.13) and the selfadjointness of operator A,

∂ρ
t uk(t) = (∂ρ

t u(t), vk) = −(Au(t), vk) = −(u(t), Avk) = (1.13)

−(u(t), λkvk) = −λk(u(t), vk) = −λkuk(t), t > 0.

Thus, we have the following problem

∂ρ
t uk(t) + λkuk(t) = 0, t > 0; lim

t→0
∂ρ−j

t u(t) = 0, j = 1, 2, ..., m.

Therefore, it follows that uk(t) ≡ 0 for all k (see, examples [2], p.173, [4], p. 16
and [28]). Consequently, due to the completeness of the system of eigenfunctions
{vk}, we have u(t) ≡ 0, as required. ¤

2. Inverse problem of determining the heat source density

The inverse problems of determining the right-hand side (the heat source den-
sity) of various subdiffusion equations have been considered by a number of authors
(see, e.g. [10] - [21] and the bibliography therein). You can completely be informed
about ”Inverse problems ” in the work [7]. The recent article [22] - [23] is de-
voted to the inverse problem for the subdiffusion equation with Riemann-Liouville
derivatives.

In [25] the authors of this paper considered an inverse problem for the simul-
taneous determination of the order of the Riemann-Liouville fractional derivative
and the source function in the subdiffusion equations. Using the classical Fourier
method, the authors proved the uniqueness and existence theorem for this inverse
problem.

In [26] - [27], the authors investigated the inverse problem of determining the
order of the fractional derivative in the subdiffusion equation and in the wave
equation, respectively.

Let us consider the inverse problem
{

∂ρ
t u(t) + Au(t) = f, t > 0;

lim
t→0

∂ρ−j
t u(t) = ϕj , j = 1, 2, ..., k

(2.1)

with the additional condition

u(τ) = Ψ, 0 < τ < T, (2.2)

in which the unknown element f ∈ H, characterizing the action of heat sources,
does not depend on t and Ψ, ϕ ∈ H are given elements, T > 0 is constant.

Definition 2.1. A pair {u(t), f} of function u(t) ∈ C((0,∞); H) and f ∈ H with
the properties ∂ρ

t u(t), Au(t) ∈ C((0,∞); H) and satisfying conditions (2.1), (2.2)
is called the solution of the inverse problem (2.1), (2.2).

In this section we will prove next theorem.
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Theorem 2.2. Let ϕ,Ψ ∈ D(A). Then the inverse problem (2.1), (2.2) has a
unique solution {u(t), f} and this solution has the following form

u(t) =
∞∑

k=1




m∑

j=1

ϕjktρ−jEρ,ρ−j+1(−λktρ) + fk tρEρ,ρ+1(−λktρ)


 vk. (2.3)

where are the numbers

fk =
Ψk

τρEρ,ρ+1(−λkτρ)
−

m∑

j=1

ϕjkEρ,ρ−j+1(−λkτρ)
τ jEρ,ρ+1(−λkτρ)

, (2.4)

and

f(x) =
∞∑

k=1

Ψk

τρEρ,ρ+1(−λkτρ)
vk −

∞∑

k=1

m∑

j=1

ϕjkEρ,ρ−j+1(−λkτρ)
τ jEρ,ρ+1(−λkτρ)

vk. (2.5)

Proof. Existence. We indicated above, that if f is known and since f does not
depend on t, then the unique solution of the problem (2.1) has the form (2.3).

By virtue of an additional condition (2.2) and completeness of the system {vk}
we obtain:

m∑

j=1

ϕjkτρ−jEρ,ρ−j+1(−λkτρ) + fk τρEρ,ρ+1(−λkτρ) = Ψk.

After simple calculations, we get

fk =
Ψk

τρEρ,ρ+1(−λkτρ)
−

m∑

j=1

ϕjkEρ,ρ−j+1(−λkτρ)
τ jEρ,ρ+1(−λkτρ)

≡ fk,1 +
m∑

j=1

fjk,2. (2.6)

With these Fourier coefficients we have the above formal series (2.5) for the un-

known function f : f =
∞∑

k=1

(
fk,1 +

m∑
j=1

fjk,2

)
vk.

Let us reveal the convergence of series (2.5). If Fj the partial sums of series
(2.5), then by virtue of the Parseval equality we may write

||Fn||2 =
n∑

k=1

[
fk,1+

m∑

j=1

fjk,2

]2

≤ C

n∑

k=1

f2
k,1+C

m∑

j=1

n∑

k=1

f2
jk,2 ≡ CI1,n +C

m∑

j=1

I2j,n.

(2.7)
where C > 0. Then for I1,n we have following estimation

I1,n ≤
n∑

k=1

|Ψk|2
|τρEρ,ρ+1(−λkτρ)|2 .

Using the asymptotic estimate (see, sample, [9], p. 134):

Eρ,ρ+1(−t) = t−1 + O(t−2), (2.8)

we get

I1,n ≤
n∑

k=1

λ2
k|Ψk|2(

1 + O
(
(−λkτρ)−1

))2 ≤ C

n∑

k=1

λ2
k|Ψk|2 ≤ C||Ψ||21.
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Therefore, using |Eρ,ρ−j+1(−λkτρ)| ≤ 1 we have

I2j,n ≤
n∑

k=1

∣∣∣∣
ϕjkEρ,ρ−j+1(−λkτρ)

τ jEρ,ρ+1(−λkτρ)

∣∣∣∣
2

≤
n∑

k=1

|ϕjk|2
τ2j |Eρ,ρ+1(−λkτρ)|2 .

By virtue of (2.8),

I2j,n ≤
n∑

k=1

λ2
k|ϕk|2

τ2j−2ρ
(
1 + O

(
(−λkτρ)−1

))2 ≤ C

n∑

k=1

λ2
k|ϕk|2 ≤ C||ϕ||21.

Thus, if ϕ, Ψ ∈ D(A), then from estimates of I1,n, I2j,n and (2.7) we obtain
f ∈ H.

After finding the unknown function f ∈ H, the fulfillment of the conditions of
Definition 2.1 for function u(t), defined by the series (2.3) is proved in exactly the
same way as with Theorem 1.4.

Uniqueness. Suppose we have two solutions: {u1(t), f1} and {u2(t), f2}. It is
required to prove u(t) ≡ u1(t)−u2(t) ≡ 0 and f ≡ f1− f2 = 0. Since the problem
is linear, to determine u(t) and f we have the problem:

∂ρ
t u(t) + Au(t) = f, t > 0; (2.9)

lim
t→0

∂ρ−j
t u(t) = 0, j = 1, 2, ..., m, (2.10)

u(τ) = 0. (2.11)
Let u(t) be a solution to this problem and uk(t) = (u(t), vk). Then, by virtue

of equation (2.9) and the selfadjointness of operator A,

∂ρ
t uk(t) = (∂ρ

t u(t), vk) = −(Au(t), vk) + (f, vk) = −(u(t), Avk) + (f, vk) = (2.12)

−(u(t), λkvk) + fk = −λk(u(t), vk) + fk = −λkuk(t) + fk, t > 0.

Thus, taking into account (2.10), we have the following problem

∂ρ
t uk(t) + λkuk(t) + fk = 0, t > 0; lim

t→0
∂ρ−j

t u(t) = 0.

Then the solution to this problem has the form (see,example, [2], p.174, [3], [4], p.
17)

uk(t) = fk

t∫

0

ηρ−1Eρ,ρ(−λkηρ)dη = fk · tρ Eρ,ρ+1(−λktρ).

Using (2.11), we have

uk(τ) = fk · τρ Eρ,ρ+1(−λkτρ) = 0.

Hence, due to the properties of the Mittag-Leffler function Eρ,ρ+1(−λτρ) 6= 0. It
follows from here fk = 0, for all k ≥ 1. In consequence, from the completeness
of the system of eigenfunctions {vk}, we finally obtain f = 0 and u(t) ≡ 0, as
required.

¤
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