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Abstract. The object of the present paper is to investigate a new subclass of
analytic functions which are defined by means of a Rapid operator. Some re-

sults connected to coefficient estimates, growth and distortion theorems, radii
of starlikeness, convexity close-to-convexity and integral means inequalities
related to the subclass is obtained.
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1. Introduction

Let A denote the class of functions u of the form

u(z) = z +

∞∑
η=2

anz
η (1.1)

which are analytic in the open unit disc E = {z ∈ C : |z| < 1}
A function u in the class A is said to be in the class ST (α) of starlike functions

of order α in E, if it satisfy the inequality

ℜ
{
zu′(z)

u(z)

}
> α, (0 ≤ α < 1), z ∈ E (1.2)

Note that ST (0) = ST is the class of Starlike functions.
Denote by T the subclass of A consisting of functions u of the form

u(z) = z −
∞∑
η=2

aηz
η, (aη ≥ 0) (1.3)

This subclass was introduced and extensively studied by Silvermann[4].
Let u be a function in the class A. Recently, Atshan and Buti [1 ] introduced a
Rapid operator of f ∈ ℜ for 0 ≤ λ < 1 and 0 ≤ ν < 1. It is denoted by Gν

λu(z)
and defines follows.

Gν
λu(z) =

1

(1− λ)
ν+1

Γ(ν + 1)

∞
∫
0
tλ−1e−( t

1−λ )u(zt)dt (1.4)

Thus u(z) has of the form(1.1),then it follows from (1.4)
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Gν
λu(z) = z +

∞∑
η=2

χη(λ, ν)aηz
η (1.5)

where

χη(λ, ν) = (1− λ)ν−1Γ(η + ν)

Γ(ν + 1)

Now we define the following new subclass motivated by Murugusunderamoorthy
and Magesh [3]

Definition 1.1. The function u(z) of the form (1.1) is in the class Sν
λ(µ, γ, ϱ), if

it satisfies the inequality

ℜ
{

z(Gν
λu(z))

′

(1− µ)z + µGν
λu(z)

− γ

}
> ϱ

∣∣∣∣ z(Gν
λu(z))

′

(1− µ)z + µGν
λu(z)

− 1

∣∣∣∣
for 0 ≤ λ ≤ 1, 0 ≤ γ ≤ 1 and ϱ ≥ 0.

Further we define TSν
λ(µ, γ, ϱ) = Sν

λ(µ, γ, ϱ) ∩ T

The aim of present paper is to study the coefficient bounds, radii of close-to-convex
and starlikeness convex linear combinations and integral means inequalities of the
TSν

λ(µ, γ, ϱ)

2. Coefficient bounds

Theorem 2.1. A function u(z) of the form (1.1) is in Sν
λ(µ, γ, ϱ), then

∞∑
η=2

[(1 + ς)η − µ(γ + ς)]χη(λ, ν)|aη| ≤ 1− γ (2.1)

where 0 ≤ µ ≤ 1, 0 ≤ γ ≤ 1,ϱ ≥ 0 and χη(λ, ν) is given by (1.5).

Proof. It suffices to show that

ϱ

∣∣∣∣ z(Gν
λu(z))

′

(1− µ)z + µGν
λu(z)

− 1

∣∣∣∣−ℜ
{

z(Gν
λu(z))

′

(1− µ)z + µGν
λu(z)

− 1

}
≤ 1− γ
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We have

ϱ

∣∣∣∣ z(Gν
λu(z))

′

(1− µ)z + µGν
λu(z)

− 1

∣∣∣∣−ℜ
{

z(Gν
λu(z))

′

(1− µ)z + µGν
λu(z)

− 1

}
≤ (1 + ϱ)

∣∣∣∣ z(Gν
λu(z))

′

(1− µ)z + µGν
λu(z)

− 1

∣∣∣∣
≤

(1 + ϱ)
∞∑
η=2

(η − µ)χη(λ, ν)|aη||z|η−1

1−
∞∑
η=2

µχη(λ, ν)|aη||z|η−1

≤
(1 + ϱ)

∞∑
η=2

(η − µ)χη(λ, ν)|aη|

1−
∞∑
η=2

µχη(λ, ν)|aη|

The last expression is bounded above by (1− γ), if

∞∑
η=2

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)|aη| ≤ 1− γ

and the proof is complete. �

Theorem 2.2. Let 0 ≤ µ ≤ 1, 0 ≤ γ ≤ 1,and ϱ ≥ 0 then a function u of the form
(1.3) to be in the class TSν

λ(µ, γ, ϱ) if and only if

∞∑
η=2

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)|aη| ≤ 1− γ (2.2)

where χη(λ, ν) is given by (1.5).

Proof. In view of Theorem (2.1) we need only to prove the necssity. If u ∈
TSν

λ(µ, γ, ϱ) and z is real, then

ℜ


1−

∞∑
η=2

ηχη(λ, ν)aηz
η−1

1−
∞∑
η=2

µχη(λ, ν)aηzη−1

− γ

 >

∣∣∣∣∣∣∣∣
∞∑
η=2

(η − µ)χη(λ, ν)aηz
η−1

1−
∞∑
η=2

µχη(λ, ν)aηzη−1

∣∣∣∣∣∣∣∣
Letting z → 1 along the real axis, we obtain the desired inequality

∞∑
η=2

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)|aη| ≤ 1− γ

where 0 ≤ µ ≤ 1, 0 ≤ γ ≤ 1, ϱ ≥ 0 and χη(λ, ν) is given by (1.5). �

Corollary 2.3. If u(z) ∈ TSν
λ(µ, γ, ϱ), then

|aη| ≤
1− γ

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)
(2.3)
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where 0 ≤ µ ≤ 1, 0 ≤ γ ≤ 1, ϱ ≥ 0 and χη(λ, ν) is given by (1.5). Equality holds
for the function

u(z) = z − 1− γ

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)
zη (2.4)

Theorem 2.4. Let u1(z) = z and

uη(z) = z − 1− γ

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)
zη, η ≥ 2 (2.5)

Then u(z) ∈ TSν
λ(µ, γ, ϱ), if and only if, it can be expressed in the form

u(z) =
∞∑
η=1

wηuη(z), wη ≥ 0,
∞∑
η=1

wη = 1 (2.6)

Proof. Suppose u(z) can be written as in (2.6), then

u(z) = z −
∞∑
η=2

wη
1− γ

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)
zη

Now,

∞∑
η=2

wη
(1− γ)[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)

(1− γ)[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)
=

∞∑
η=2

wη = 1− w1 ≤ 1

Thus u(z) ∈ TSν
λ(µ, γ, ϱ).

Conversely, let u(z) ∈ TSν
λ(µ, γ, ϱ), then by using (2.3), we get

wη =
[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)

(1− γ)
aη, η ≥ 2

and w1 = 1−
∞∑
η=2

wη. Then we have u(z) =
∞∑
η=1

wηuη(z) and hence this completes

the proof of Theorem. �

Theorem 2.5. The class TSν
λ(µ, γ, ϱ) is a convex set.

Proof. Let the function

uj(z) = z −
∞∑
η=2

aη,jz
η, aη,j ≥ 0, j = 1, 2 (2.7)

be in the class TSν
λ(µ, γ, ϱ). It is sufficient to show that the function h(z) defined

by

h(z) = ξu1(z) + (1− ξ)u2(z), 0 ≤ ξ < 1,

in the class TSν
λ(µ, γ, ϱ). Since

h(z) = z −
∞∑
η=2

[ξaη,1 + (1− ξ)aη,2]z
η,
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An easy computation with the aid of Theorem (2.2) gives

∞∑
η=2

[(1 + ϱ)η − µ(γ + ϱ)]ξχη(λ, ν)aη,1+

∞∑
η=2

[(1 + ϱ)η − µ(γ + ϱ)](1− ξ)χη(λ, ν)aη,2

≤ ξ(1− γ) + (1− ξ)(1− γ)

≤ (1− γ)

which implies that h ∈ TSν
λ(µ, γ, ϱ)

Hence TSν
λ(µ, γ, ϱ) is convex.

�

3. Radii of Close-to-Convexity, Starlikeness and Convexity

In this section, we obtain the radii of close-to-convexity, starlikeness and con-
vexity for the class TSν

λ(µ, γ, ϱ).

Theorem 3.1. Let the function u(z) defined by (1.3) belong to the class TSν
λ(µ, γ, ϱ),

then u(z) is close-to-convex of order δ(0 ≤ δ < 1) in the disc |z| < r1, where

r1 = inf
η≥2


(1− δ)

∞∑
η=2

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)

η(1− γ)


1/η−1

, η ≥ 2 (3.1)

The result is sharp, with the external function u(z) is given by (2.5)

Proof. Given u ∈ T and u is close-to-convex of order δ, we have

|f ′(z)− 1| < 1− δ (3.2)

For the left hand side of (3.2), we have

|u′(z)− 1| ≤
∞∑
η=2

ηaη|z|η−1

The last expression is less than 1− δ
∞∑
η=2

η

1− δ
aη|z|η−1 ≤ 1

Using the fact, that u(z) ∈ TSν
λ(µ, γ, ϱ) if and only if

∞∑
η=2

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)

1− γ
aη ≤ 1

We can see that (3.2) is true, if

η

1− δ
|z|η−1 ≤ [(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)

1− γ

145



6 KC DESHMUKH1, RAJKUMAR N.INGLE2, AND P.THIRUPATHI REDDY3

or, equivalently

|z| ≤
{
(1− δ)[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)

η(1− γ)

}1/η−1

which completes the proof. �

Theorem 3.2. Let the function u(z) defined by (1.3) belong to the class TSν
λ(µ, γ, ϱ).

Then u(z) is starlike of order δ(0 ≤ δ < 1) in the disc |z| < r2, where

r2 = inf
η≥2


(1− δ)

∞∑
η=2

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)

(η − δ)(1− γ)


1/η−1

(3.3)

The result is sharp, with external function u(z) is given by (2.5)

Proof. Given u ∈ T and u is starlike of order δ, we have∣∣∣∣zu′(z)

u(z)
− 1

∣∣∣∣ < 1− δ (3.4)

For the left hand side of (3.4), we have∣∣∣∣zu′(z)

u(z)
− 1

∣∣∣∣ ≤ ∞∑
η=2

(η − 1)aη|z|η−1

1−
∞∑
η=2

aη|z|η−1

The last expression is less than 1− δ if

∞∑
η=2

η − δ

1− δ
aη|z|η−1 < 1

Using the fact that u(z) ∈ TSν
λ(µ, γ, ϱ) if and only if

∞∑
η=2

[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)

1− γ
aη ≤ 1

We can say (3.4) is true, if

∞∑
η=2

η − δ

1− δ
|z|η−1 ≤ [(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)

1− γ

or equivalently

|z|η−1 ≤ (1− δ)[(1 + ϱ)η − µ(γ + ϱ)]χη(λ, ν)

(η − δ)(1− γ)

which yields the starlikeness of the family. �
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4. Integral Means Inequalities

In [4], Silverman found that the function u2(z) = z − z2

2 is often extremal over
the family T. He applied this function to resolve his integral means inequality
conjunctured [5] and setteled in [6], that

2π∫
0

|u(reiφ)|τdφ ≤
2π∫
0

|u2(re
iφ)η|τdφ

for all u ∈ T , τ > 0 and 0 < r < 1. In [6], he also proved his conjuncture for the
subclasses T ∗(α) and C(α) of T.

Now, we prove Silverman’s conjecture for the class of functions TSν
λ(µ, γ, ϱ)

We need the concept of subordination between analytic functions and a subordi-
nation theorem of Littlewood [2].

Two functions u and v, which are analytic in E, the function u is said to be
subordinate to v in E, if there exists a function w analytic in E with w(0) = 0,
|w(z) < 1, (z ∈ E) such that u(z) = v(w(z)), (z ∈ E). We denote this subordina-
tion by u(z) ≺ v(z). (≺ denote subordination)

Lemma 4.1. If the function u and v are analytic in E with u(z) ≺ v(z), then for
τ > 0 and z = reiφ, 0 < r < 1

2π∫
0

|v(reiφ)|τdφ ≤
2π∫
0

|u(reiφ)|τdφ

Now, we discuss the integral means inequalities for functions u in TSν
λ(µ, γ, ϱ)

Theorem 4.2. u ∈ TSν
λ(µ, γ, ϱ), 0 ≤ µ < 1, 0 ≤ γ < 1, ϱ ≥ 0 and u2(z) be

defined by

u2(z) = z − 1− γ

ϕ2(λ, γ, ϱ)
z2 (4.1)

Proof. For u(z) = z −
∞∑
η=2

aηz
η, (4.1) is equivalent to

2π∫
0

∣∣∣∣∣1−
∞∑
η=2

aηz
η−1

∣∣∣∣∣
τ

dφ ≤
2π∫
0

∣∣∣∣1− 1− γ

φ2(λ, γ, ϱ)
z

∣∣∣∣τ dφ
By Lemma (4.1), it is enough to prove that

1−
∞∑
η=2

aηz
η−1 ≺ 1− 1− γ

φ2(λ, γ, ϱ)
z,

Assuming

1−
∞∑
η=2

aηz
η−1 ≺ 1− 1− γ

φ2(λ, γ, ϱ)
w(z),
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and using (2.2), we obtain

|w(z)| =

∣∣∣∣∣
∞∑
η=2

φ2(λ, γ, ϱ)

1− γ
aηz

η−1

∣∣∣∣∣ ≤ |z|
∞∑
η=2

φ2(λ, γ, ϱ)

1− γ
aη ≤ |z|

where
φη(λ, γ, ϱ) = [(1 + ϱ)η − µ(γ + ϱ)χη(λ, ν)

This completes the proof �

5. Conclusion

This research has introduced a new linear operator related to Ananlytic function
and studied some basic properties of geometric function theory . Accordingly,
some results related to closure theorems have also been considered, inviting future
research for this field of study.
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