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Abstract. We present a methodology to study discrete time financial models with one risky asset

and a risk free asset that may thought to result as a discretization of a suitable continuous time

model. In a numerical example we compare the pricing results, obtained with these models, with
results obtained from the related continuous time models. Our approach relies on some known

important results describing a particular class of discrete time models – the conditionally Gaussian
models – a class that, regardless of its particular definition, contains many interesting instances.

We aim at a better understanding of the implications of the discretization procedures which

are inevitable, both at the parameter estimation and derivative price computation moments, by
reason of the observational and computational limitations. We also present a preliminary study

of a a model of stochastic differential equations for commodity spot and futures prices that may

be studied with the proposed methodology. For that purpose we summarize a naive theory of Ito
integration in Hilbert space.

The first author dedicates this work to Hans Föllmer to whom he owes warm encouragement in the beginning of his career and the most

important initiatives that launched Financial Mathematics studies in Portugal.

1. Introduction

Given a financial market model with dynamics defined by stochastic differential equations (SDE)
we have that, often, the estimation procedures rely in the observation of the processes at discrete
times and so, it would be natural to consider discrete time models associated to the initially given
continuous time models and with the estimating procedures and the estimates obtained. Important
references for the study of discrete time models are [7] and [20]. The issue of completeness of discrete
time models is a most decisive one and entails a limitation that must be taken into account, namely,
the fact that the probability space of an arbitrage free and complete model of d risky assets with a
finite set of dates {0, 1, 2, . . . , T} has a number of atoms bounded by (d + 1)T (see [7, p. 231] or,
for a deeper analysis [10]). Of course when studying discrete models obtained by discretization of
continuous models, which is the purpose of the present work, we may suppose – aiming at some
convergence results – that we consider discretization intervals thiner and thiner and this corresponds
to a set of dates with a larger and larger number of elements; we observe that, no matter what
price unit is used, the set of possible price values of tradable assets is finite. The convergence of
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discrete models to continuous ones is a delicate subject (see, for instance, [15] and the important
reference [18]).

As a first approach, we propose to consider the Euler-Maruyama discretization scheme (see [9, p.
62]) that allows us to consider models for which it is possible to retrieve a computable martingale
measure. We illustrate the approach in the case of a SDE model with time varying deterministic
coefficients, dealt in Section 2.2 below. In order to fully study models given by Euler discretization
of a continuous time model we should establish the appropriate convergence results detailing the
kind of approximation that we may get from the estimating procedures to be utilized to fit the
discretized model to real data. In this preliminary work we restrict our presentation mostly to
some computational aspects of an example.

Also, we only outline the approach for the case of the coefficients being allowed to be random,
in Section 6.

2. The non random coefficients case

The case of discretization of stochastic differential equations with non random drift and volatility
coefficients is treated in this section.

2.1. Black-Scholes model with varying coefficients. Let (Ω,F ,P) be a complete probability
space and (Bt)t≥0 a standard Brownian motion and F = (Fn)n≥0 the Brownian filtration. For the
financial market model we may consider a SDE of the type:

dSt = µtStdt+ σtStdBt , t ∈ [0, T ] , S0 = s0 ∈ R∗+ ,

as a model for stock prices and admitting a strong solution. We suppose that the risk free rate
process (ρt)t∈[0,T ] of the market satisfies dρt = ρtdt, t ∈ [0, T ], ρ0 = 1 and that (µt)t∈[0,T ], (σt)t∈[0,T ]

and (ρt)t∈[0,T ] are predictable with respect to F. Then (see [5, pp. 160]), the discounted price

process (S̃t)t∈[0,T ] given by,

dS̃t = (µt − ρt) S̃tdt+ σtS̃tdBt , t ∈ [0, T ] , S0 = s0 ∈ R∗+ , (2.1)

has a solution given by:

S̃t = exp

(∫ t

0

(
µs − ρs −

σ2
s

2

)
ds+

∫ t

0

σsdBs

)
.

And so, we have that the process (Xt)t∈[0,T ] defined by:

Xt = log
(
S̃t

)
,

verifies the SDE given by,

dXt =

(
µt − ρt −

σ2
t

2

)
dt+ σtdBt . (2.2)

We now consider the Euler-Maruyama discretization of a stochastic differential equation having in
mind applying it to an equation such as (2.2). Let T < +∞ be the temporal time horizon,and for
a given integer N ≥ 1 let:

∆t := ∆N t =
T

N
.

Suppose that (Xt)t∈[0,T ] is a continuous time stochastic process adapted to Brownian filtration
(Ft)t∈[0,T ]. Consider the discretized stochastic process given by:

Xk∆t , k = 0, 1, . . . , N ,
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EULER DISCRETIZATION OF CONTINUOUS MODELS 3

that has a natural interpretation as the process of observations of the continuous time process made
at the epochs 0,∆t, 2∆t, . . . , T . Let us consider the discrete time stochastic process defined by:

∀k ≥ 0 , X(k+1)∆t = Xk∆t + µ ((k + 1)∆t) ∆t+ σ ((k + 1)∆t) ∆t · Zk+1 , (2.3)

where we have that (Zk)k≥1 is a sequence of standardized normal random variables. In Section 2.3,
using the results of Section 2.2 we will illustrate amethodology to the practical use of this Euler-
Maruyama discretization in a simple market model.

2.2. The Girsanov change of probability. In the simpler case – for formula (2.3) – in which
(µt)t∈[0,T ], (σt)t∈[0,T ] are non random, we have that F = (Fn)n≥0 may be the natural filtration
generated by (Zk)k≥0 or, equivalently by (Xk∆)k≥0 – as the coefficients µ e σ are non random –
and we have the following known result.

Proposition 2.1. The sequence of random variables defined by,

Yk = exp

(
−

k∑
n=0

µ (n∆t)

σ (n∆t)
Zn −

k∑
n=0

µ (n∆t)
2

2σ (n∆t)
2

)
,

is an F-martingale and the process (Xk∆tYk)n≥0 is a F-martingale.

Proof. For completeness we present a proof. Let us now show that

E
[
X(k+1)∆tYk+1 | Fk

]
= Xk∆tYk , (2.4)

Consider for simplicity, that if we have,

Dk := µ ((k + 1)∆t) ∆t+ σ ((k + 1)∆t) ∆t · Zk+1 ,

we then have X(k+1)∆t = Xk∆t +Dk and, if we have,

Wk := exp

(
−µ ((k + 1)∆t)

σ ((k + 1)∆t)
Zk+1 −

µ ((k + 1)∆t)
2

2σ ((k + 1)∆t)
2

)
, (2.5)

we also have that Yk+1 = Yk ·Wk. As so, by the usual properties of conditional expectations, we
have that:

E
[
X(k+1)∆tYk+1 | Fk

]
= E [(Xk∆t +Dk) · Yk ·Wk | Fk] =

= E [Xk∆t · Yk ·Wk | Fk] +E [Dk · Yk ·Wk | Fk] =

= Xk∆t · Yk ·E [Wk | Fk] + Yk ·E [Dk ·Wk | Fk] =

= Xk∆t · Yk ·E [Wk] + Yk ·E [Dk ·Wk] ,

given that Zk+1 – which is the random variable that enters the composition of Dk and Wk – is
independent of Fk. Let us now observe that if we have X _ N (0, 1), then we must have that

E
[
euX

]
= e

u2

2 , (2.6)

and by derivation or direct computation,

E
[
X · euX

]
= u · eu

2

2 . (2.7)

As so, we have that:
Xk∆t · Yk ·E [Wk] = Xk∆t · Yk ,

as by formula (2.6) we have that: E [Wk] = 1. It now holds that:

E [Dk ·Wk] = µ ((k + 1)∆t) ∆t+ σ ((k + 1)∆t) ∆t ·E [Zk+1 ·Wk] = 0 ,
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4 MANUEL L. ESQUÍVEL AND NADEZHDA P. KRASII

coming from the conjunction of formula (2.7), and the following:

E [Zk+1 ·Wk] = E
[
Zk+1 · e−

µ((k+1)∆t)
σ((k+1)∆t)

Zk+1

]
· e−

µ((k+1)∆t)2

2σ((k+1)∆t)2 =

= −µ ((k + 1)∆t) ∆t

σ ((k + 1)∆t) ∆t
,

thus ending the proof of the propostion. �

As a consequence, by considering the probability space (Ω,F ,Q) with Q defined by:

∀F ∈ F Q [F ] =

∫
F

YNdP ,

also represented by dQ = YNdP – with YN the Radon-Nicodym density of Q relatively to a P –
we have that the discretized process is a Q martingale with repect to F = (Fn)n≥0 that is, the
following known proposition proved for completness.

Proposition 2.2. In the space (Ω,F ,Q) the process (Xk∆t)k=0,1,...,N is an F martingale.

Proof. We are now going to show that:

EQ
[
X(k+1)∆t | Fk

]
= Xk∆t .

Let Uk+1 be a version of EQ
[
X(k+1)∆t | Fk

]
. We have to show that:

∀F ∈ Fk ,
∫
F

Uk+1dQ =

∫
F

XkdQ ,

which is equivalent to show that:

∀F ∈ Fk ,
∫
F

Uk+1YNdP =

∫
F

XkYNdP ,

or equivalently, with the notations introduced in formula (2.5),

∀F ∈ Fk ,
∫
F

Uk+1Yk+1

(
N−1∏
n=k+1

Wn

)
dP =

∫
F

XkYk

(
N−1∏
n=k

Wn

)
dP . (2.8)

Let us now observe that
∏N−1
n=k+1Wn is independent of Fk+1 and that Uk+1 is measurable with

respect to Fk and so, also, with respect to Fk+1 and Yk+1 is measurable with respect to Fk+1;
being so we then have:∫

F

Uk+1Yk+1

(
N−1∏
n=k+1

Wn

)
dP =

∫
Ω

Uk+1Yk+11IF

(
N−1∏
n=k+1

Wn

)
dP =

= EP

[
Uk+1Yk+11IF

(
N−1∏
n=k+1

Wn

)]
=

= EP [Uk+1Yk+11IF ]EP

[
N−1∏
n=k+1

Wn

]
=

= EP [Uk+1Yk+11IF ] =

∫
F

Uk+1Yk+1dP ,
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EULER DISCRETIZATION OF CONTINUOUS MODELS 5

as by the independence, and again by formula (2.6),

EP

[
N−1∏
n=k+1

Wn

]
= 1 .

With a similar reasoning we have that:∫
F

XkYk

(
N−1∏
n=k

Wn

)
dP =

∫
F

XkYkdP

that is, the equality (2.8), that we want to hold true, is equivalent to the equality:

∀F ∈ Fk ,
∫
F

Uk+1Yk+1dP =

∫
F

XkYkdP ,

but this formula is precisely the formula (2.4) and so the theorem is proved. �

Remark 2.3. We observe that we may now compute arbitrage free prices of derivatives in a financial
a market model with discounted prices prices given by formula (2.2) in the case where the coefficients
are deterministic. For that it is required to estimate the coefficients (see for instance [19]). We
present a first numerical study in Section 2.3 to illustrate this computational possibility.

The result in proposition 2.2 may be seen as a particular case of the two important results that
we now also recall, for further reference, on the change of probability measure and its influence in
the characterization of martingales.

Theorem 2.4 (Conditional expectation and change of probability). Let (Ω,F) be a measurable
space and let P and Q be two probabilities over this space; let λ : Ω 7→ R+ be a measurable function
over this space such that:

∀F ∈ F , Q [F ] =

∫
F

λdP .

Consider G ⊂ F a sub σ-algebra of Fand also X a random variable integrable with respect to Q.then
we have that λX is integrable with respect to P and we have that:

EQ [X | G] =
EP [λX | G]

EP [λ | G]
.

Proof. See theorem 10.5 in [12, p. 240]). �

This second result which is a consequence of the first shows the altered structure of a martingale
after a change of probability absolutely continous. (see theorem 10.6 in [12, p. 241]).

Theorem 2.5 (Martingales and change of probability). Let (λt)t∈[0,T ] be a F = (Ft)t∈[0,T ] non
negative martingale in (Ω,F ,P) such that: E [λT ] = 1. Consider the probability Q defined over
(Ω,F) by:

∀F ∈ F , Q [F ] =

∫
F

λT dP .

We then have that:

(1) For t ∈ [0, T ] and sufficient integrability conditions on X,

EQ [X | Ft] = EP
[
λT
λt
X | Ft

]
,

39



6 MANUEL L. ESQUÍVEL AND NADEZHDA P. KRASII

(2) and if X is a random variable with respect to (Ω,Ft) then, for s ≤ t:

EQ [X | Fs] = EP
[
λt
λs
X | Fs

]
.

(3) The stochastic process X = (Xt)t∈[0,T ] is a martingale with respect to Q if and only if the
stochastic process (λt ·Xt)t∈[0,T ] is a martingale with respect to P.

2.3. A first numerical study. In this section we illustrate the results of Sections 2.1 and 2.2
with a numerical application for the case of non random coefficients. We consider a discount rate
given by the daily Libor interest rates rdate, with date ∈ {20100901, . . . , 20190614} and we have a
range given by:

r20100901 = 0.22625% and r20190614 = 2.34663% .

The discount factor, at each date, used is given by the exponentiated negative accumulated Libor
rates, to that date:

ddate = exp

(
−

date∑
k=1

rk
100

)
which is discrete form of the usual discount factor (see [5, pp. 160,161]). And we have:

d20100901 = 0.999977% and r20190614 = 0.881969% .

The accumulated Libor rates are depicted in Figure 1. The chosen stock prices were Apple prices

2010 2012 2014 2016 2018
0

50

100

150

200

US$

Libor Discounted Apple Prices since 01 Sep 2009

2012 2014 2016 2018

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Libor Discount Factor since 01 Sep 2009

Figure 1. Libor discounted Apple prices and Libor discount factor since 2010

pdate, with date ∈ {20090901, . . . , 20190614}, with a range given by:

p20090901 = 23.614% and p20190614 = 192.74% .

The Apple discounted prices with the Libor rates – pddate = pdate× ddate – are shown in Figure 1. In
order to proceed to the estimation of the coefficients of the Black-Scholes model with time varying
coefficients we consider the usual logarithmic returns given by:

Rdate+∆t :=
1

∆t
ln

(
pddate+∆t

pddate

)
.

In general the non parametric estimation of the coefficients of the Black-Scholes model with time
varying drift and diffusion is delicate see [17, pp. 257–282]. In the example under scrutiny we will
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Figure 2. Windowed estimated drifts (left) and volatilities (right) with window
M = 300

use the following observation to obtain sequences of parameters coherent with the coefficients µ and
σ in the Euler-Maruyama discretization formula (2.3). As µ and σ are supposed to be non random,
we may assume the normality of the returns Rdate calculated daily – that is with ∆t = 1 as we
have daily observations In order to have time varying coefficients we may determine the coefficients
– in the usual way, as independent observations of a Gaussian random variable – by considering a
moving window of M days and for date ≥M + 1:

σ2
date,M,∆t :=

1

∆t
V [Rdate, Rdate−1, . . . Rdate−M ] , (2.9)

and

µdate,M,∆t :=
1

∆t
E [Rdate, Rdate−1, . . . Rdate−M ] +

1

2
σdate,M,∆t . (2.10)

In Figure 2 we show the estimated quantities to be used as coefficients with a window M = 300
and ∆t = 1. We do not claim that these moving averages are bona fide estimators of the functions
µt and σt; the detailed study of these quantities - possibly as estimators of µt and σt with good
properties - is postponed to future work. Nevertheless we will use these sequences to illustrate
the methodology proposed. With the estimated drifts and volatilities we may now determine the
Girsanov density for the martingale measure, given by

YN := exp

(
−

N∑
n=1

µ (n∆t)

σ (n∆t)
Zn −

N∑
n=1

µ (n∆t)
2

2σ (n∆t)
2

)
, (2.11)

In order to have a perception of this density we simulated a sample of values of this density; the
graphical representation is given in Figure 3.

We may now proceed to the computation of the price of a call option both in two different ways:
first by the known extension of the Black-Scholes formula to the case of time varying non random
coefficients πBS(K) and then, by Monte Carlo simulation of the discounted cash-flow of the option
with the martingale measure, πQ(K), which is given by dQ = YNdP. Let us recall that, for a
derivative with cash flow given by X, we have by theorem 2.4:

πQ(K) = EQ [Xdexercise date] = EP [YNXdexercise date] .

In Table 1 we present two instances of computations of these two prices and in Remark 2.6 we
discuss the results obtained.
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Figure 3. Monte Carlo simulation of the Girsanov density and correspondent histogram

In Figure 4 we show a simulated price trajectory and a sample of the discounted call cash flow.
We now detail some remarks about the computational procedures.
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Simulated stock discounted prices histogram
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Simulated call option prices histogram

Figure 4. A trajectory of a simulated price and the simulated option price

(1) We observe that in formula (2.11) giving the Girsanov density we have that,

ln (YN ) = −
N∑
n=1

µ (n∆t)

σ (n∆t)
Zn −

N∑
n=1

µ (n∆t)
2

2σ (n∆t)
2 _ N

(
−

N∑
n=1

µ (n∆t)
2

2σ (n∆t)
2 ,

N∑
n=1

µ (n∆t)
2

σ (n∆t)
2

)
,

as the variables Zn for n = 1, 2, . . . , N are independent. In this particular case of the Black-
Scholes model with time varying coefficients, in order to simulate YN , we may replace an
iterative procedure by a direct simulation of a sample of the Gaussian random variable
ln (YN ).

(2) The computation of Black-Scholes prices was performed, according to [16, pp. 101–102]
or [5, p. 162] by replacing, in the usual Black-Scholes formula, the appropriate quantities
related to time varying interest rate and volatility. More precisely we have the arbitrage
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EULER DISCRETIZATION OF CONTINUOUS MODELS 9

free price, at time t = t0, of a call option with strike price K at maturity t = T is given by:

πBS(K) = St0Φ

 ln
(
St0
K

)
+
(∫ T

t0
r(u)du+ 1

2

∫ T
t0
σ2(u)du

)
√∫ T

t0
σ2(u)du

−
−Ke−

∫ T
t0
r(u)du

Φ

 ln
(
St0
K

)
+
(∫ T

t0
r(u)du− 1

2

∫ T
t0
σ2(u)du

)
√∫ T

t0
σ2(u)du

 ,

(2.12)

with as usually, Φ being the cumulative distribution function of a standard normal random
variable.

(3) In order to be able to use the estimated quantities for the drift and volatilities we computed
both the Monte Carlo simulated price and the Black-Scholes price at times t = T − 100 –
respectively t = T −1600 – with the maturity date being the last available date in our data,
to wit T = 20190614 – respectively, in the second example t = T − 1400. Considering the
Girsanov density parameters, for a general interval [T − α, T − β] by:

λT−βT−α =

T−β∑
k=T−α

(
µ (k∆t)

σ (k∆t)

)2

the algorithm was the following.

INPUT St0 , K, ∆t, λT−βT−α
M = Integer part (T/∆t)
FOR [ i = 1, i = number of repetitions , i+ +,
Sample := { Random Reals ∈ [0, 1]} (dimension M)

Si = St0 ×
∏T
k=T−100

(
1 + µ (k∆t) ∆t+ σ (k∆t)

√
∆t Sample [[i]]

)
W = exp

(
Random Real _ N

(
−λT−β

T−α
2 ,

√
λT−βT−α

))
S̃i = Si ×W × e−

∫ T
T−100

r(u)du

P̃i = (Si −K)+ ×W × e−
∫ T
T−100

r(u)du

]

PRINT S := Mean (S̃i), P = Mean (P̃i)

Some typical results of the application of this algorithm are presented in Table 1. We used interpo-
lation polynomials of degree 5 in order to have a regular functions to compute µ (k∆t) and σ (k∆t)
in the algorithm above; this is necessary because the computation procedure in formulas (2.9)
and (2.10) was carried for ∆t = 1 and so an interpolation is needed when we consider µ (k∆t) and
σ (k∆t) for ∆t < 1 as we did.

Remark 2.6 (Discussion of the results). As a measure of control, by the definition of the martingale
measure, we should have P = 139.597 ≈ St0 = 142.318 and P = 58.2951 ≈ St0 = 58.9574 for the
second interval of dates [T−1600, T−1400]; these may be considered reasonable approximations. As
a consequence we have credible correspondent arbitrage free prices for the call option of πQ(142) =
0.319551 and, for the second set of dates, πQ(50) = 8.86026. We observe that these prices are
not similar to the Black-Scholes prices πBS(K) = 12.2958 and respectively πBS(K) = 11.4588,
computed with the formula (2.12); there are several possible reasons for this discrepancy: the
possibility of more than one arbitrage free price given that the discretized model was not shown to

43



10 MANUEL L. ESQUÍVEL AND NADEZHDA P. KRASII

Call option Monte Carlo simulation and Black-Scholes prices

Monte Carlo
∆t St0 K P = EQ[Si] Repetitions Dates πQ(K)
10−4 142.318 142 139.597 4 · 103 [T − 100, T ] 0.319551
10−4 58.9574 50 58.2951 4 · 103 [T − 1600, T − 1400] 8.86026

Black-Scholes
∆t St0 K

∫ T

t0
r(u)du

∫ T

t0
σ2(u)du Dates πBS(K)

−− 142.318 142 0.0225872 0.0348842 [T − 100, T ] 12.2958
−− 58.9574 50 0.0021455 0.0731667 [T − 1600, T − 1400] 11.4588

Table 1. With 5 degree polynomial order of interpolation for the coefficients

be complete; the convergence of the discretized model to the continuous model was not established;

the quantities used as estimates for
∫ T
t0
σ2(u)du in the Black-Scholes formula that may not have the

adequate properties.

3. A coupled system of SDE for commodities

Another example of a continuous time model – with constant coefficients – that can be of interest
to study in the perspective of comparing results with the discretized model is the one presented
in this section. This model was first introduced in [1] in a very condensed form. The motivation
for the renewed study of this model comes from the possibility of considering a discretized model,
the need to develop the full proofs of the results announced and also a need of verification if the
previously observed relationships between futures and spot prices were modified after a decade.
The literature on models for future pricing has a variety of approaches (for instance [8]).

Spot

Futures

2012 2014 2016 2018
0

20

40

60

80

100

Oil Spot and Futures prices

Spot

Futures

2012 2014 2016 2018

1200

1400

1600

1800

Gold Spot and Futures prices

Figure 5. Oil and Gold futures and spot prices

The data presented comes from NYMEX (Oil futures 1), COMEX (Gold futures), EIA - US
Energy Information Administration (WTI oil spot price); gold spot price is available at a multiplicity
of sites and was obtained with Mathematica R©; LIBOR overnight rates were obtained at the Federal
Reserve Bank of St. Louis 2. The period was September 1, 2010 to February 15, 2019.

Remark 3.1. Some observations:

1NYMEX WTI Light Sweet Crude Oil futures (ticker symbol CL), the world’s most liquid and actively traded

crude oil contract.
2https://fred.stlouisfed.org/series/USDONTD156N
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Figure 6. Oil and Gold convenience yield computed with the overnight LIBOR rate

(1) We observe that the generalized convenience yield process is the stochastic process (yt)t≥0

such that, (rt)t≥0 being the spot interest rate process we have FTt = St e
(rt−yt)(T−t). Being

so, the formal definition of the convenience yield is, rt being the Libor interest rate,

yt := rt +
1

T − t
ln(

St
FTt

) .

(2) There is a remarkable superposition between the futures a and spot prices; these spot and
futures prices are not identical as can be seen in the convenience yield figures.

(3) The observed growth tendency in the generalized convenience yield is due, for the most
part, to the growth in the Libor rates; the observed structure in the logarithm of the ratios
of the spot and future prices seems to be of a white noise type.

4. The system of coupled SDE model

Theorem 4.1. Let the spot and futures prices be coupled by a system of SDE’s,
dSt
St

= kS(θS − log(Ft))dt+ σSdBt, S0 ∈ R+

dFt
Ft

= kF (θF − log(St))dt+ σF dBt, F0 ∈ R+ ,

(4.1)

where the process (Bt)t≥0 is a unidimensional Brownian process. A solution of this EDE system is
given by:

St = exp

(
cosh(

√
kSkF t)(((kSθS − σS

2
)− kS log(F0))−

−
√
kS

kF
sinh(

√
kSkF t)((kF θF − σF

2
)− kF log(S0))−

− cosh(
√
kSkF t)

∫ t

0

(

√
kS

kF
sinh(

√
kSkF s)kFσS + cosh(

√
kSkF s)kSσF )dBt+

+

√
kS

kF
sinh(

√
kSkF t)

∫ t

0

(

√
kF

kS
sinh(

√
kSkF s)kFσS + cosh(

√
kSkF s)kSσF )dBt

)
(4.2)
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and

Ft = exp

(
cosh(

√
kSkF t)(((kSθS − σS

2
)− kS log(F0))−

−
√
kF

kS
sinh(

√
kSkF t)((kF θF − σF

2
)− kF log(S0))+

+

√
kF

kS
sinh(

√
kSkF t)

∫ t

0

(

√
kS

kF
sinh(

√
kSkF s)kFσS + cosh(

√
kSkF s)kSσF )dBt−

− cosh(
√
kSkF t)

∫ t

0

(

√
kF

kS
sinh(

√
kSkF s)kFσS + cosh(

√
kSkF s)kSσF )dBt

)
.

(4.3)

Proof. By repeated use of Ito’s formula, this system of SDE can be written as a multidimensional
Ornstein-Uhlenbeck SDE.

dZt = AZtdt+AΣdBt (4.4)

with Zt = (Z1
t , Z

2
t )′, Σ = (σS , σF )′, the prime denoting the transposed vector or matrix, and the

matrix

A =

[
0 −kS
−kF 0

]
.

The interpretation of equation (4.4) is of a vectorial Ito process as in [21] or by the results of
Section 5. By similarity with the unidimensional case we have the following. The process:

Z̃t = eAtZ0 + eAt
(∫ t

0

e−AsAΣ dBs

)
(4.5)

is a solution for (4.4) SDE that is,∫ t

0

AZ̃sds = Z̃t − Z0 +

∫ t

0

AΣ dBs . (4.6)

We have, by a Fubini stochastic theorem (see [3, p.531], [4, p. 86] and [14]) that,∫ t

0

AZ̃sds =

∫ t

0

AeAsZ0ds+

∫ t

0

AeAs
(∫ s

0

e−AuAΣ dBu

)
ds =

=
[
eAs
]t
0
Z0 +

∫ t

0

(∫ t

u

AeAsds

)
e−AuAΣ dBu =

= eAtZ0 − Z0 +

∫ t

u

(
eAt − eAu

)
e−AuAΣ dBu =

= eAtZ0 − Z0 +

∫ t

u

eAte−AuAΣ dBu −
∫ t

u

eAue−AuAΣ dBu =

= eAtZ0 + eAt
∫ t

u

e−AuAΣ dBu − Z0 −
∫ t

u

AΣ dBu ,

that is, formula (4.6). We notice that eAt is a linear operator,∫ t

u

eAte−AuAΣ dBu = eAt
∫ t

u

e−AuAΣ dBu .

�
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Remark 4.2. The parameters of this model, kS , kF , θS , θF , σS , and σF do depend on the maturity
T of the futures contract.

4.1. Model Estimation. The estimation was performed using a quasi-likelihood estimation me-
thod adapted from [9, p. 122], which in turn, follows [6] and [22]. The main idea is to consider
a Euler discretization of each of the SDE’s and observe that an approximation of the transition
density of E[St+∆t | St = x] – and of E[Ft+∆t | Ft = x] – may be written explicitly. Let us detail
the procedure. We consider model in (4.1) in the form:{

St = kS(θS − log(Ft))Stdt+ σSStdBt, S0 ∈ R+

Ft = kF (θF − log(St))Ftdt+ σFFtdBt, F0 ∈ R+ .
(4.7)

The Euler discretization of the system in (4.7) is given by:{
St+∆t − St = kS(θS − log(Ft))St∆t+ σSSt (Bt+∆t −Bt) , S0 ∈ R+

Ft+∆t − Ft = kF (θF − log(St))Ft∆t+ σFFt (Bt+∆t −Bt) , F0 ∈ R+ .
(4.8)

By supposing in (4.8) that St and Ft are constant in intervals of length ∆t around regularly
spaced times t, we may consider that the law of St+∆t − St is approximately Gaussian given by
L(St+∆t − St) ≈ N (kS(θS − log(Ft))St∆t, (σ

SSt)
2∆t) with a correspondent result for the law of

Ft+∆t − Ft yielding L(Ft+∆t − Ft) ≈ N (kF (θF − log(St))Ft∆t, (σ
FFt)

2∆t). As a consequence
we have that approximations to the coupled transition densities of E[St+∆t | St = x] and of
E[Ft+∆t | Ft = x] are given by the coupled expressions pS(t, yS | xS) and pF (t, yF | xF ) in
formula (4.9).

pS(t, yS | xS) =
1√

2πt(σSxS)2
exp

(
−1

2

(yS − xS − kS(θS − log(xF ))xSt)
2

t(σSxS)2

)
pF (t, yF | xF ) =

1√
2πt(σFxF )2

exp

(
−1

2

(yF − xF − kF (θF − log(xS))xF t)
2

t(σFxF )2

) (4.9)

Now, considering sequences of observations (Si)i∈{0,1,...,N} and (Fi)i∈{0,1,...,N} at regularly spaced
time intervals – in our case, daily – the discretized system in (4.8) now corresponds to:{

Si+1 − Si = kS(θS − log(Fi))Si∆t+ σSSi (Bi+1 −Bi) , S0 ∈ R+

Fi+1 − Fi = kF (θF − log(Si))Fi∆t+ σFFi (Bi+1 −Bi) , F0 ∈ R+ ,
(4.10)

and so, by using the approximated coupled transition densities in (4.9) we have the log-likelihoods
– the so called locally Gaussian approximation– given by:

log(LSN ) = −1

2

(
N ln(2π∆t(σSSi)

2 +

N−1∑
i=0

(Si+1 − Si − kS(θS − log(Fi))Si∆t)
2

2(σSSi)2∆t

)

log(LFN ) = −1

2

(
N ln(2π∆t(σFFi)

2 +

N−1∑
i=0

(Fi+1 − Fi − kF (θF − log(Si))Fi∆t)
2

2(σFFi)2∆t

)
,

(4.11)

The method implemented – using Mathematica R© – consists on maximizing log(LSN ) and log(LFN ),
as functions of all the parameters, using the observed daily prices, in small intervals around values
determined by other estimators of the parameters. We could get, as usual, a robust estimation for
σS and σF .
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Data from Sep. 1, 2010 to Feb. 15, 2019

Gold
kS θS σS kF θF σF

−0.336745 7.19141 0.150781 0.302309 7.2997 0.161795

Oil
kS θS σS kF θF σF

0.0100322 6. 0.339887 0.4 4.2817 0.329276

Table 2. Estimated parameters

Remark 4.3. The estimated values in Table 2 suggest the following remarks. The model proposed
achieves a good replication of the overall behavior of the coupling between spot and futures prices.
The estimated generalized convenience yield, for both commodities, has a tendency to increase. For
Oil, the estimated long term returns verify: θF − σF /2kF = 4.14617 > θS − σS/2kS = 0.242381,
thus anticipating a possible – to be seen – disconnection between the value of the futures and of
the spot prices. For Gold, no such disconnection may be inferred as: θF − σF /2kF = 7.2564 ≈
θS − σS/2kS = 7.22517

Remark 4.4. Being able to estimate the parameters of the coupled model it is possible to find, a
martingale measure by means of Theorem 5.8 in Section 5. We will present in a future work a
numerical exploration of the Euler-Maruyama discretization methodology applied to this model.

5. Naive stochastic integration in Hilbert space

We propose next a streamlined approach to stochastic integration in Hilbert space that is suitable
for the example in Section 3. Complete studies of this subject are developed, for instance, in [13]
and [21]. Consider (Zt)t∈[0,T ] a process taking values in H, that is such that Zt ∈ H for t ∈ [0, T ].
Given (αk)k≥0 an orthonormal system we have the representation, for all t ∈ [0, T ]

Zs =

+∞∑
k=0

〈
Zs, αk

〉
αk ,

with convergence in H. We note that in the example of Section 3 we have only two dimensions
and so the above sum is a finite one. With (Bt)t≥0 being a standard Brownian process we have the
natural definitions for the integrals in H as superposition of usual integrals:∫ t

0

Zsds =

+∞∑
k=0

(∫ t

0

〈
Zs, αk

〉
ds

)
αk and

∫ t

0

ZsdBs =

+∞∑
k=0

(∫ t

0

〈
Zs, αk

〉
dBs

)
αk .

under sufficient conditions for these integrals to exist.

Theorem 5.1 (Linear operators and stochastic integration). Let Ψ ∈ L(H) be a bounded linear
operator on H. We then have that:

Ψ

(∫ t

0

ZsdBs

)
=

∫ t

0

Ψ (Zs) dBs

if both integrals exist.

Definition 5.2 (Ito’s type process). An Ito’s type process is defined by

Xt =

∫ t

0

µsds+

∫ t

0

σsdBs =

+∞∑
k=0

(∫ t

0

〈
µs, αk

〉
ds+

∫ t

0

〈
σs, αk

〉
dBs

)
αk , (5.1)
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with conditions such that the scalar integrals with the definitions above converge.

Of special interest are the operators that have a decomposable range.

Definition 5.3 (Decomposable range operators). Consider an operator Φ : H 7→ H, such that
there exists a sequence (ϕk)k≥0 of functions ϕk : R× [0, T ] 7→ R such that with

∀x ∈ R ∀t ∈ [0, T ]

+∞∑
k=0

|ϕk(x, t)|2 < +∞

such that for x ∈ H

x =

+∞∑
k=0

〈
x, αk

〉
αk and Φ(x) :=

+∞∑
k=0

ϕk
(〈
x, αk

〉
, ·
)
αk .

Remark 5.4 (Linear operators). If for some map ϕ : R× [0, T ] 7→ R – linear in the first coordinate
for all values of the second coordinate – we have that ϕk ≡ ϕ for all k ≥ 0 then Φ is a linear
operator.

Definition 5.5 (Regular decomposable range operators). Let Φ : H 7→ H be a decomposable
range operator. We say that Φ is in the space O2,1 if for all k ≥ 0, ϕk ∈ C2,1(R× [0, T ]).

Theorem 5.6 (Ito’s type formula). Denote the usual Ito’s scalar integrals in formula (5.1) by,

xt :=

∫ t

0

〈
µs, αk

〉
ds+

∫ t

0

〈
σs, αk

〉
dBs . (5.2)

We then have for Φ ∈ O2,1,

Φ(Xt) =

+∞∑
k=0

ϕk

(∫ t

0

〈
µs, αk

〉
ds+

∫ t

0

〈
σs, αk

〉
dBs, ·

)
αk =

=

+∞∑
k=0

(∫ t

0

[
∂ϕk
∂t

+
〈
µs, αk

〉∂ϕk
∂x

+
1

2

〈
σs, αk

〉2 ∂2ϕk
∂x2

]
(xs, s) ds+

∫ t

0

〈
σs, αk

〉∂ϕk
∂x

(xs, s) dBs

)
αk

(5.3)

that is a superposition of integrals like in (5.1),

Remark 5.7. With the operators

Lk :=
∂

∂t
+
〈
µ·, αk

〉 ∂
∂x

+
1

2

〈
σ·, αk

〉2 ∂2

∂x2
and Kk :=

〈
σ·, αk

〉 ∂
∂x

,

formula (5.3) can be written,

Φ(Xt) =

+∞∑
k=0

(∫ t

0

Lk(ϕk) (xs, s) ds+

∫ t

0

Kk(ϕk) (xs, s) dBs

)
αk .

Theorem 5.8 (Change of measure). Consider an Ito’s type process as in (5.1)and the scalar
processes xkt := xt as in (5.2). Let the sufficient conditions be verified for Hk

s := 〈µs, αk
〉
/〈σs, αk

〉
to be well defined and consider:

Λk := exp

(
−
∫ T

0

Hk
s dBs −

1

2

∫ T

0

(
Hk
s

)2
ds

)
.
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Then, with Λ :=
∏+∞
k=0 Λk and dQ = ΛdP, if

E

[
exp

(
1

2

∫ T

0

(
Hk
s

)2
ds

)]
< +∞ and E [Λ] = 1 ,

then, with:

B̃t := Bt +

∫ t

0

(
+∞∑
k=0

Hk
s

)
ds

being a Q Brownian process, we have that,

dXt =

+∞∑
k=0

(∫ t

0

〈
σs, αk

〉
dB̃s

)
αk .

is a martingale in the probability space (Ω,F ,Q).

Remark 5.9. Theorem 5.8 may be applied to build the adequate martingale measures for models
such as the ones described in Section 3.

6. The random coefficients case

For the case where the coefficients of both the price SDE model and the risk free rate are random
we defer to future work the presentation of relevant examples. In this context it is important to
recall both the caveats to the use of discrete time models as in [11] and the general complete theory
for these models as explained in [10]. For the present work let us just outline the proposed method;
similarly to the non random case, we may also consider the discrete market model obtained by
the Euler-Maruyama discretization of the continuous market model by using what we may call the
Girsanov theorem in discrete time in the conditionally Gaussian case.

The main result may to be used in the context of random coefficients and random risk free rate
may be found in [20, pp. 433–446] or in [2, pp. 123–125] although not in this synthetic form.

Theorem 6.1. Let (Ω,F ,P) be a complete probability space and F = (Fn)n≥0 a filtration ove rthis
space such as F0 = {∅,Ω}. Let the process X = (Xn)n≥1 verify the following decomposition:

∀n ≥ 0 , Xn+1 = Xn + µn+1 + σn+1Zn+1 ,

with (µn)n≥1 and (σn)n≥1 previsible processes, (Zn)n≥1 an F- adapted process of independent ran-
dom variables identically distributed such that the law of Zn conditioned to Fn−1 is a standardized
normal random variable. Let the Girsanov process be given by:

Yn := exp

(
−

n∑
k=1

µk
σk
− 1

2

n∑
k=1

(
µk
σk

)2
)
, n ≥ 1

such that the following Novikov condition is verified:

∀n ≥ 1 , E

[
1

2

n∑
k=1

(
µk
σk

)2
]
< +∞ . (6.1)

We then have that:

(1) the Girsanov process Y = (Yn)n≥1 is a F uniformly integrable martingale which converges,
almost surely to a random variable Y∞ verifying:

P [Y∞ ≥ 0] = 1 e E [Y∞] = 1;
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(2) considering the pprobability measure Q defined obver (Ω,F) by:

∀F ∈ F , Q [F ] =

∫
F

Y∞dP ,

then, in the probability space (Ω,F ,Q), the probability law of (Xn+1 −Xn)n≥1 conditioned
by F, coincides, term by term, with the probability law of (σnZn)n≥1 ;

(3) in the probability space (Ω,F ,Q), the process (Xn+1 −Xn)n≥1 is a local martingale.

We observe that the hypothesis made that Zn condicioned to Fn−1 is a standardized Gaussian
implies that the probability law of Xn+1 −Xn conditioned to Fn−1 is given for F ∈ F , by:

P [(Xn+1 −Xn) ∈ F | Fn−1] := E
[
1I(Xn+1−Xn)∈F | Fn−1

]
=

1√
2πσ2

n

∫
F

e
− (y−µn)2

2σ2
n dy . (6.2)

Following [20, pp. 62, 103] this formula may be interpreted by saying that the probability law of
Xn+1−Xn conditioned to Fn−1is a mixture of Gaussian random variables with parameters µn, and
σ2
n that in themselves are random variables

Remark 6.2. The second result in the theorem 6.1 is that in the probability space (Ω,F ,Q) the
law of Xn+1 −Xn conditioned to Fn−1 is given for F ∈ F , by:

Q [(Xn+1 −Xn) ∈ F | Fn−1] := EQ
[
1I(Xn+1−Xn)∈F | Fn−1

]
=

1√
2πσ2

n

∫
F

e
− y2

2σ2
n dy ,

that is, with the new probability Q, the coefficient µn is suppressed and we now have a local
martingale.

6.1. Discrete conditionally Gaussian models. The general methodology in the context of the
random coefficients case may now be described as follows. We have discrete time observations of
a discounted price process and we want to model it as a discrete conditionally Gaussian model to
which we may apply theorem 6.1 in order to obtain a martingale measure and to price derivatives.
We may consider following [20, pp. 89, 104–108], a discrete model in which the discounted price
process (Sn)n≥1, defined in a filtered probability space (Ω,F ,P,F) and adapted to F = (Fn)n≥0

satisfying,

Sn = S0e
h1+h2+...hn with E [|hn|] < +∞ , (6.3)

with hn = µn + σnεn where (εn)n≥1 is a sequence of independent standardized Gaussian random
variables adapted to F and,

Law (hn | Fn−1) = N (µn, σ
2
n) , (6.4)

with the processes (µn)n≥1 and (σn)n≥1 predictable with respect to F and formula (6.4) having
an interpretation similar to the one given for formula (6.2). This class of models for (hn)n≥1 is
quite rich as it encompasses, among others, the ARMA(p,q), the ARCH(p) and the GARCH(p,q)
models. For instance, for the ARMA(p,q) model we have Fn = σ(ε1, . . . , εn), the prescribed initial
conditions h1−p, . . . , h−1, h0 and ε1−q, . . . , ε−1, ε0 and,

µn = a0 + a1hn−1 + . . . aphn−p + b1εn−1 + . . . bpεn−q ,

with σn ≡ σ constant. Estimating the adequate time series model we may get under suitable
hypothesis a martingale measure and the possibility of computing derivative prices. There are
nevertheless important questions to be dealt with, namely,

51



18 MANUEL L. ESQUÍVEL AND NADEZHDA P. KRASII

• under what conditions, the model given by (6.3) and (6.4), is a Euler-Maruyama discretized
model of a continuous time model?

• under what conditions does the discretized model converges – see [15] – to some continuous
time market model with good properties?

• under what conditions is an arbitrage free and complete model – see [10] and [11] – for the
whole sequence of discretizations considered?

Remark 6.3. The weak convergence of the Euler-Maruyama sequence of approximations to the solu-
tion of the discretized SDE has been studied in many works. For instance, in [23] the usual regularity
conditions ensuring weak convergence are relaxed in a way that may useful to our purposes.

7. Conclusion

The study of discrete time models is justified by the fact that all data that we may collect is
discrete and finite – although, in some cases, of large dimensionality; as so, the interplay between
discrete – closer to the data collected – and continuous related models – having very important con-
ceptual properties – deserves attention. In this work we developed the computation of a martingale
measure by means of the Girsanov density in two examples obtained from the Euler-Maruyama
discretization of two models: the Black-Scholes model with time dependent – although non ran-
dom – coefficients and a vectorial model with constant coefficients for futures and spot prices of
commodities. We also present the general lines of a systematic approach to the case of random
coefficients to be developed in future work.
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