TWIN ZEROS AND TRIPLE ZEROS OF A HYPERLATTICE WITH RESPECT TO HYPERIDEALS

PALLAVI P., KUNCHAM S.P., TAPATEE S., AND HARIKRISHNAN P.K*

Abstract

In this paper, we discuss the interrelations between 2-absorbing and weakly 2 -absorbing hyperideals in join hyperlattices. We define twin zeros and triple zeros of a hyperideal and establish certain properties of triple zeros of weakly 2 -absorbing hyperideal and twin zeros of weakly primary hyperideals in modular and distributive hyperlattices. As an application, we attempt to compute the probabilities of twin zeros and triple zeros in a lattice with respect to an ideal and provide examples.

1. Introduction

Algebraic hyperstructures are the classical generalizations of algebraic structures which has several applications in uncertainity theory [6], rough set theory [7], lattice based probability theories, analysis etc. Davvaz et.al.[5] extensively studied the chemical and biological applications of hyperstructures by exploring several inheritance examples of algebraic hyperstructures. This paper focusses on the occurences of twin zeros and triple zeros in Hyperlattices with respect to hyperideals. A lattice is a partially ordered set in which every pair of elements has a least upper bound (supremum or join) and a greatest lower bound (infimum or meet). Multilattice is a generalization of a lattice introduced by Benado [3]. They extended the concept of supremum and infimum to "multi" versions, allowing for the consideration of suprema and infima over multiple elements instead of just pairs. This provides a more flexible framework for dealing with larger collections of elements. A lattice can also be viewed as an algebraic structure with two binary operations: join (supremum) and meet (infimum). These operations are used to define the least upper bound and greatest lower bound of elements in the lattice, respectively. Konstantinidou [12], further generalized lattices by replacing the binary operations of join and meet with hyperoperations. However, with these generalizations some properties are not retained. Later, Konstantinidou [11] discussed the concept of distributivity of hyperlattices, particularly of P-hyperlattices. Rasouli and Davvaz [17] considered special relations on hyperlattices, called regular relations and showed that the quotient structure with respect to regular relations form a lattice. Rasouli and Davvaz [16] defined a topology on the spectrum of join hyperlattices and showed that it forms a T_{0}-space. Ameri [2] and others have explored the distributivity and dual distributivity of elements in a hyperlattice.

[^0]Bideshki et. al. [4] studied prime hyperfilters in meet hyperlattices. Koguep and Lele [10] studied interrelation between the congruence relations, homomorphisms and hyperideals of a hyperlattice. Pallavi et al. [14] genralized prime hyperideals to 2-absorbing ideals and 2-absorbing primary and established some interrelations in meet hyperlattices. In [15], the authers studied hypervector spces. Section 2 of the paper deals with preliminary definitions related to join hyperlattices. Section 3 focuses on weakly 2 absorbing hyperideals and weakly primary ideals of a join hyperlattices. In section 4, as an application, we compute the probabilities of occurence of a twin zero and a triple zero in a lattice with respect to an ideal with suitable examples.

2. Preliminaries

Definition 2.1. [12] Let \mathbb{H} be a non-empty set, and $\mathcal{P}^{*}(\mathbb{H})=\{A \subseteq H: A \neq \emptyset\}$, $\bigvee: \mathbb{H} \times \mathbb{H} \rightarrow \mathcal{P}^{*}(\mathbb{H})$ be a hyperoperation, and $\wedge: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{H}$ be a binary operation. Then $(\mathbb{H}, \bigvee, \wedge)$ is a join hyperlattice if the following conditions hold:
(1) $l_{1} \in l_{1} \bigvee l_{1}$ and $l_{1}=l_{1} \wedge l_{1}$;
(2) $l_{1} \bigvee\left(l_{2} \bigvee l_{3}\right)=\left(l_{1} \bigvee l_{2}\right) \bigvee l_{3}$ and $l_{1} \wedge\left(l_{2} \wedge l_{3}\right)=\left(l_{1} \wedge l_{2}\right) \wedge l_{3}$;
(3) $l_{1} \bigvee l_{2}=l_{2} \bigvee l_{1}$ and $l_{1} \wedge l_{2}=l_{2} \wedge l_{1}$;
(4) $l_{2} \in l_{2} \wedge\left(l_{1} \bigvee l_{2}\right) \cap l_{2} \bigvee\left(l_{1} \wedge l_{2}\right)$,
for all $l_{1}, l_{2}, l_{3} \in \mathbb{H}$.
We define the relation ' \leq ' on \mathbb{H} as follows:

$$
l_{1} \leq l_{2} \text { if and only if } l_{1} \wedge l_{2}=l_{1}
$$

Then (\mathbb{H}, \leq) is a Poset.
Throughout, $(\mathbb{H}, \bigvee, \wedge)$ denotes a join hyperlattice.
Definition 2.2. [19] A non-empty subset J of \mathbb{H} is called a hyperideal if
(1) $l_{1}, l_{2} \in J$ implies $l_{1} \bigvee l_{2} \subseteq J$;
(2) $l_{1} \in J, l_{2} \in \mathbb{H}$ such that $l_{2} \leq l_{1}$, then $l_{2} \in J$, holds.

Definition 2.3. [19] A proper hyperideal J of \mathbb{H} is said to be prime if $l_{1}, l_{2} \in \mathbb{H}$ and $l_{1} \wedge l_{2} \in J$ implies $l_{1} \in J$ or $l_{2} \in J$.

Definition 2.4. [19] \mathbb{H} is said to be
(1) distributive if $l_{1} \wedge\left(l_{2} \bigvee l_{3}\right)=\left(l_{1} \wedge l_{2}\right) \bigvee\left(l_{1} \wedge l_{3}\right)$;
(2) s-distributive if $l_{1} \bigvee\left(l_{2} \wedge l_{3}\right)=\left(l_{1} \bigvee l_{2}\right) \wedge\left(l_{1} \bigvee l_{3}\right)$,
for all $l_{1}, l_{2}, l_{3} \in \mathbb{H}$, holds.
Theorem 2.5. [11] Let (L, \wedge, \vee) be a lattice and P a non-empty subset of L. We define a hyperoperation \bigvee^{P} on L by

$$
l_{1} \bigvee l_{2}=l_{1} \vee l_{2} \vee P=\left\{l_{1} \vee l_{2} \vee p \mid p \in P\right\}
$$

Then $\left(L, \bigvee^{P}, \wedge\right)$ is a join hyperlattice if and only if for each $l_{2} \in L$ there exists $p \in P$ such that $p \leq l_{2}$.

Example 2.6. Let $\mathbb{H}=D_{30}=\{1,2,3,5,6,10,15\}$, the set of all positive divisors of 30 . The hyperoperation \bigvee and the binary operation \wedge on \mathbb{H} are defined in Table 1. Then $(\mathbb{H}, \bigvee, \wedge)$ is a join hyperlattice.

\vee	1	2	3	5		6		10	15	1
1	$\{1\}$	$\{2\}$	$\{3\}$	$\{5\}$		$\{6\}$		$\{10\}$	$\{15\}$	$\{30\}$
2	$\{2\}$	$\{1,2\}$	$\{6\}$	$\{10\}$		$\{3,6\}$		$\{5,10\}$	$\{30\}$	$\{15,30\}$
3	$\{3\}$	$\{6\}$	$\{1,3\}$	$\{15\}$		$\{2,6\}$		$\{30\}$	$\{5,15\}$	$\{10,30\}$
5	$\{5\}$	$\{10\}$	$\{15\}$	$\{1,5\}$		$\{30\}$	$\{20\}$	$\{2,10\}$	$\{3,15\}$	$\{6,30\}$
6	$\{6\}$	$\{3,6\}$	$\{2,6\}$	$\{30\}$	$\{1,2,3,6\}$	$\{15,30\}$	$\{10,30\}$	$\{5,10,0,30\}$		
10	$\{10\}$	$\{5,10\}$	$\{2,10\}$	$\{30\}$		$\{15,30\}$	$\{1,2,5,10\}$	$\{6,30\}$	$\{3,6,15,30\}$	
15	$\{15\}$	$\{30\}$	$\{5,15\}$	$\{3,15\}$	$\{10,30\}$	$\{6,30\}$	$\{1,3,5,15\}$	$\{2,6,10,30\}$		
30	$\{30\}$	$\{15,30\}$	$\{10,30\}$	$\{6,30\}$	$\{5,10,15,30\}$	$\{3,6,15,30\}$	$\{2,6,10,30\}$	\mathbb{H}		
					\wedge	1	2	3	5	6

TABLE 1

Definition 2.7. [9] \mathbb{H} is called modular if, for any $l_{1}, l_{2}, l_{3} \in \mathbb{H}, l_{1} \wedge l_{3}=l_{1}$ implies $\left(l_{1} \bigvee l_{2}\right) \wedge l_{3}=l_{1} \bigvee\left(l_{2} \wedge l_{3}\right)$.

Inheritence examples for \bigvee-Hyperlattices: We construct the following \bigvee hyperlattices from the inheritance examples of hypergroups given in [1]. Let "Parents" be denoted by p, "filial generation" be denoted by f and mating by \times.

Consider the monohybrid crossing of two varieties of pea plants, with two type of seed varieties viz round (RR genotype) and wrinkled (rr genotype). Then the offsprings obtained from this crossing will be represented as follows:

$P:$	Round $(R R)$	\times	Wrinkled $(r r)$
$f_{1}:$		\downarrow	
$f_{1} \times f_{1}:$	Round $(R r)$	Round $(R r)$	Round $f_{2}:$
	$(R r)$		

We construct the following hyperoperations given in the Table 2 on the set $L=$ $\{R, W\}$ where R denotes the round genotype, and W denotes the wrinkled genotype. Then (L, \bigvee, \wedge) is a hyperlattice.

\bigvee	R	W		\wedge	R	W
R	$\{R, W\}$	$\{R\}$	R	R	W	
W	$\{R\}$	$\{W\}$		W	W	W

TABLE 2

3. Triple zeros and twin zeros of hyperideals

Definition 3.1. $J \in I d(\mathbb{H})$ is called weakly prime if whenever $0 \neq l_{1} \wedge l_{2}, l_{1} \wedge l_{2} \in J$ implies $l_{1} \in J$ or $l_{2} \in J$.

Proposition 3.2. Every prime hyperideal of \mathbb{H} is weakly prime.
Definition 3.3. [8] Let $J \in I d(\mathbb{H})$. J is called 2-absorbing if whenever $l_{1}, l_{2}, l_{3} \in \mathbb{H}$ with $l_{1} \wedge l_{2} \wedge l_{3} \in J$, then either $l_{1} \wedge l_{2} \in J$ or $l_{2} \wedge l_{3} \in J$ or $l_{1} \wedge l_{3} \in J$.

Definition 3.4. $J \in I d(\mathbb{H})$ is called weakly 2-absorbing if whenever $0 \neq l_{1} \wedge l_{2} \wedge l_{3} \in$ J, then $l_{1} \wedge l_{2} \in J$ or $l_{2} \wedge l_{3} \in J$ or $l_{1} \wedge l_{3} \in J$. We say that J is strictly weakly 2 -absorbing if it is weakly 2 -absorbing but not 2 -absorbing.

Remark 3.5. Every 2 -absorbing hyperideal of \mathbb{H} is weakly 2 -absorbing, and the converse need not be true.

Example 3.6. In Example 2.6, $J=\{1\}$ is a strictly weakly 2-absorbing hyperideal. In fact, $12 \wedge 10 \wedge 15=1$ but $12 \wedge 10 \notin I, 15 \wedge 10 \notin I$ and $12 \wedge 15 \notin I$.

Definition 3.7. [8] For $J \in I d(\mathbb{H})$, we define the radical of J as the intersection of all prime hyperideals containing J and we denote it by $\operatorname{rad}_{\vee}(J)$. If J is not contained in any prime hyperideal, then we take $\operatorname{rad}_{\vee}(J)=\mathbb{H}$.

Definition 3.8. [8] $J \in I d(\mathbb{H})$ is called a primary hyperideal if whenever $l_{1}, l_{2} \in \mathbb{H}$ and $l_{1} \wedge l_{2} \in J$, then $l_{1} \in J$ or $l_{2} \in \operatorname{rad}_{\vee}(J)$.

Definition 3.9. $J \in I d(\mathbb{H})$ is said to be weakly primary if whenever $l_{1}, l_{2} \in \mathbb{H}, 0 \neq$ $l_{1} \wedge l_{2} \in J$ imply $l_{1} \in J$ or $l_{2} \in \operatorname{rad}_{\vee}(J)$. We call J as strictly weakly primary if it is weakly primary but not primary.

Example 3.10. In Example 2.6, the hyperideal $I=\{1\}$ is a strictly weakly primary hyperideal.

Example 3.11. Let $\mathbb{H}=\left\{0, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}, 1\right\}$. The hyperoperation V and the binary operation \wedge are represented by Figure 1.

Then $(\mathbb{H}, \bigvee, \wedge)$ is a join hyperlattice. Here, $J=\left\{0, l_{1}\right\}$ is a strictly weakly primary hyperideal with $\operatorname{rad}_{\vee}(J)=\left\{0, l_{1}, l_{2}, l_{4}\right\}$. In fact, $l_{2} \wedge l_{3} \in J$, but $l_{2} \notin J$ and $l_{3} \notin \operatorname{rad}_{\vee}(J)$.

Remark 3.12 . Every primary hyperideal of \mathbb{H} is weakly primary, and every weakly prime hyperideal of \mathbb{H} is weakly primary.

Proposition 3.13. [19] For every $l_{1}, l_{2} \in \mathbb{H}$, there exists $u \in l_{1} \bigvee l_{2}$ such that $l_{1} \leq u$.

Figure 1

Definition 3.14. Let $J, J^{\prime} \in I d(\mathbb{H})$ and $x \in \mathbb{H}$. We define,

$$
\begin{aligned}
& {[J: x]=\left\{l_{1} \in \mathbb{H}: l_{1} \wedge x \in J\right\}} \\
& {[0: x]=\left\{l_{2} \in \mathbb{H}: x \wedge l_{2}=0\right\}}
\end{aligned}
$$

and

$$
\left[J: J^{\prime}\right]=\left\{l_{1} \in \mathbb{H}: l_{1} \wedge l_{2} \in J \forall l_{2} \in J^{\prime}\right\}
$$

Proposition 3.15. Let $J \in \operatorname{Id}(\mathbb{H})$. Then $J \subsetneq \mathbb{H}$ is a weakly primary if and only if for any $x \in \mathbb{H} \backslash \operatorname{rad}_{\vee}(J),[J: x]=J \cup[0: x]$.

Proof. Suppose that $J \in \operatorname{Id}(\mathbb{H})$ is weakly primary. Assume that $0 \neq v \wedge x$. Since J is weakly primary, we have $v \in J$. Therefore, $[J: x] \subseteq J \cup[0: x]$. On the other hand, by Proposition 3.13, $J \subseteq[J: x]$. Let $w \in[0: x]$. Then $w \wedge x=0$, and so $w \wedge x \in J$. Therefore, $[0: x] \subseteq[J: x]$. Hence, $J \cup[0: x] \subseteq[J: x]$. Conversely, let $0 \neq x \wedge v$ and $(x \wedge v) \in J$ with $x \notin \operatorname{rad}_{\vee}(J)$. Then $v \in[J: x]=J \cup[0: x]$. Since $0 \neq v \wedge x, v \notin[0: x]$. Therefore, $v \in J$, and hence, J is weakly primary.

Definition 3.16. [2] An element $l \in \mathbb{H}$ is called distributive, if

$$
l \wedge\left(l_{1} \bigvee l_{2}\right)=\left(l \wedge l_{1}\right) \bigvee\left(l \wedge l_{2}\right)
$$

for all $l_{1}, l_{2} \in \mathbb{H}$ holds.
Proposition 3.17. Let $J_{1}, J_{2}, J_{3} \in \operatorname{Id}(\mathbb{H})$. If $J_{1} \subseteq J_{1} \cup J_{3}$ then $J_{1} \subset J_{2}$ or $J_{1} \subseteq J_{3}$.

Proposition 3.18. Let $\emptyset \neq J \in I d(\mathbb{H})$ and $l \in \mathbb{H} \backslash \operatorname{rad}_{\vee}(J)$ be a distributive element. If J is weakly primary then $[I: l]=I$ or $[I: l]=[0: l]$.

Proof. Suppose that J is a weakly primary hyperideal of \mathbb{H}, by Proposition 3.15, $[I: l]=I \cup[0: l]$, and by Proposition 3.17 , we get $[I: l]=I$ or $[I: l]=[0: l]$.

Definition 3.19. $J \in I d(\mathbb{H})$ is called weakly 2 -absorbing primary if whenever $0 \neq l_{1} \wedge l_{2} \wedge l_{3} \in J$ implies $l_{1} \wedge l_{2} \in J$ or $l_{2} \wedge l_{3} \in \operatorname{rad}_{\vee}(J)$ or $l_{1} \wedge l_{3} \in \operatorname{rad}_{\vee}(J)$.

Figure 2

Proposition 3.20. If \mathbb{H} is distributive and $\emptyset \neq J \in \operatorname{Id}(\mathbb{H})$, and $[J: l]=J$ or $[J: l]=[0: l]$ for all $l \in \mathbb{H} \backslash \operatorname{rad}_{\vee}(J)$, then J is weakly primary.

Proof. Suppose that $0 \neq l \wedge l_{1}$ with $l \notin \operatorname{rad}_{\vee}(J)$. Then $l_{1} \in[J: l]$. Since $l \wedge l_{1} \neq 0$, we get $[J: l]=J$, and so $l_{1} \in J$. Hence, J is weakly primary.

Definition 3.21. Let $I \in I d(\mathbb{H})$. If there exist $l_{1}, l_{2}, l_{3} \in \mathbb{H}$ with $l_{1} \wedge l_{2} \wedge l_{3}=0$ such that $l_{1} \wedge l_{2} \notin I$ and $l_{2} \wedge l_{3} \notin I$ and $l_{1} \wedge l_{3} \notin I$, then we call $\left(l_{1}, l_{2}, l_{3}\right)$ as a triple zero of I.

Example 3.22. In Example 2.6, $(12,10,15)$ is a triple zero of the hyperideal $I=\{1\}$.

Example 3.23. Let $\mathbb{H}=\left\{0, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}, l_{7}, 1\right\}$. The hyperoperation V and the binary operation \wedge are represented by Figure 2.

Then $(\mathbb{H}, \bigvee, \wedge)$ is a join hyperlattice. Here, $J=\left\{0, l_{1}\right\}$ is a strictly weakly 2 absorbing hyperideal. In fact, $l_{5} \wedge l_{6} \wedge l_{7} \in J$, but $0=l_{5} \wedge l_{6} \notin J, l_{6} \wedge l_{7} \notin J$ and $l_{5} \wedge l_{7} \notin J$, and so $\left(l_{5}, l_{6}, l_{7}\right)$ is a triple zero of J.

Remark 3.24. If $I \in I d(\mathbb{H})$ is strictly weakly 2 -absorbing, then I has a triple zero.
Remark 3.25. A hyperlattice \mathbb{H} is modular if and only if $l_{1} \wedge\left(l_{2} \bigvee\left(l_{1} \wedge l_{3}\right)\right)=$ $\left(l_{1} \wedge l_{2}\right) \bigvee\left(l_{1} \wedge l_{3}\right)$.

Let $I_{1}, I_{2}, I_{3} \in I d(\mathbb{H})$ and $l_{1}, l_{2}, l_{3} \in \mathbb{H}$. Then we use the following notations:
(1) $I_{1}^{2}=\left\{i_{1} \wedge i_{2}: i_{1}, i_{2} \in I_{1}, i_{1} \neq i_{2}\right\}$.
(2) $I_{1}^{3}=\left\{i_{1} \wedge i_{2} \wedge i_{3}: i_{1}, i_{2}, i_{3} \in I_{1}, i_{1} \neq i_{2} \neq i_{3}\right\}$.
(3) $l_{1} \wedge l_{2} \wedge I_{1}=\left\{l_{1} \wedge l_{2} \wedge i: i \in I_{1}\right\}$.
(4) $l_{1} \wedge I_{1}^{2}=\left\{l_{1} \wedge i: i \in I_{1}^{2}\right\}$.
(5) $I_{1}^{2} I_{2} I_{3}=\left\{i_{1} \wedge i_{2} \wedge i_{3}: i_{1} \in I_{1}^{2}, i_{2} \in I_{2}, i_{3} \in I_{3}\right\}$.
(6) $I_{1}^{2} I_{2}^{2}=\left\{i_{1} \wedge i_{2}: i_{1} \in I_{1}^{2}, i_{2} \in I_{2}^{2}\right\}$.

Theorem 3.26. Let \mathbb{H} be a modular join hyperlattice with $l \bigvee 0=\{l\} \forall l \in \mathbb{H}$, and I be a strictly weakly 2-absorbing hyperideal with a triple zero $\left(l_{1}, l_{2}, l_{3}\right)$ in I. Then $l_{1} \wedge l_{2} \wedge I=l_{2} \wedge l_{3} \wedge I=l_{1} \wedge l_{3} \wedge I=\{0\}$.

Proof. Suppose that $l_{1} \wedge l_{2} \wedge l_{i} \neq 0$ for some $l_{i} \in I$. Then $l_{1} \wedge l_{2} \wedge l_{i} \in I$. Now $\left\{l_{1} \wedge l_{2} \wedge l_{i}\right\}=0 \wedge\left(l_{1} \wedge l_{2} \wedge l_{i}\right)=\left(l_{1} \wedge l_{2} \wedge l_{3}\right) \bigvee\left(l_{1} \wedge l_{2} \wedge l_{i}\right) \subseteq I$. Since \mathbb{H} is modular, $\left(l_{1} \wedge l_{2} \wedge l_{3}\right) \bigvee\left(l_{1} \wedge l_{2} \wedge l_{i}\right)=\left(l_{1} \wedge l_{2}\right) \wedge\left(l_{3} \bigvee\left(l_{1} \wedge l_{2} \wedge l_{i}\right)\right) \subseteq I$. Now by Lemma 3.13, there exists $x \in l_{3} \bigvee\left(l_{1} \wedge l_{2} \wedge l_{i}\right)$ such that $l_{3} \leq x$. In particular, $0 \neq l_{1} \wedge l_{2} \wedge l_{i}=\left(l_{1} \wedge l_{2}\right) \wedge x \in I$. As I is a weakly 2-absorbing hyperideal, and $l_{1} \wedge l_{2} \notin I$, we get $l_{1} \wedge x \in I$ or $l_{2} \wedge x \in I$. Since $l_{3} \leq x$, we get $l_{1} \wedge l_{3} \leq l_{1} \wedge x \in I$ or $l_{2} \wedge l_{3} \leq l_{2} \wedge x \in I$, a contradiction. Thus, $l_{1} \wedge l_{2} \wedge I=\{0\}$.

Proposition 3.27. Let \mathbb{H} be a distributive join hyperlattice with $l \bigvee 0=\{l\} \forall l \in$ \mathbb{H}, I be a strictly weakly 2-absorbing hyperideal, and $\left(l_{1}, l_{2}, l_{3}\right)$ be a triple zero of I. Then $l_{1} \wedge I^{2}=l_{2} \wedge I^{2}=l_{3} \wedge I^{2}=\{0\}$.

Proof. Suppose that $l_{1} \wedge l_{i} \wedge l_{i}^{\prime} \neq 0$ for some $l_{1} \neq l_{i}^{\prime} \in I$. Now $\{0\} \neq l_{1} \wedge l_{i} \wedge l_{i}^{\prime}=$ $\left(l_{1} \wedge l_{2} \wedge l_{3}\right) \bigvee l_{1} \wedge l_{i} \wedge l_{i}^{\prime}$. As \mathbb{H} is distributive, it follows that

$$
\begin{aligned}
& {\left[\left(l_{1} \wedge l_{2} \wedge l_{3}\right) \bigvee\left(l_{1} \wedge l_{2} \wedge l_{i}^{\prime}\right)\right] \bigvee\left[\left(l_{1} \wedge l_{i} \wedge l_{3}\right) \bigvee\left(l_{1} \wedge l_{i} \wedge l_{i}^{\prime}\right)\right] } \\
&= {\left[\left(l_{1} \wedge l_{2}\right) \wedge\left(l_{3} \bigvee l_{i}^{\prime}\right)\right] \bigvee\left[\left(l_{1} \wedge l_{i}\right) \wedge\left(l_{3} \bigvee l_{i}^{\prime}\right)\right] } \\
&=\left\{u \wedge l_{1} \wedge l_{2}: u \in l_{3} \bigvee l_{i}^{\prime}\right\} \bigvee\left\{v \wedge l_{1} \wedge l_{i}: v \in l_{3} \bigvee l_{i}^{\prime}\right\} \\
& \supseteq\left\{x \wedge l_{1} \wedge l_{2} \bigvee u \wedge l_{1} \wedge l_{i}: x \in l_{3} \bigvee l_{i}^{\prime}\right\} \\
&=\left\{x \wedge\left[\left(l_{1} \wedge l_{2}\right) \bigvee\left(l_{1} \wedge l_{i}\right)\right]: x \in l_{3} \bigvee l_{i}^{\prime}\right\} \\
&=\left\{x \wedge\left[l_{1} \wedge\left(l_{2} \bigvee l_{i}\right)\right]: x \in l_{3} \bigvee l_{i}^{\prime}\right\} \\
&=\left(l_{3} \bigvee l_{i}^{\prime}\right) \wedge\left[l_{1} \wedge\left(l_{2} \bigvee l_{i}\right)\right]
\end{aligned}
$$

Now, by Theorem 3.26, $l_{1} \wedge l_{2} \wedge l_{i}^{\prime}=l_{1} \wedge l_{i} \wedge l_{3}=0$, we get

$$
\left[\left(l_{1} \wedge l_{2} \wedge l_{3}\right) \bigvee\left(l_{1} \wedge l_{2} \wedge l_{i}^{\prime}\right)\right] \bigvee\left[\left(l_{1} \wedge l_{i} \wedge l_{3}\right) \bigvee\left(l_{1} \wedge l_{i} \wedge l_{i}^{\prime}\right)\right]=\left\{l_{1} \wedge l_{i} \wedge l_{i}^{\prime}\right\}
$$

Therefore,

$$
\left(l_{3} \bigvee l_{i}^{\prime}\right) \wedge\left[l_{1} \wedge\left(l_{2} \bigvee l_{i}\right)\right]=\left\{l_{1} \wedge l_{i} \wedge l_{i}^{\prime}\right\}
$$

Further, by Lemma 3.13, there exists $x \in l_{3} \bigvee l_{i}^{\prime}$ and there exists $y \in l_{2} \bigvee l_{i}$ such that $l_{3} \leq x$ and $l_{2} \leq y$. Now $x \wedge\left(l_{1} \wedge y\right)=l_{1} \wedge l_{i} \wedge l_{i}^{\prime} \neq 0$ and as I is weakly 2 -absorbing, we get either $x \wedge l_{1} \in I$ or $x \wedge y \in I$ or $l_{1} \wedge y \in I$. Since $l_{1} \wedge l_{2} \leq l_{1} \wedge y, l_{2} \wedge l_{3} \leq x \wedge y$ and $l_{1} \wedge l_{3} \leq l_{1} \wedge x$, we get $l_{1} \wedge l_{2} \in I$ or $l_{1} \wedge l_{3} \in I$ or $l_{2} \wedge l_{3} \in I$, a contradiction. Thus, $l_{1} \wedge l_{i} \wedge l_{i}^{\prime}=0$.

Proposition 3.28. Let \mathbb{H} be a distributive join hyperlattice with $l \bigvee 0=\{l\} \forall l \in$ \mathbb{H}, I be a strictly weakly 2-absorbing hyperideal, and $\left(l_{1}, l_{2}, l_{3}\right)$ a triple zero of I. Then $I^{3}=\{0\}$.

Proof. On a contrary, suppose that $l_{i} \wedge l_{j} \wedge l_{k} \neq 0$ for some $l_{i}, l_{j}, l_{k} \in I$. As \mathbb{H} is distributive, we have

$$
\begin{aligned}
& \left(l_{1} \bigvee l_{i}\right) \wedge\left(l_{2} \bigvee l_{j}\right) \wedge\left(l_{3} \bigvee l_{k}\right) \\
& \\
& \quad \subseteq\left(l_{1} \wedge l_{2} \wedge l_{3}\right) \bigvee\left(l_{1} \wedge l_{3} \wedge l_{j}\right) \bigvee\left(l_{2} \wedge l_{3} \wedge l_{i}\right) \bigvee\left(l_{1} \wedge l_{2} \wedge l_{k}\right) \\
& \\
& \bigvee\left(l_{2} \wedge l_{i} \wedge l_{k}\right) \bigvee\left(l_{1} \wedge l_{j} \wedge l_{k}\right) \bigvee\left(l_{3} \wedge l_{i} \wedge l_{j}\right) \bigvee\left(l_{i} \wedge l_{j} \wedge l_{k}\right)
\end{aligned}
$$

By Theorem 3.26, we have $l_{1} \wedge l_{3} \wedge l_{j}=l_{2} \wedge l_{3} \wedge l_{i}=l_{1} \wedge l_{2} \wedge l_{k}=0$, and by Proposition 3.27, we get $l_{2} \wedge l_{i} \wedge l_{k}=l_{1} \wedge l_{j} \wedge l_{k}=l_{3} \wedge l_{i} \wedge l_{j}=0$. This gives $\left(l_{1} \bigvee l_{i}\right) \wedge\left(l_{2} \bigvee l_{j}\right) \wedge\left(l_{3} \bigvee l_{k}\right) \subseteq\left\{l_{i} \wedge l_{j} \wedge l_{k}\right\}$. Then (by lemma 3.13) there exist $x \in l_{1} \bigvee l_{i}, y \in l_{2} \bigvee l_{j}, z \in l_{3} \bigvee l_{k}$ such that $l_{1} \leq x, l_{2} \leq y, l_{3} \leq z$ with $0 \neq l_{i} \wedge l_{j} \wedge l_{k}=x \wedge y \wedge z$. Since I is weakly 2-absorbing, we have $x \wedge y \in I$ or $y \wedge z \in I$ or $x \wedge z \in I$, and so $l_{1} \wedge l_{2} \in I$ or $l_{2} \wedge l_{3} \in I$ or $l_{1} \wedge l_{3} \in I$, a contradiction.

Proposition 3.29. Let I_{1}, I_{2}, I_{3} be strictly weakly 2-absorbing ideals of a s-distributive hyperlattice \mathbb{H} with $l \bigvee 0=\{l\} \forall l \in \mathbb{H}$. Then
(1) $I_{1}^{2} I_{2} I_{3}=I_{1} I_{2}^{2} I_{3}=I_{1} I_{2} I_{3}^{2}=\{0\}$,
(2) $I_{1}^{2} I_{2}^{2}=\{0\}$.

Proof. (1) We prove that $I_{1}^{2} I_{2} I_{3}=\{0\}$ and the other cases are similar. On a contrary, suppose that $l_{1} \wedge l_{1}^{\prime} \wedge l_{2} \wedge l_{3} \neq 0$ for some $l_{1}, l_{1}^{\prime} \in I_{1}, l_{2} \in I_{2}, l_{3} \in I_{3}$. Then $l_{1} \wedge l_{1}^{\prime} \neq 0$. As I_{1} is strictly weakly 2 -absorbing, by Remark $3.24, I_{1}$ has a triple zero say $\left(l_{i}, l_{j}, l_{k}\right)$. Now $\left(l_{1} \wedge l_{j} \wedge l_{k}\right) \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right)=\left\{l_{1} \wedge l_{1}^{\prime}\right\}$. Since \mathbb{H} is s-distributive,

$$
\begin{aligned}
\left\{l_{1} \wedge l_{1}^{\prime}\right\} & =\left(l_{i} \wedge l_{j} \wedge l_{k}\right) \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right) \\
& =\left[l_{i} \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right)\right] \wedge\left[l_{j} \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right)\right] \wedge\left[l_{k} \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right)\right]
\end{aligned}
$$

Then by Lemma 3.13, there exist $x \in l_{i} \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right), y \in l_{j} \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right), z \in$ $l_{k} \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right)$ such that $l_{i} \leq x, l_{j} \leq y$ and $l_{k} \leq z$. Now $0 \neq x \wedge y \wedge z=$ $l_{1} \wedge l_{1}^{\prime} \in I_{1}$ and I_{1} is weakly 2-absorbing, either $x \wedge y \in I_{1}$ or $x \wedge z \in I_{1}$ or $y \wedge z \in I_{1}$. And so $l_{i} \wedge l_{j} \in I_{1}$ or $l_{i} \wedge l_{k} \in I_{1}$ or $l_{j} \wedge l_{k} \in I_{1}$, a contradiction.
(2) Suppose that $l_{1} \wedge l_{1}^{\prime} \wedge l_{2} \wedge l_{2}^{\prime} \neq 0$ for some $l_{1}, l_{1}^{\prime} \in I_{1}, l_{2}, l_{2}^{\prime} \in I_{2}$. Then $l_{1} \wedge l_{1}^{\prime} \neq 0$. As I_{1} is strictly weakly 2 -absorbing, it has a triple zero say $\left(l_{i}, l_{j}, l_{k}\right)$. Now $\left(l_{1} \wedge l_{j} \wedge l_{k}\right) \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right)=\left\{l_{1} \wedge l_{1}^{\prime}\right\}$. Since \mathbb{H} is strongly distributive,

$$
\begin{aligned}
\left\{l_{1} \wedge l_{1}^{\prime}\right\} & =\left(l_{i} \wedge l_{j} \wedge l_{k}\right) \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right) \\
& =\left[l_{i} \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right)\right] \wedge\left[l_{j} \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right)\right] \wedge\left[l_{k} \bigvee\left(l_{1} \wedge l_{1}^{\prime}\right)\right]
\end{aligned}
$$

Now by similar argument as in the first part we obtain $l_{i} \wedge l_{j} \in I_{1}$ or $l_{i} \wedge l_{k} \in I_{1}$ or $l_{j} \wedge l_{k} \in I_{1}$, a contradiction. Therefore, $l_{1} \wedge l_{1}^{\prime} \wedge l_{2} \wedge l_{3}=0$.

Definition 3.30. Let $J \in I d(\mathbb{H})$ and $l_{1}, l_{2} \in \mathbb{H}$. We call $\left(l_{1}, l_{2}\right)$ as twin zero of J if $l_{1} \wedge l_{2}=0$ but $l_{1} \notin J$ and $l_{2} \notin \operatorname{rad}_{\vee}(J)$.

Remark 3.31. A strictly weakly primary hyperideal has a twin-zero.
Example 3.32. In Example 2.6, $(2,5)$ is a twin zero of the hyperideal $I=\{1\}$.
Theorem 3.33. Let J be a strictly weakly primary hyperideal of a modular hyperlattice \mathbb{H} with $l \bigvee 0=\{l\}$ for all $l \in \mathbb{H}$, and $\left(l_{1}, l_{2}\right)$ a twin zero of J. Then $l_{1} \wedge J=\{0\}$.

Proof. Suppose that $l_{1} \wedge J \neq\{0\}$. Then $l_{1} \wedge j \neq 0$ for some $j \in J$. Now $l_{1} \wedge j=$ $\left(l_{1} \wedge l_{2}\right) \bigvee\left(l_{1} \wedge j\right) \subseteq J$. Since \mathbb{H} is modular, $\left\{l_{1} \wedge j\right\}=l_{1} \wedge\left(l_{2} \bigvee\left(l_{1} \wedge j\right)\right) \subseteq J$. By Lemma 3.13, there exists $u \in l_{2} \bigvee\left(l_{1} \wedge j\right)$ with $l_{2} \leq u$. Now $l_{1} \wedge j=l_{1} \wedge u \in J$. Since $0 \neq l_{1} \wedge u \in J, l_{1} \notin J$, we get $u \in \operatorname{rad}_{\vee}(J)$, and hence, $l_{2} \in \operatorname{rad}_{\vee}(J)$, a contradiction. Thus, $l_{1} \wedge J=\{0\}$.

4. Computing probabilities of twin zeros and triple zeros

In this section, we compute the probabilities of occuring a twin zero and a triple zero in a lattice with respect to an ideal. Let $|L|$ denotes the number of elements in the lattice L.

Definition 4.1. [21] Let J be an ideal of a lattice L (with zero) and $l_{1}, l_{2} \in L$. We call $\left(l_{1}, l_{2}\right)$ as twin zero of J if $l_{1} \wedge l_{2}=0$ but $l_{1} \notin J$ and $l_{2} \notin \operatorname{rad}(J)$.

Definition 4.2. [13] Let J be an ideal of a lattice L (with zero) and $l_{1}, l_{2}, l_{3} \in L$. Then $\left(l_{1}, l_{2}, l_{3}\right)$ is s triple zero of J if $l_{1} \wedge l_{2} \wedge l_{3}=0$ but $l_{1} \wedge l_{2}=0 \notin J$ and $l_{2} \wedge l_{3}=0 \notin J$ and $l_{1} \wedge l_{3}=0 \notin J$.

Definition 4.3. Let L be a lattice and J be an ideal of L. Then
(1) probability of getting a twin zero in L with respect to J is defined as

$$
P_{J}(\text { twin zero })=\frac{\left|\left\{\left(l_{1}, l_{2}\right): l_{1} \wedge l_{2}=0, l_{1} \notin J, l_{2} \notin \operatorname{rad}(J)\right\}\right|}{|L \times L|}
$$

(2) probability of getting a triple zero in L with respect to an ideal J is defined as
$P_{J}($ triple zero $)=\frac{\left|\left\{\left(l_{1}, l_{2}, l_{3}\right): l_{1} \wedge l_{2} \wedge l_{3}=0, l_{1} \wedge l_{2} \notin J, l_{2} \wedge l_{3} \notin J, l_{1} \wedge l_{3} \notin J\right\}\right|}{|L \times L \times L|}$
Remark 4.4. If J is a primary ideal of a latttice, then $P_{J}($ twin tero $)=0$.
The following remark can be observed from the definition. However, we illustrate it in Example 4.6.

Remark 4.5. $P_{J}($ twin zero $) \leq \frac{\left|J^{c} \times(\operatorname{rad}(J))^{c}\right|}{|L \times L|}$, and so $P_{J}($ twin zero $)<1$.
Example 4.6. Consider the lattice given in Figure 3. Here $\left(l_{1}, l_{3}\right),\left(l_{1}, l_{5}\right),\left(l_{4}, l_{3}\right)$ and $\left(l_{4}, l_{6}\right)$ are twin zeros of L with respect to the ideal $J=\left\{0, l_{2}\right\}$, where $\operatorname{rad}(J)=$ $\left\{0, l_{1}, l_{2}, l_{4}\right\}$. Hence, $P_{J}($ twin zero $)=\frac{4}{64}<\frac{6 \times 4}{64}=\frac{\left|J^{c} \times(\operatorname{rad}(J))^{c}\right|}{|L \times L|}$. For $I=$ $\left\{0, l_{1}\right\},\left(\operatorname{rad}(I)=\left\{0, l_{1}, l_{2}, l_{4}\right\}\right)$, twin zeros with respect to J are $\left(l_{4}, l_{5}\right),\left(l_{4}, l_{6}\right)$, $\left(l_{4}, l_{3}\right)$, and so $P_{I}($ twin zero $)=\frac{3}{64}$. As $I \vee J=\left\{0, l_{1}, l_{2}, l_{4}\right\}$, a prime ideal,
$P_{I \vee J}($ twin zero $)=0$. We have $\operatorname{rad}(I \cap J)=\left\{0, l_{1}, l_{2}, l_{4}\right\}$, and twin zeros of $I \cap J$ are $\left(l_{6}, l_{4}\right),\left(l_{6}, l_{1}\right),\left(l_{3}, l_{4}\right),\left(l_{3}, l_{1}\right) . P_{I \cap J}($ twin zero $)=\frac{4}{64}$. Thus we have $P_{I \vee J}($ twin zero $) \leq P_{I}($ twin zero $)+P_{J}($ twin zero $)-P_{I \cap J}($ twin zero $)$.

Figure 3

Example 4.7. Consider the lattice given in Figure 4. Here $\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{i} \in\right.$ $T, x_{i} \neq x_{j}$ for $\left.i \neq j,\right\}$ (where $T=\left\{l_{4}, l_{5}, l_{6}\right\}$) are the triple zeros of L with respect to the ideal $J=\{0\}$. Therefore $P_{J}($ triple zero $)=\frac{6}{8^{3}}$.

Figure 4

The following remark can be observed from the above examples.
Remark 4.8. Let L be a lattice and I, J are ideals of L such that $I \subseteq J$. Then
(1) $P_{J}($ twin zero $) \leq P_{I}$ (twin zero)
(2) $P_{I \vee J}($ twin zero $) \leq \frac{1}{2}\left(P_{I}(\right.$ twin zero $)+P_{J}($ twin zero $\left.)\right)$

Remark 4.9. If I is an ideal in a lattice L and the corresponding P-hyperlattice, then twin zeros in L and the P-hyperlattice with respect to I will coincide. Moreover, the probability of getting a twin zero with respect to I on both structures will be equal.

Open question

Let L be a lattice.
(1) Can we attain a bound for the probability of twin zeros and triple zeros in a distributive lattice or a modular lattice with respect to an ideal?
(2) In general, for any two ideals I and J of L, does it hold that

$$
P_{I \vee J}(\text { twin zero }) \leq P_{I}(\text { twin zero })+P_{J}(\text { twin zero })-P_{I \wedge J}(\text { twin zero }) ?
$$

Conclusion

In this paper, we have considered the generalization of lattices as join hyperlattices, in which the interrelations between 2-absorbing and weakly 2-absorbing hyperideals are established. Later, the concepts like twin zeros and triple zeros of a hyperideal are defined with suitable illustrations. The properties of triple zeros of weakly 2 -absorbing hyperideal and twin zeros of weakly primary hyperideals in modular and distributive hyperlattices are proved. We have computed the probabilities for the occurence of twin zeros and triple zeros in a lattice with respect to an ideal. As a future scope one can extend the notions of essential elements and superflous elements discussed in $[18,20]$ to hyperlattices.

Acknowledgement

Author ${ }^{1}$ acknowledges Manipal Academy of Higher Education, Manipal for providing the scholarship under Dr T M A Pai fellowship. Authors ${ }^{1,2,4}$ thank Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal for the kind encouragement. Authors ${ }^{3}$ thank Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, for their support. The author ${ }^{4 *}$ acknowledges SERB, Govt. of India for the Teachers Associateship for Research Excellence (TARE) fellowship TAR/2022/000219.

References

1. M. Al Tahan and B. Davvaz, Algebraic hyperstructures associated to biological inheritance, Mathematical Biosciences 285 (2017), 112-118 (English).
2. Reza Ameri, M Amiri-Bideshki, Sarka Hoskova-Mayerova, and AB Saeid, Distributive and dual distributive elements in hyperlattices, Analele Științifice ale Universității "Ovidius" Constanța. Seria: Matematică 25 (2017), no. 3, 25-36 (English).
3. M. Benado, Sur la théorie de la divisibilité, (en roumain, avec des résumés en français et en russe), Bul. Sci. t. VI Cahier 2 (1954), 263-268.
4. Mohsen Amiri Bideshki, Reza Ameri, and Arsham Broomand Saeid, On prime hyperfilters (hyperideals) in^-hyperlattices, European Journal of Pure and Applied Mathematics 11 (2018), no. 1, 169-188 (English).
5. B. Davvaz, A. Dehghan Nezhad, and M. M. Heidari, Inheritance examples of algebraic hyperstructures, Inform. Sci. 224 (2013), 180-187 (English).
6. Pengfei He and Xiaolong Xin, Fuzzy hyperlattices, Computers \& Mathematics with Applications 62 (2011), no. 12, 4682-4690 (English).

PALLAVI P., KUNCHAM S.P., TAPATEE S., AND HARIKRISHNAN P.K.

7. Pengfei He, Xiaolong Xin, and Jianming Zhan, On rough hyperideals in hyperlattices, Journal of Applied Mathematics 2013 (2013), 10 (English), Id/No 915217.
8. Harikrishnan P K, Pallavi P, Madeleine Al-Tahan, Vadiraja B, and Kuncham S P, 2-absorbing hyperideals and homomorphisms in join hyperlattices, (communicated).
9. Niovi Kehayopulu, Correction to the article:" an introduction to the theory of hyperlattices", European Journal of Pure and Applied Mathematics 12 (2019), no. 2, 252-269 (English).
10. BBN Koguep and C Lele, On hyperlattices: congruence relations, ideals and homomorphism, Afrika Matematika 30 (2019), no. 1-2, 101-111 (English).
11. Maria Konstantinidou, On P-hyperlattices and their distributivity, Rendiconti del Circolo Matemàtico di Palermo. Serie II 42 (1993), no. 3, 391-403 (English).
12. Maria Konstantinidou and Jean Mittas, An introduction to the theory of hyperlattices, Math. Balkanica 7 (1977), 187-193 (English).
13. Wasadikar M.P. and Gaikwad K.T., On 2-absorbing and weakly 2-absorbing ideals of lattices, Mathematical Sciences International Research Journal 4 (2015), no. 2, 82-85.
14. P. Pallavi, S.P. Kuncham, G.R.B. Vadiraja, and P.K. Harikrishnan, Computation of prime hyperideals in meet hyperlattices, Bull. Comput. Appl. Math. 10 (2022), no. 01, 33-58.
15. Pallavi Panjarike, Syam Prasad Kuncham, Madeleine Al-Tahan, Vadiraja Bhatta, and Harikrishnan Panackal, Applied linear algebra, probability and statistics: A volume in honour of c. r. rao and arbind k. lal, ch. On Weak Hypervector Spaces Over a Hyperfield, pp. 435-460, Springer Nature Singapore, Singapore, 2023.
16. Saeed Rasouli and Bijan Davvaz, Construction and spectral topology on hyperlattices, Mediterranean Journal of Mathematics 7 (2010), no. 2, 249-262 (English).
17. Rasouli S. and Davvaz B., Lattices derived from hyperlattices, Communications in Algebra 38 (2010), no. 8, 2720-2737 (English).
18. Tapatee Sahoo, Harikrishnan Panackal, Kedukodi Babushri Srinivas, and Syam Prasad Kuncham, Graph with respect to superfluous elements in a lattice, Miskolc Mathematical Notes 23 (2022), no. 2, 929-945 (English).
19. A. Soltani Lashkenari and B. Davvaz, Complete join hyperlattices, Indian Journal of Pure \& Applied Mathematics 46 (2015), no. 5, 633-645 (English).
20. Sahoo T., Kedukodi B.S., Shum K.P., Panackal H., and Kuncham S.P., On essential elements in a lattice and goldie analogue theorem, Asian-Eur. J. Math. 15 (2021), no. 05, 2250091.
21. Meenakshi P. Wasadikar and Karuna T. Gaikwad, Some properties of weakly primary and weakly 2-absorbing primary ideals in lattices, Palestine Journal of Mathematics 8 (2019), no. 1, 467-474 (English).

Pallavi P.: Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

Email address: syamprasad.k@manipal.edu
Kuncham S.P.: Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

Email address: syamprasad.k@manipal.edu
Tapatee S.: Department of Mathematics, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, India

Email address: tapateesahoo@gmail.com
Harikrishnan P.K. (Corresponding author): Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

Email address: pk.harikrishnan@manipal.edu

[^0]: 2000 Mathematics Subject Classification. 16Y30, 16Y60.
 Key words and phrases. Hyperlattices, hyperideals, zero-divisor graphs.

 * Corresponding author.

