Received: 16th September 2020 Revised: 06th October 2020 Accepted: 21st October 2020

NEW SUBCLASS F ANALYTIC FUNCTIONS ASSOCIATED WITH RAPID OPERATOR

KC DESHMUKH¹, RAJKUMAR N.INGLE², AND P.THIRUPATHI REDDY³

ABSTRACT. The object of the present paper is to investigate a new subclass of analytic functions which are defined by means of a Rapid operator. Some results connected to coefficient estimates, growth and distortion theorems, radii of starlikeness, convexity close-to-convexity and integral means inequalities related to the subclass is obtained.

2010 Mathematics Subject Classification.30C45

1. Introduction

Let A denote the class of functions **u** of the form

$$u(z) = z + \sum_{\eta=2}^{\infty} a_n z^\eta \tag{1.1}$$

which are analytic in the open unit disc $E = \{z \in \mathbb{C} : |z| < 1\}$

A function u in the class A is said to be in the class $ST(\alpha)$ of starlike functions of order α in E, if it satisfy the inequality

$$\Re\left\{\frac{zu'(z)}{u(z)}\right\} > \alpha, \ (0 \le \alpha < 1), z \in E$$
(1.2)

Note that ST(0) = ST is the class of Starlike functions. Denote by T the subclass of A consisting of functions u of the form

$$u(z) = z - \sum_{\eta=2}^{\infty} a_{\eta} z^{\eta}, \ (a_{\eta} \ge 0)$$
(1.3)

This subclass was introduced and extensively studied by Silvermann[4].

Let u be a function in the class A. Recently, Atshan and Buti [1] introduced a Rapid operator of $f \in \Re$ for $0 \le \lambda < 1$ and $0 \le \nu < 1$. It is denoted by $G^{\nu}_{\lambda}u(z)$ and defines follows.

$$G_{\lambda}^{\nu}u(z) = \frac{1}{(1-\lambda)^{\nu+1}\Gamma(\nu+1)} \int_{0}^{\infty} t^{\lambda-1} e^{-(\frac{t}{1-\lambda})} u(zt) dt$$
(1.4)

Thus u(z) has of the form (1.1), then it follows from (1.4)

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. analytic, starlike, coefficient bounds, distortion.

KC DESHMUKH¹, RAJKUMAR N.INGLE², AND P.THIRUPATHI REDDY³

$$G^{\nu}_{\lambda}u(z) = z + \sum_{\eta=2}^{\infty} \chi_{\eta}(\lambda,\nu)a_{\eta}z^{\eta}$$
(1.5)

where

$$\chi_{\eta}(\lambda,\nu) = (1-\lambda)^{\nu-1} \frac{\Gamma(\eta+\nu)}{\Gamma(\nu+1)}$$

Now we define the following new subclass motivated by Murugus underamoorthy and Magesh [3]

Definition 1.1. The function u(z) of the form (1.1) is in the class $S_{\lambda}^{\nu}(\mu, \gamma, \varrho)$, if it satisfies the inequality

$$\Re\left\{\frac{z(G_{\lambda}^{\nu}u(z))'}{(1-\mu)z+\mu G_{\lambda}^{\nu}u(z)}-\gamma\right\} > \varrho\left|\frac{z(G_{\lambda}^{\nu}u(z))'}{(1-\mu)z+\mu G_{\lambda}^{\nu}u(z)}-1\right|$$

for $0 \le \lambda \le 1, \, 0 \le \gamma \le 1$ and $\varrho \ge 0$.

Further we define $TS_{\lambda}^{\nu}(\mu,\gamma,\varrho)=S_{\lambda}^{\nu}(\mu,\gamma,\varrho)\cap T$

The aim of present paper is to study the coefficient bounds, radii of close-to-convex and starlikeness convex linear combinations and integral means inequalities of the $TS^{\nu}_{\lambda}(\mu,\gamma,\varrho)$

2. Coefficient bounds

Theorem 2.1. A function u(z) of the form (1.1) is in $S^{\nu}_{\lambda}(\mu, \gamma, \varrho)$, then

$$\sum_{\eta=2}^{\infty} [(1+\varsigma)\eta - \mu(\gamma+\varsigma)]\chi_{\eta}(\lambda,\nu)|a_{\eta}| \le 1-\gamma$$
(2.1)

where $0 \le \mu \le 1$, $0 \le \gamma \le 1, \varrho \ge 0$ and $\chi_{\eta}(\lambda, \nu)$ is given by (1.5).

Proof. It suffices to show that

$$\varrho \left| \frac{z(G_{\lambda}^{\nu}u(z))'}{(1-\mu)z+\mu G_{\lambda}^{\nu}u(z)} - 1 \right| - \Re \left\{ \frac{z(G_{\lambda}^{\nu}u(z))'}{(1-\mu)z+\mu G_{\lambda}^{\nu}u(z)} - 1 \right\}$$

$$\leq 1 - \gamma$$

We have

$$\begin{split} \varrho \left| \frac{z(G_{\lambda}^{\nu}u(z))'}{(1-\mu)z + \mu G_{\lambda}^{\nu}u(z)} - 1 \right| &- \Re \left\{ \frac{z(G_{\lambda}^{\nu}u(z))'}{(1-\mu)z + \mu G_{\lambda}^{\nu}u(z)} - 1 \right\} \\ &\leq (1+\varrho) \left| \frac{z(G_{\lambda}^{\nu}u(z))'}{(1-\mu)z + \mu G_{\lambda}^{\nu}u(z)} - 1 \right| \\ &\leq \frac{(1+\varrho) \sum_{\eta=2}^{\infty} (\eta-\mu)\chi_{\eta}(\lambda,\nu)|a_{\eta}||z|^{\eta-1}}{1 - \sum_{\eta=2}^{\infty} \mu\chi_{\eta}(\lambda,\nu)|a_{\eta}|} \\ &\leq \frac{(1+\varrho) \sum_{\eta=2}^{\infty} (\eta-\mu)\chi_{\eta}(\lambda,\nu)|a_{\eta}|}{1 - \sum_{\eta=2}^{\infty} \mu\chi_{\eta}(\lambda,\nu)|a_{\eta}|} \end{split}$$

The last expression is bounded above by $(1 - \gamma)$, if

$$\sum_{\eta=2}^{\infty} [(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)|a_{\eta}| \le 1-\gamma$$

and the proof is complete.

Theorem 2.2. Let $0 \le \mu \le 1$, $0 \le \gamma \le 1$, and $\varrho \ge 0$ then a function u of the form (1.3) to be in the class $TS^{\nu}_{\lambda}(\mu, \gamma, \varrho)$ if and only if

$$\sum_{\eta=2}^{\infty} [(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)|a_{\eta}| \le 1-\gamma$$
(2.2)

where $\chi_{\eta}(\lambda, \nu)$ is given by (1.5).

Proof. In view of Theorem (2.1) we need only to prove the necssity. If $u \in TS^{\nu}_{\lambda}(\mu, \gamma, \varrho)$ and z is real, then

$$\Re\left\{\frac{1-\sum_{\eta=2}^{\infty}\eta\chi_{\eta}(\lambda,\nu)a_{\eta}z^{\eta-1}}{1-\sum_{\eta=2}^{\infty}\mu\chi_{\eta}(\lambda,\nu)a_{\eta}z^{\eta-1}}-\gamma\right\}>\left|\frac{\sum_{\eta=2}^{\infty}(\eta-\mu)\chi_{\eta}(\lambda,\nu)a_{\eta}z^{\eta-1}}{1-\sum_{\eta=2}^{\infty}\mu\chi_{\eta}(\lambda,\nu)a_{\eta}z^{\eta-1}}\right|$$

Letting $z \to 1$ along the real axis, we obtain the desired inequality

$$\sum_{\eta=2}^{\infty} [(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)|a_{\eta}| \le 1-\gamma$$

where $0 \le \mu \le 1$, $0 \le \gamma \le 1$, $\varrho \ge 0$ and $\chi_{\eta}(\lambda, \nu)$ is given by (1.5).

Corollary 2.3. If $u(z) \in TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$, then

$$|a_{\eta}| \leq \frac{1-\gamma}{[(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)}$$
(2.3)

where $0 \le \mu \le 1$, $0 \le \gamma \le 1$, $\varrho \ge 0$ and $\chi_{\eta}(\lambda, \nu)$ is given by (1.5). Equality holds for the function

$$u(z) = z - \frac{1 - \gamma}{\left[(1 + \varrho)\eta - \mu(\gamma + \varrho)\right]\chi_{\eta}(\lambda, \nu)} z^{\eta}$$
(2.4)

Theorem 2.4. Let $u_1(z) = z$ and

$$u_{\eta}(z) = z - \frac{1 - \gamma}{\left[(1 + \varrho)\eta - \mu(\gamma + \varrho)\right]\chi_{\eta}(\lambda, \nu)} z^{\eta}, \ \eta \ge 2$$

$$(2.5)$$

Then $u(z) \in TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$, if and only if, it can be expressed in the form

$$u(z) = \sum_{\eta=1}^{\infty} w_{\eta} u_{\eta}(z), \ w_{\eta} \ge 0, \ \sum_{\eta=1}^{\infty} w_{\eta} = 1$$
(2.6)

Proof. Suppose u(z) can be written as in (2.6), then

$$u(z) = z - \sum_{\eta=2}^{\infty} w_{\eta} \frac{1-\gamma}{[(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)} z^{\eta}$$

Now,

$$\sum_{\eta=2}^{\infty} w_{\eta} \frac{(1-\gamma)[(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)}{(1-\gamma)[(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)} = \sum_{\eta=2}^{\infty} w_{\eta} = 1 - w_{1} \le 1$$

Thus $u(z) \in TS_{\lambda}^{\nu}(\mu, \gamma, \varrho).$

Conversely, let $u(z) \in TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$, then by using (2.3), we get

$$w_{\eta} = \frac{\left[(1+\varrho)\eta - \mu(\gamma+\varrho)\right]\chi_{\eta}(\lambda,\nu)}{(1-\gamma)}a_{\eta}, \ \eta \ge 2$$

and $w_1 = 1 - \sum_{\eta=2}^{\infty} w_{\eta}$. Then we have $u(z) = \sum_{\eta=1}^{\infty} w_{\eta} u_{\eta}(z)$ and hence this completes the proof of Theorem.

Theorem 2.5. The class $TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$ is a convex set.

Proof. Let the function

$$u_j(z) = z - \sum_{\eta=2}^{\infty} a_{\eta,j} z^{\eta}, \ a_{\eta,j} \ge 0, \ j = 1,2$$
(2.7)

be in the class $TS^{\nu}_{\lambda}(\mu,\gamma,\varrho)$. It is sufficient to show that the function h(z) defined by

$$h(z) = \xi u_1(z) + (1 - \xi)u_2(z), \ 0 \le \xi < 1,$$

in the class $TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$. Since

$$h(z) = z - \sum_{\eta=2}^{\infty} [\xi a_{\eta,1} + (1-\xi)a_{\eta,2}]z^{\eta},$$

An easy computation with the aid of Theorem (2.2) gives

$$\sum_{\eta=2}^{\infty} [(1+\varrho)\eta - \mu(\gamma+\varrho)]\xi\chi_{\eta}(\lambda,\nu)a_{\eta,1} + \sum_{\eta=2}^{\infty} [(1+\varrho)\eta - \mu(\gamma+\varrho)](1-\xi)\chi_{\eta}(\lambda,\nu)a_{\eta,2} \\ \leq \xi(1-\gamma) + (1-\xi)(1-\gamma) \\ \leq (1-\gamma)$$

which implies that $h \in TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$ Hence $TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$ is convex.

3. Radii of Close-to-Convexity, Starlikeness and Convexity

In this section, we obtain the radii of close-to-convexity, starlikeness and convexity for the class $TS^{\nu}_{\lambda}(\mu, \gamma, \varrho)$.

Theorem 3.1. Let the function u(z) defined by (1.3) belong to the class $TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$, then u(z) is close-to-convex of order $\delta(0 \leq \delta < 1)$ in the disc $|z| < r_1$, where

$$r_{1} = \inf_{\eta \ge 2} \left[\frac{(1-\delta) \sum_{\eta=2}^{\infty} [(1+\varrho)\eta - \mu(\gamma+\varrho)] \chi_{\eta}(\lambda,\nu)}{\eta(1-\gamma)} \right]^{1/\eta-1}, \eta \ge 2$$
(3.1)

The result is sharp, with the external function u(z) is given by (2.5)

Proof. Given $u \in T$ and u is close-to-convex of order δ , we have

$$|f'(z) - 1| < 1 - \delta \tag{3.2}$$

For the left hand side of (3.2), we have

$$|u'(z) - 1| \le \sum_{\eta=2}^{\infty} \eta a_{\eta} |z|^{\eta-1}$$

The last expression is less than $1 - \delta$

$$\sum_{\eta=2}^{\infty} \frac{\eta}{1-\delta} a_{\eta} |z|^{\eta-1} \le 1$$

Using the fact, that $u(z) \in TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$ if and only if

$$\sum_{\eta=2}^{\infty} \frac{[(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)}{1-\gamma} a_{\eta} \leq 1$$

We can see that (3.2) is true, if

$$\frac{\eta}{1-\delta}|z|^{\eta-1} \leq \frac{[(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)}{1-\gamma}$$

or, equivalently

$$|z| \le \left\{ \frac{(1-\delta)[(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)}{\eta(1-\gamma)} \right\}^{1/\eta-1}$$

which completes the proof.

Theorem 3.2. Let the function u(z) defined by (1.3) belong to the class $TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$. Then u(z) is starlike of order $\delta(0 \le \delta < 1)$ in the disc $|z| < r_2$, where

$$r_2 = \inf_{\eta \ge 2} \left[\frac{(1-\delta) \sum_{\eta=2}^{\infty} [(1+\varrho)\eta - \mu(\gamma+\varrho)] \chi_\eta(\lambda,\nu)}{(\eta-\delta)(1-\gamma)} \right]^{1/\eta-1}$$
(3.3)

The result is sharp, with external function u(z) is given by (2.5)

Proof. Given $u \in T$ and u is starlike of order δ , we have

$$\left|\frac{zu'(z)}{u(z)} - 1\right| < 1 - \delta \tag{3.4}$$

For the left hand side of (3.4), we have

$$\left|\frac{zu'(z)}{u(z)} - 1\right| \le \sum_{\eta=2}^{\infty} \frac{(\eta-1)a_{\eta}|z|^{\eta-1}}{1 - \sum_{\eta=2}^{\infty} a_{\eta}|z|^{\eta-1}}$$

The last expression is less than $1 - \delta$ if

$$\sum_{\eta=2}^{\infty} \frac{\eta-\delta}{1-\delta} a_{\eta} |z|^{\eta-1} < 1$$

Using the fact that $u(z)\in TS_{\lambda}^{\nu}(\mu,\gamma,\varrho)$ if and only if

$$\sum_{\eta=2}^{\infty} \frac{\left[(1+\varrho)\eta - \mu(\gamma+\varrho)\right]\chi_{\eta}(\lambda,\nu)}{1-\gamma} a_{\eta} \le 1$$

We can say (3.4) is true, if

$$\sum_{\eta=2}^{\infty} \frac{\eta-\delta}{1-\delta} |z|^{\eta-1} \leq \frac{[(1+\varrho)\eta-\mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)}{1-\gamma}$$

or equivalently

$$|z|^{\eta-1} \le \frac{(1-\delta)[(1+\varrho)\eta - \mu(\gamma+\varrho)]\chi_{\eta}(\lambda,\nu)}{(\eta-\delta)(1-\gamma)}$$

which yields the starlikeness of the family.

146

4. Integral Means Inequalities

In [4], Silverman found that the function $u_2(z) = z - \frac{z^2}{2}$ is often extremal over the family T. He applied this function to resolve his integral means inequality conjunctured [5] and settleed in [6], that

$$\int_{0}^{2\pi} |u(re^{i\varphi})|^{\tau} d\varphi \leq \int_{0}^{2\pi} |u_2(re^{i\varphi})^{\eta}|^{\tau} d\varphi$$

for all $u \in T$, $\tau > 0$ and 0 < r < 1. In [6], he also proved his conjuncture for the subclasses $T^*(\alpha)$ and $C(\alpha)$ of T.

Now, we prove Silverman's conjecture for the class of functions $TS_{\lambda}^{\nu}(\mu, \gamma, \varrho)$ We need the concept of subordination between analytic functions and a subordination theorem of Littlewood [2].

Two functions u and v, which are analytic in E, the function u is said to be subordinate to v in E, if there exists a function w analytic in E with w(0) = 0, |w(z) < 1, $(z \in E)$ such that u(z) = v(w(z)), $(z \in E)$. We denote this subordination by $u(z) \prec v(z)$. (\prec denote subordination)

Lemma 4.1. If the function u and v are analytic in E with $u(z) \prec v(z)$, then for $\tau > 0$ and $z = re^{i\varphi}$, 0 < r < 1

$$\int_{0}^{2\pi} |v(re^{i\varphi})|^{\tau} d\varphi \leq \int_{0}^{2\pi} |u(re^{i\varphi})|^{\tau} d\varphi$$

Now, we discuss the integral means inequalities for functions u in $TS^{\nu}_{\lambda}(\mu,\gamma,\varrho)$

Theorem 4.2. $u \in TS_{\lambda}^{\nu}(\mu, \gamma, \varrho), \ 0 \leq \mu < 1, \ 0 \leq \gamma < 1, \ \varrho \geq 0 \ and \ u_2(z) \ be defined by$

$$u_2(z) = z - \frac{1 - \gamma}{\phi_2(\lambda, \gamma, \varrho)} z^2$$
(4.1)

Proof. For $u(z) = z - \sum_{\eta=2}^{\infty} a_{\eta} z^{\eta}$, (4.1) is equivalent to

$$\int_{0}^{2\pi} \left| 1 - \sum_{\eta=2}^{\infty} a_{\eta} z^{\eta-1} \right|^{\tau} d\varphi \leq \int_{0}^{2\pi} \left| 1 - \frac{1-\gamma}{\varphi_2(\lambda,\gamma,\varrho)} z \right|^{\tau} d\varphi$$

By Lemma (4.1), it is enough to prove that

$$1 - \sum_{\eta=2}^{\infty} a_{\eta} z^{\eta-1} \prec 1 - \frac{1-\gamma}{\varphi_2(\lambda, \gamma, \varrho)} z,$$

Assuming

$$1 - \sum_{\eta=2}^{\infty} a_{\eta} z^{\eta-1} \prec 1 - \frac{1-\gamma}{\varphi_2(\lambda, \gamma, \varrho)} w(z)$$

and using (2.2), we obtain

$$w(z)| = \left|\sum_{\eta=2}^{\infty} \frac{\varphi_2(\lambda, \gamma, \varrho)}{1 - \gamma} a_{\eta} z^{\eta-1}\right| \le |z| \sum_{\eta=2}^{\infty} \frac{\varphi_2(\lambda, \gamma, \varrho)}{1 - \gamma} a_{\eta} \le |z|$$

where

$$\varphi_{\eta}(\lambda,\gamma,\varrho) = [(1+\varrho)\eta - \mu(\gamma+\varrho)\chi_{\eta}(\lambda,\nu)$$

This completes the proof

5. Conclusion

This research has introduced a new linear operator related to Ananlytic function and studied some basic properties of geometric function theory . Accordingly, some results related to closure theorems have also been considered, inviting future research for this field of study.

Acknowledgment

The authors would like to acknowledge their sincere grattitude towards the refrees for their studious comments and suggestions for the improvement of our research paper.

References

- 1. W.G. Athsan and R. H. Buti, Fractional calclus of a class of univalent functions, Eur.J.Pure Appl.Math., 4(2), (2011) 162-173.
- J.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23(2), (1925), 481-519.
- G. Murugusundarmurthy and N. Magesh, Certain sub-classes of starlike functions of complex order involving generalized hypergeometric functions, *Int. J. Math. Math. Sci.*,(2010), art ID 178605, 12pp.
- 4. H. Silverman, Univalent functions with negative coefficients, *Proc. Amer. Math. Soc.*, 51(1975), 109-116.
- H. Silverman, A survey with open problems on univalent functions whose coefficient are negative., *Rocky Mountain J. Math.*, 21(3) (1991), 1099-1125.
- H. Silvermani, Integral means for univalent functions with negative coefficient, Houston J. Math., 23(1) (1997), 169-174.

DEPARTMENT OF MATHEMATICS, BAHIRJI SMARAK MAHAVIDYALAYA, PARBHANI-431401, INDIA. *E-mail address*: ingleraj110gmail.com

DEPARTMENT OF MATHEMATICS, KAKATIYA UNIVERSITY, WARANGAL-506009, INDIA. *E-mail address*: reddypt20gmail.com