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Abstract. In this paper, we discuss the interrelations between 2-absorbing

and weakly 2-absorbing hyperideals in join hyperlattices. We define twin
zeros and triple zeros of a hyperideal and establish certain properties of triple

zeros of weakly 2-absorbing hyperideal and twin zeros of weakly primary

hyperideals in modular and distributive hyperlattices. As an application, we
attempt to compute the probabilities of twin zeros and triple zeros in a lattice

with respect to an ideal and provide examples.

1. Introduction

Algebraic hyperstructures are the classical generalizations of algebraic struc-
tures which has several applications in uncertainity theory [6], rough set theory
[7], lattice based probability theories, analysis etc. Davvaz et.al.[5] extensively
studied the chemical and biological applications of hyperstructures by exploring
several inheritance examples of algebraic hyperstructures. This paper focusses on
the occurences of twin zeros and triple zeros in Hyperlattices with respect to hy-
perideals. A lattice is a partially ordered set in which every pair of elements has
a least upper bound (supremum or join) and a greatest lower bound (infimum or
meet). Multilattice is a generalization of a lattice introduced by Benado [3]. They
extended the concept of supremum and infimum to“multi” versions, allowing for
the consideration of suprema and infima over multiple elements instead of just
pairs. This provides a more flexible framework for dealing with larger collections
of elements. A lattice can also be viewed as an algebraic structure with two bi-
nary operations: join (supremum) and meet (infimum). These operations are used
to define the least upper bound and greatest lower bound of elements in the lat-
tice, respectively. Konstantinidou [12], further generalized lattices by replacing the
binary operations of join and meet with hyperoperations. However, with these gen-
eralizations some properties are not retained. Later, Konstantinidou [11] discussed
the concept of distributivity of hyperlattices, particularly of P -hyperlattices. Ra-
souli and Davvaz [17] considered special relations on hyperlattices, called regular
relations and showed that the quotient structure with respect to regular relations
form a lattice. Rasouli and Davvaz [16] defined a topology on the spectrum of
join hyperlattices and showed that it forms a T0-space. Ameri [2] and others have
explored the distributivity and dual distributivity of elements in a hyperlattice.
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Bideshki et. al. [4] studied prime hyperfilters in meet hyperlattices. Koguep and
Lele [10] studied interrelation between the congruence relations, homomorphisms
and hyperideals of a hyperlattice. Pallavi et al. [14] genralized prime hyperideals
to 2-absorbing ideals and 2-absorbing primary and established some interrelations
in meet hyperlattices. In [15], the authers studied hypervector spces. Section 2 of
the paper deals with preliminary definitions related to join hyperlattices. Section
3 focuses on weakly 2 absorbing hyperideals and weakly primary ideals of a join
hyperlattices. In section 4, as an application, we compute the probabilities of oc-
curence of a twin zero and a triple zero in a lattice with respect to an ideal with
suitable examples.

2. Preliminaries

Definition 2.1. [12] Let H be a non-empty set, and P∗(H) = {A ⊆ H : A ̸= ∅},∨
: H × H → P∗(H) be a hyperoperation, and ∧ : H × H → H be a binary

operation. Then (H,
∨
,∧) is a join hyperlattice if the following conditions hold:

(1) l1 ∈ l1
∨
l1 and l1 = l1 ∧ l1;

(2) l1
∨
(l2

∨
l3) = (l1

∨
l2)

∨
l3 and l1 ∧ (l2 ∧ l3) = (l1 ∧ l2) ∧ l3;

(3) l1
∨
l2 = l2

∨
l1 and l1 ∧ l2 = l2 ∧ l1;

(4) l2 ∈ l2 ∧ (l1
∨
l2) ∩ l2

∨
(l1 ∧ l2),

for all l1, l2, l3 ∈ H.

We define the relation ‘≤’ on H as follows:

l1 ≤ l2 if and only if l1 ∧ l2 = l1.

Then (H,≤) is a Poset.
Throughout, (H,

∨
,∧) denotes a join hyperlattice.

Definition 2.2. [19] A non-empty subset J of H is called a hyperideal if

(1) l1, l2 ∈ J implies l1
∨
l2 ⊆ J ;

(2) l1 ∈ J, l2 ∈ H such that l2 ≤ l1, then l2 ∈ J, holds.

Definition 2.3. [19] A proper hyperideal J of H is said to be prime if l1, l2 ∈ H
and l1 ∧ l2 ∈ J implies l1 ∈ J or l2 ∈ J.

Definition 2.4. [19] H is said to be

(1) distributive if l1 ∧ (l2
∨
l3) = (l1 ∧ l2)

∨
(l1 ∧ l3);

(2) s-distributive if l1
∨
(l2 ∧ l3) = (l1

∨
l2) ∧ (l1

∨
l3),

for all l1, l2, l3 ∈ H, holds.

Theorem 2.5. [11] Let (L,∧,∨) be a lattice and P a non-empty subset of L. We

define a hyperoperation
∨P

on L by

l1

P∨
l2 = l1 ∨ l2 ∨ P = {l1 ∨ l2 ∨ p | p ∈ P}.

Then (L,
∨P

,∧) is a join hyperlattice if and only if for each l2 ∈ L there exists
p ∈ P such that p ≤ l2.
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Example 2.6. Let H = D30 = {1, 2, 3, 5, 6, 10, 15}, the set of all positive divisors
of 30. The hyperoperation

∨
and the binary operation ∧ on H are defined in Table

1. Then (H,
∨
,∧) is a join hyperlattice.

∨
1 2 3 5 6 10 15 1

1 {1} {2} {3} {5} {6} {10} {15} {30}
2 {2} {1, 2} {6} {10} {3, 6} {5, 10} {30} {15, 30}
3 {3} {6} {1, 3} {15} {2, 6} {30} {5, 15} {10, 30}
5 {5} {10} {15} {1, 5} {30} {2, 10} {3, 15} {6, 30}
6 {6} {3, 6} {2, 6} {30} {1, 2, 3, 6} {15, 30} {10, 30} {5, 10, 15, 30}
10 {10} {5, 10} {2, 10} {30} {15, 30} {1, 2, 5, 10} {6, 30} {3, 6, 15, 30}
15 {15} {30} {5, 15} {3, 15} {10, 30} {6, 30} {1, 3, 5, 15} {2, 6, 10, 30}
30 {30} {15, 30} {10, 30} {6, 30} {5, 10, 15, 30} {3, 6, 15, 30} {2, 6, 10, 30} H

∧ 1 2 3 5 6 10 15 30
1 1 1 1 1 1 1 1 1
2 1 2 1 1 2 2 1 2
3 1 1 3 1 3 1 3 3
5 1 1 1 5 1 5 5 5
6 1 2 3 1 6 2 3 6
10 1 2 1 5 2 10 5 10
15 1 1 3 5 3 5 15 15
30 1 2 3 5 6 10 15 30

Table 1

Definition 2.7. [9] H is called modular if, for any l1, l2, l3 ∈ H, l1∧ l3 = l1 implies
(l1

∨
l2) ∧ l3 = l1

∨
(l2 ∧ l3).

Inheritence examples for
∨
-Hyperlattices: We construct the following

∨
-

hyperlattices from the inheritance examples of hypergroups given in [1]. Let ”Par-
ents” be denoted by p, ”filial generation” be denoted by f and mating by ×.

Consider the monohybrid crossing of two varieties of pea plants, with two type
of seed varieties viz round (RR genotype) and wrinkled (rr genotype). Then the
offsprings obtained from this crossing will be represented as follows:

P : Round × Wrinkled
(RR) (rr)

↓
f1 : Round

(Rr)
f1 × f1 : Round × Round

(Rr) (Rr)
↓

f2 : (RR), (Rr), (Rr), (rr)

We construct the following hyperoperations given in the Table 2 on the set L =
{R,W} where R denotes the round genotype, and W denotes the wrinkled geno-
type. Then (L,

∨
,∧) is a hyperlattice.
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R W

R {R,W} {R}
W {R} {W}

∧ R W
R R W
W W W

Table 2

3. Triple zeros and twin zeros of hyperideals

Definition 3.1. J ∈ Id(H) is called weakly prime if whenever 0 ̸= l1∧l2, l1∧l2 ∈ J
implies l1 ∈ J or l2 ∈ J.

Proposition 3.2. Every prime hyperideal of H is weakly prime.

Definition 3.3. [8] Let J ∈ Id(H). J is called 2-absorbing if whenever l1, l2, l3 ∈ H
with l1 ∧ l2 ∧ l3 ∈ J, then either l1 ∧ l2 ∈ J or l2 ∧ l3 ∈ J or l1 ∧ l3 ∈ J.

Definition 3.4. J ∈ Id(H) is called weakly 2-absorbing if whenever 0 ̸= l1∧l2∧l3 ∈
J , then l1 ∧ l2 ∈ J or l2 ∧ l3 ∈ J or l1 ∧ l3 ∈ J. We say that J is strictly weakly
2-absorbing if it is weakly 2-absorbing but not 2-absorbing.

Remark 3.5. Every 2-absorbing hyperideal of H is weakly 2-absorbing, and the
converse need not be true.

Example 3.6. In Example 2.6, J = {1} is a strictly weakly 2-absorbing hyper-
ideal. In fact, 12 ∧ 10 ∧ 15 = 1 but 12 ∧ 10 /∈ I, 15 ∧ 10 /∈ I and 12 ∧ 15 /∈ I.

Definition 3.7. [8] For J ∈ Id(H), we define the radical of J as the intersection
of all prime hyperideals containing J and we denote it by rad∨(J). If J is not
contained in any prime hyperideal, then we take rad∨(J) = H.

Definition 3.8. [8] J ∈ Id(H) is called a primary hyperideal if whenever l1, l2 ∈ H
and l1 ∧ l2 ∈ J, then l1 ∈ J or l2 ∈ rad∨(J).

Definition 3.9. J ∈ Id(H) is said to be weakly primary if whenever l1, l2 ∈ H, 0 ̸=
l1 ∧ l2 ∈ J imply l1 ∈ J or l2 ∈ rad∨(J). We call J as strictly weakly primary if it
is weakly primary but not primary.

Example 3.10. In Example 2.6, the hyperideal I = {1} is a strictly weakly
primary hyperideal.

Example 3.11. Let H = {0, l1, l2, l3, l4, l5, l6, 1}. The hyperoperation
∨

and the
binary operation ∧ are represented by Figure 1.

Then (H,
∨
,∧) is a join hyperlattice. Here, J = {0, l1} is a strictly weakly primary

hyperideal with rad∨(J) = {0, l1, l2, l4}. In fact, l2 ∧ l3 ∈ J, but l2 /∈ J and
l3 /∈ rad∨(J).

Remark 3.12. Every primary hyperideal of H is weakly primary, and every weakly
prime hyperideal of H is weakly primary.

Proposition 3.13. [19] For every l1, l2 ∈ H, there exists u ∈ l1
∨
l2 such that

l1 ≤ u.
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1
{1}

l4
{l4}

l5
{l5, 1}

l6
{l6, 1}

l1
{l1}

l2
{l2, l4}

l3
{l3, 1}

0
{0, l1}

Figure 1

Definition 3.14. Let J, J ′ ∈ Id(H) and x ∈ H. We define,

[J : x] = {l1 ∈ H : l1 ∧ x ∈ J}

[0 : x] = {l2 ∈ H : x ∧ l2 = 0}
and

[J : J ′] = {l1 ∈ H : l1 ∧ l2 ∈ J ∀ l2 ∈ J ′}.

Proposition 3.15. Let J ∈ Id(H). Then J ⊊ H is a weakly primary if and only
if for any x ∈ H \ rad∨(J), [J : x] = J ∪ [0 : x].

Proof. Suppose that J ∈ Id(H) is weakly primary. Assume that 0 ̸= v ∧ x. Since
J is weakly primary, we have v ∈ J. Therefore, [J : x] ⊆ J ∪ [0 : x]. On the other
hand, by Proposition 3.13, J ⊆ [J : x]. Let w ∈ [0 : x]. Then w ∧ x = 0, and so
w ∧ x ∈ J. Therefore, [0 : x] ⊆ [J : x]. Hence, J ∪ [0 : x] ⊆ [J : x].
Conversely, let 0 ̸= x ∧ v and (x ∧ v) ∈ J with x /∈ rad∨(J). Then
v ∈ [J : x] = J ∪ [0 : x]. Since 0 ̸= v ∧ x, v /∈ [0 : x]. Therefore, v ∈ J, and hence,
J is weakly primary. □

Definition 3.16. [2] An element l ∈ H is called distributive, if

l ∧
(
l1
∨

l2

)
= (l ∧ l1)

∨
(l ∧ l2),

for all l1, l2 ∈ H holds.

Proposition 3.17. Let J1, J2, J3 ∈ Id(H). If J1 ⊆ J1 ∪ J3 then J1 ⊂ J2 or
J1 ⊆ J3.

Proposition 3.18. Let ∅ ≠ J ∈ Id(H) and l ∈ H \ rad∨(J) be a distributive
element. If J is weakly primary then [I : l] = I or [I : l] = [0 : l].

Proof. Suppose that J is a weakly primary hyperideal of H, by Proposition 3.15,
[I : l] = I ∪ [0 : l], and by Proposition 3.17, we get [I : l] = I or [I : l] = [0 : l]. □

Definition 3.19. J ∈ Id(H) is called weakly 2-absorbing primary if whenever
0 ̸= l1 ∧ l2 ∧ l3 ∈ J implies l1 ∧ l2 ∈ J or l2 ∧ l3 ∈ rad∨(J) or l1 ∧ l3 ∈ rad∨(J).
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l4
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0
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Figure 2

Proposition 3.20. If H is distributive and ∅ ≠ J ∈ Id(H), and [J : l] = J or
[J : l] = [0 : l] for all l ∈ H \ rad∨(J), then J is weakly primary.

Proof. Suppose that 0 ̸= l∧ l1 with l /∈ rad∨(J). Then l1 ∈ [J : l]. Since l∧ l1 ̸= 0,
we get [J : l] = J, and so l1 ∈ J. Hence, J is weakly primary. □

Definition 3.21. Let I ∈ Id(H). If there exist l1, l2, l3 ∈ H with l1 ∧ l2 ∧ l3 = 0
such that l1 ∧ l2 /∈ I and l2 ∧ l3 /∈ I and l1 ∧ l3 /∈ I, then we call (l1, l2, l3) as a
triple zero of I.

Example 3.22. In Example 2.6, (12, 10, 15) is a triple zero of the hyperideal
I = {1}.

Example 3.23. Let H = {0, l1, l2, l3, l4, l5, l6, l7, 1}. The hyperoperation
∨

and
the binary operation ∧ are represented by Figure 2.

Then (H,
∨
,∧) is a join hyperlattice. Here, J = {0, l1} is a strictly weakly 2-

absorbing hyperideal. In fact, l5 ∧ l6 ∧ l7 ∈ J, but 0 = l5 ∧ l6 /∈ J, l6 ∧ l7 /∈ J and
l5 ∧ l7 /∈ J, and so (l5, l6, l7) is a triple zero of J.

Remark 3.24. If I ∈ Id(H) is strictly weakly 2-absorbing, then I has a triple zero.

Remark 3.25. A hyperlattice H is modular if and only if l1 ∧ (l2
∨
(l1 ∧ l3)) =

(l1 ∧ l2)
∨
(l1 ∧ l3).

Let I1, I2, I3 ∈ Id(H) and l1, l2, l3 ∈ H. Then we use the following notations:

(1) I21 = {i1 ∧ i2 : i1, i2 ∈ I1, i1 ̸= i2}.
(2) I31 = {i1 ∧ i2 ∧ i3 : i1, i2, i3 ∈ I1, i1 ̸= i2 ̸= i3}.
(3) l1 ∧ l2 ∧ I1 = {l1 ∧ l2 ∧ i : i ∈ I1}.
(4) l1 ∧ I21 = {l1 ∧ i : i ∈ I21}.
(5) I21I2I3 = {i1 ∧ i2 ∧ i3 : i1 ∈ I21 , i2 ∈ I2, i3 ∈ I3}.
(6) I21I

2
2 = {i1 ∧ i2 : i1 ∈ I21 , i2 ∈ I22}.
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Theorem 3.26. Let H be a modular join hyperlattice with l
∨
0 = {l} ∀ l ∈ H,

and I be a strictly weakly 2-absorbing hyperideal with a triple zero (l1, l2, l3) in I.
Then l1 ∧ l2 ∧ I = l2 ∧ l3 ∧ I = l1 ∧ l3 ∧ I = {0}.

Proof. Suppose that l1 ∧ l2 ∧ li ̸= 0 for some li ∈ I. Then l1 ∧ l2 ∧ li ∈ I. Now
{l1 ∧ l2 ∧ li} = 0

∧
(l1 ∧ l2 ∧ li) = (l1 ∧ l2 ∧ l3)

∨
(l1 ∧ l2 ∧ li) ⊆ I. Since H is

modular, (l1 ∧ l2 ∧ l3)
∨
(l1 ∧ l2 ∧ li) = (l1 ∧ l2) ∧ (l3

∨
(l1 ∧ l2 ∧ li)) ⊆ I. Now by

Lemma 3.13, there exists x ∈ l3
∨
(l1 ∧ l2 ∧ li) such that l3 ≤ x. In particular,

0 ̸= l1 ∧ l2 ∧ li = (l1 ∧ l2) ∧ x ∈ I. As I is a weakly 2-absorbing hyperideal, and
l1 ∧ l2 /∈ I, we get l1 ∧ x ∈ I or l2 ∧ x ∈ I. Since l3 ≤ x, we get l1 ∧ l3 ≤ l1 ∧ x ∈ I
or l2 ∧ l3 ≤ l2 ∧ x ∈ I, a contradiction. Thus, l1 ∧ l2 ∧ I = {0}. □

Proposition 3.27. Let H be a distributive join hyperlattice with l
∨
0 = {l} ∀ l ∈

H, I be a strictly weakly 2-absorbing hyperideal, and (l1, l2, l3) be a triple zero of
I. Then l1 ∧ I2 = l2 ∧ I2 = l3 ∧ I2 = {0}.

Proof. Suppose that l1 ∧ li ∧ l′i ̸= 0 for some l1 ̸= l′i ∈ I. Now {0} ̸= l1 ∧ li ∧ l′i =
(l1 ∧ l2 ∧ l3)

∨
l1 ∧ li ∧ l′i. As H is distributive, it follows that

[(l1 ∧ l2 ∧ l3)
∨

(l1 ∧ l2 ∧ l′i)]
∨

[(l1 ∧ li ∧ l3)
∨

(l1 ∧ li ∧ l′i)]

=[(l1 ∧ l2) ∧ (l3
∨

l′i)]
∨

[(l1 ∧ li) ∧ (l3
∨

l′i)]

={u ∧ l1 ∧ l2 : u ∈ l3
∨

l′i}
∨

{v ∧ l1 ∧ li : v ∈ l3
∨

l′i}

⊇{x ∧ l1 ∧ l2
∨

u ∧ l1 ∧ li : x ∈ l3
∨

l′i}

={x ∧ [(l1 ∧ l2)
∨

(l1 ∧ li)] : x ∈ l3
∨

l′i}

={x ∧ [l1 ∧ (l2
∨

li)] : x ∈ l3
∨

l′i}

=(l3
∨

l′i) ∧ [l1 ∧ (l2
∨

li)]

Now, by Theorem 3.26, l1 ∧ l2 ∧ l′i = l1 ∧ li ∧ l3 = 0, we get

[(l1 ∧ l2 ∧ l3)
∨

(l1 ∧ l2 ∧ l′i)]
∨

[(l1 ∧ li ∧ l3)
∨

(l1 ∧ li ∧ l′i)] = {l1 ∧ li ∧ l′i}.

Therefore,

(l3
∨

l′i) ∧ [l1 ∧ (l2
∨

li)]={l1 ∧ li ∧ l′i}.

Further, by Lemma 3.13, there exists x ∈ l3
∨
l′i and there exists y ∈ l2

∨
li

such that l3 ≤ x and l2 ≤ y. Now x ∧ (l1 ∧ y) = l1 ∧ li ∧ l′i ̸= 0 and as I is
weakly 2-absorbing, we get either x ∧ l1 ∈ I or x ∧ y ∈ I or l1 ∧ y ∈ I. Since
l1 ∧ l2 ≤ l1 ∧ y, l2 ∧ l3 ≤ x ∧ y and l1 ∧ l3 ≤ l1 ∧ x, we get l1 ∧ l2 ∈ I or l1 ∧ l3 ∈ I
or l2 ∧ l3 ∈ I, a contradiction. Thus, l1 ∧ li ∧ l′i = 0. □

Proposition 3.28. Let H be a distributive join hyperlattice with l
∨

0 = {l} ∀ l ∈
H, I be a strictly weakly 2-absorbing hyperideal, and (l1, l2, l3) a triple zero of I.
Then I3 = {0}.
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Proof. On a contrary, suppose that li ∧ lj ∧ lk ̸= 0 for some li, lj , lk ∈ I. As H is
distributive, we have

(l1
∨

li)∧(l2
∨

lj) ∧ (l3
∨

lk)

⊆ (l1 ∧ l2 ∧ l3)
∨

(l1 ∧ l3 ∧ lj)
∨

(l2 ∧ l3 ∧ li)
∨

(l1 ∧ l2 ∧ lk)∨
(l2 ∧ li ∧ lk)

∨
(l1 ∧ lj ∧ lk)

∨
(l3 ∧ li ∧ lj)

∨
(li ∧ lj ∧ lk).

By Theorem 3.26, we have l1 ∧ l3 ∧ lj = l2 ∧ l3 ∧ li = l1 ∧ l2 ∧ lk = 0, and
by Proposition 3.27, we get l2 ∧ li ∧ lk = l1 ∧ lj ∧ lk = l3 ∧ li ∧ lj = 0. This
gives (l1

∨
li) ∧ (l2

∨
lj) ∧ (l3

∨
lk) ⊆ {li ∧ lj ∧ lk}. Then (by lemma 3.13) there

exist x ∈ l1
∨
li, y ∈ l2

∨
lj , z ∈ l3

∨
lk such that l1 ≤ x, l2 ≤ y, l3 ≤ z with

0 ̸= li ∧ lj ∧ lk = x ∧ y ∧ z. Since I is weakly 2-absorbing, we have x ∧ y ∈ I
or y ∧ z ∈ I or x ∧ z ∈ I, and so l1 ∧ l2 ∈ I or l2 ∧ l3 ∈ I or l1 ∧ l3 ∈ I, a
contradiction. □

Proposition 3.29. Let I1, I2, I3 be strictly weakly 2-absorbing ideals of a
s-distributive hyperlattice H with l

∨
0 = {l} ∀ l ∈ H. Then

(1) I21I2I3 = I1I
2
2I3 = I1I2I

2
3 = {0},

(2) I21I
2
2 = {0}.

Proof. (1) We prove that I21I2I3 = {0} and the other cases are similar. On a
contrary, suppose that l1∧l′1∧l2∧l3 ̸= 0 for some l1, l

′
1 ∈ I1, l2 ∈ I2, l3 ∈ I3.

Then l1 ∧ l′1 ̸= 0. As I1 is strictly weakly 2-absorbing, by Remark 3.24, I1
has a triple zero say (li, lj , lk). Now (l1∧ lj ∧ lk)

∨
(l1∧ l′1) = {l1∧ l′1}. Since

H is s-distributive,

{l1 ∧ l′1} = (li ∧ lj ∧ lk)
∨

(l1 ∧ l′1)

= [li
∨

(l1 ∧ l′1)] ∧ [lj
∨

(l1 ∧ l′1)] ∧ [lk
∨

(l1 ∧ l′1)].

Then by Lemma 3.13, there exist x ∈ li
∨
(l1 ∧ l′1), y ∈ lj

∨
(l1 ∧ l′1), z ∈

lk
∨
(l1 ∧ l′1) such that li ≤ x, lj ≤ y and lk ≤ z. Now 0 ̸= x ∧ y ∧ z =

l1 ∧ l′1 ∈ I1 and I1 is weakly 2-absorbing, either x∧ y ∈ I1 or x∧ z ∈ I1 or
y∧ z ∈ I1. And so li ∧ lj ∈ I1 or li ∧ lk ∈ I1 or lj ∧ lk ∈ I1, a contradiction.

(2) Suppose that l1 ∧ l′1 ∧ l2 ∧ l′2 ̸= 0 for some l1, l
′
1 ∈ I1, l2, l

′
2 ∈ I2. Then

l1 ∧ l′1 ̸= 0. As I1 is strictly weakly 2-absorbing, it has a triple zero say
(li, lj , lk). Now (l1 ∧ lj ∧ lk)

∨
(l1 ∧ l′1) = {l1 ∧ l′1}. Since H is strongly

distributive,

{l1 ∧ l′1} = (li ∧ lj ∧ lk)
∨

(l1 ∧ l′1)

= [li
∨

(l1 ∧ l′1)] ∧ [lj
∨

(l1 ∧ l′1)] ∧ [lk
∨

(l1 ∧ l′1)]

Now by similar argument as in the first part we obtain li ∧ lj ∈ I1 or
li ∧ lk ∈ I1 or lj ∧ lk ∈ I1, a contradiction. Therefore, l1 ∧ l′1 ∧ l2 ∧ l3 = 0.

□

Definition 3.30. Let J ∈ Id(H) and l1, l2 ∈ H. We call (l1, l2) as twin zero of J
if l1 ∧ l2 = 0 but l1 /∈ J and l2 /∈ rad∨(J).



TWIN ZEROS AND TRIPLE ZEROS OF A HYPERLATTICE

Remark 3.31. A strictly weakly primary hyperideal has a twin-zero.

Example 3.32. In Example 2.6, (2, 5) is a twin zero of the hyperideal I = {1}.

Theorem 3.33. Let J be a strictly weakly primary hyperideal of a modular hy-
perlattice H with l

∨
0 = {l} for all l ∈ H, and (l1, l2) a twin zero of J. Then

l1 ∧ J = {0}.

Proof. Suppose that l1 ∧ J ̸= {0}. Then l1 ∧ j ̸= 0 for some j ∈ J. Now l1 ∧ j =
(l1 ∧ l2)

∨
(l1 ∧ j) ⊆ J. Since H is modular, {l1 ∧ j} = l1 ∧ (l2

∨
(l1 ∧ j)) ⊆ J. By

Lemma 3.13, there exists u ∈ l2
∨
(l1 ∧ j) with l2 ≤ u. Now l1 ∧ j = l1 ∧ u ∈ J.

Since 0 ̸= l1 ∧ u ∈ J, l1 /∈ J, we get u ∈ rad∨(J), and hence, l2 ∈ rad∨(J), a
contradiction. Thus, l1 ∧ J = {0}. □

4. Computing probabilities of twin zeros and triple zeros

In this section, we compute the probabilities of occuring a twin zero and a triple
zero in a lattice with respect to an ideal. Let |L| denotes the number of elements
in the lattice L.

Definition 4.1. [21] Let J be an ideal of a lattice L (with zero) and l1, l2 ∈ L.
We call (l1, l2) as twin zero of J if l1 ∧ l2 = 0 but l1 /∈ J and l2 /∈ rad(J).

Definition 4.2. [13] Let J be an ideal of a lattice L (with zero) and l1, l2, l3 ∈ L.
Then (l1, l2, l3) is s triple zero of J if l1 ∧ l2 ∧ l3 = 0 but l1 ∧ l2 = 0 /∈ J and
l2 ∧ l3 = 0 /∈ J and l1 ∧ l3 = 0 /∈ J.

Definition 4.3. Let L be a lattice and J be an ideal of L. Then

(1) probability of getting a twin zero in L with respect to J is defined as

PJ(twin zero) =
|{(l1, l2) : l1 ∧ l2 = 0, l1 /∈ J, l2 /∈ rad(J)}|

|L× L|
(2) probability of getting a triple zero in L with respect to an ideal J is defined

as

PJ(triple zero) =
|{(l1, l2, l3) : l1 ∧ l2 ∧ l3 = 0, l1 ∧ l2 /∈ J, l2 ∧ l3 /∈ J, l1 ∧ l3 /∈ J}|

|L× L× L|

Remark 4.4. If J is a primary ideal of a latttice, then PJ(twin tero) = 0.

The following remark can be observed from the definition. However, we illus-
trate it in Example 4.6.

Remark 4.5. PJ(twin zero) ≤ |Jc × (rad(J))
c |

|L× L|
, and so PJ(twin zero) < 1.

Example 4.6. Consider the lattice given in Figure 3. Here (l1, l3), (l1, l5), (l4, l3)
and (l4, l6) are twin zeros of L with respect to the ideal J = {0, l2}, where rad(J) =

{0, l1, l2, l4}. Hence, PJ(twin zero) = 4
64 <

6× 4

64
=

|Jc × (rad(J))
c |

|L× L|
. For I =

{0, l1}, (rad(I) = {0, l1, l2, l4}), twin zeros with respect to J are (l4, l5), (l4, l6),

(l4, l3), and so PI(twin zero) =
3

64
. As I ∨ J = {0, l1, l2, l4}, a prime ideal,
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PI∨J(twin zero) = 0. We have rad(I ∩ J) = {0, l1, l2, l4}, and twin zeros of

I ∩ J are (l6, l4), (l6, l1), (l3, l4), (l3, l1). PI∩J(twin zero) =
4

64
. Thus we have

PI∨J(twin zero) ≤ PI(twin zero) + PJ(twin zero)− PI∩J(twin zero).

1

l4 l5 l6

l1 l2 l3

0

Figure 3

Example 4.7. Consider the lattice given in Figure 4. Here {(x1, x2, x3) : xi ∈
T, xi ̸= xj for i ̸= j, } (where T = {l4, l5, l6}) are the triple zeros of L with respect
to the ideal J = {0}. Therefore PJ(triple zero) = 6

83 .

1

l4 l5 l6

l1 l2 l3

0

Figure 4

The following remark can be observed from the above examples.

Remark 4.8. Let L be a lattice and I, J are ideals of L such that I ⊆ J. Then

(1) PJ(twin zero) ≤ PI(twin zero)

(2) PI∨J(twin zero) ≤ 1

2
(PI(twin zero) + PJ(twin zero))
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Remark 4.9. If I is an ideal in a lattice L and the corresponding P−hyperlattice,
then twin zeros in L and the P−hyperlattice with respect to I will coincide. More-
over, the probability of getting a twin zero with respect to I on both structures
will be equal.

Open question

Let L be a lattice.

(1) Can we attain a bound for the probability of twin zeros and triple zeros
in a distributive lattice or a modular lattice with respect to an ideal?

(2) In general, for any two ideals I and J of L, does it hold that

PI∨J(twin zero) ≤ PI(twin zero) + PJ(twin zero)− PI∧J(twin zero)?

Conclusion

In this paper, we have considered the generalization of lattices as join hyper-
lattices, in which the interrelations between 2-absorbing and weakly 2-absorbing
hyperideals are established. Later, the concepts like twin zeros and triple zeros of
a hyperideal are defined with suitable illustrations. The properties of triple zeros
of weakly 2-absorbing hyperideal and twin zeros of weakly primary hyperideals in
modular and distributive hyperlattices are proved. We have computed the proba-
bilities for the occurence of twin zeros and triple zeros in a lattice with respect to
an ideal. As a future scope one can extend the notions of essential elements and
superflous elements discussed in [18, 20] to hyperlattices.
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