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Abstract. The subgraph complement of a graph G with respect to a set

S is the graph obtained from G by removing the edges of induced subgraph

⟨S⟩ and adding edges which are not in ⟨S⟩ of G. In this paper we introduce
the concept of maximum reverse degree energy of connected subgraph com-

plements of a graph. Few properties on maximum reverse degree eigenvalues

and bounds for maximum reverse degree energy of connected subgraph com-
plement of a graph are achieved. Further maximum reverse degree energy of

connected subgraph complement of some families of graphs are computed.

1. Introduction

Let G = (V,E) be a graph with V = {v1, v2, . . . , vn} as its vertex set and
E = {e1, e2, . . . , en} as its edge set. Let A = (aij) be the adjacency matrix of G.
Then |A − λI| = 0 is called characteristic equation of G. λ1, λ2, . . . , λn of A, are
called eigenvalues of G which are assumed to be in non increasing order. As A is
real symmetric matrix, the eigenvalues of G are real with sum equal to zero. The
energy of G is defined to be sum of absolute values of the eigenvalues of G. i.,e

E(G) =
n∑

i=1

|λi|.

Fedor V. Fomin et al.[2] introduced subgraph complements of a graph. Let
G = (V,E) be a graph and S ⊆ V . The subgraph complement of a graph G with
respect to S, denoted by G⊕ S, is a graph (V,ES), where for any two vertices u,
v ∈ V , uv ∈ ES if and only if one of the following conditions hold good :

(1) u /∈ S or v /∈ S and uv ∈ E.
(2) u, v ∈ S and uv /∈ E.

Definition 1.1. Let G ⊕ S be subgraph complement of a graph G with respect
to S. The subgraph complement adjacency matrix of G ⊕ S is an n × n matrix
defined by Ap(G⊕ S) = (aij), where

aij =


1, if vi and vj are adjacent with i ̸= j

1, if i = j and vi ∈ S

0, otherwise.
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Definition 1.2. [3] Let G be a simple graph with n vertices {v1, v2, . . . , vn} and di
be the degree of vi for i = 1, 2, . . . , n. Then maximum degree matrixM(G) = (dij),
is defined as

dij =

{
max{di, dj}, if vi and vj are adjacent

0, otherwise.

Let ∆(G) denote the maximum degree among the vertices of G. The reverse
vertex degree of a vertex vi in G is defined as cvi = ∆(G)− d(vi) + 1, where d(vi)
is degree of vertex vi.

Definition 1.3. [5] Let G be a simple graph with n vertices and size m. Let
cvi be the reverse vertex degree of the vertex vi. Then maximum reverse degree
matrix is defined as,

MR(G) = (rij), where

rij =

{
max{cvi , cvj}, if vi and vj are adjacent

0, otherwise.

For more information on energy and subgraph complement of graphs, refer[1,
4, 6, 7, 8, 10].

In this paper, we have introduced maximum reverse degree energy of subgraph
complement of graphs which is defined as follows:

Definition 1.4. Let G ⊕ S be a connected subgraph complement of a graph G
with respect to S. Then maximum reverse degree subgraph complement matrix
of the graph G⊕ S is n× n matrix defined by MR(G⊕ S) = (rij), where

rij =


1, if i = j, vi ∈ S

max{cvi , cvj}, if vi ∼ vj ∈ E(G⊕ S)

0, otherwise.

The characteristic polynomial of maximum reverse degree subgraph complement
of a graph G is defined by ϕp{MR(G ⊕ S)} = |λI − MR(G ⊕ S)| and maximum
reverse degree subgraph complement energy of G⊕S is denoted by EMR(G⊕S),

is defined as
n∑

i=1

|λi| where λ′
is are maximum reverse degree subgraph complement

eigenvalues of G⊕ S.
Throughout this paper, xi refers to the number of vertices in the neighbourhood

of vi whose reverse vertex degree is less then cvi and yi refers to the number of
vertices vj(j > i) in the neighbourhood of vi whose reverse vertex degree is equal
to cvi .

This paper is organised as follows. In section 2, the properties of maximum
reverse degree energy of subgraph complement graphs are studied. In section 3,
bounds for maximum reverse degree energy of subgraph complementary graphs are
established. In section 4, maximum reverse degree energy of subgraph complement
of some families of graphs are computed.
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1.1. Preliminary Definitions.

Definition 1.5. [9] A double star is the graph denoted by S(l,m), consisting of
union of two stars K1,l and K1,m together with the line joining their centers. Let
V = {ui, vj |i = 0, 1, . . . , l, j = 0, 1, . . . ,m} be the vertex set of the double star
S(l,m) with u0 and v0 as its centers.

Definition 1.6. Triangular book graph B3
n is a planar undirected graph with n+2

vertices and 2n+ 1 edges constructed by n triangles sharing a common edge.

Definition 1.7. [9] Let {Gi|i ∈ 1, 2, 3, . . . ,m} for m ∈ N and m ≥ 2 be a
collection of finite graphs and voi be a fixed vertex of each Gi, called terminal.
Vertex Amalgamation Amal(Gi, voi) is a graph formed by taking all vertices and
edges of Gi where voi = voj , for all i ̸= j. If Gi = Gj = G and |G| = n, then we
write Amal(Gi, voi) with Amal(Gn)m.

2. Properties of maximum reverse degree eigenvalues of connected
subgraph complementary graphs

Theorem 2.1. Let G be a simple graph with n vertices and m edges.
If λ1, λ2, . . . , λn represent maximum reverse degree eigenvalues of G⊕ S, then

(1)
n∑

i=1

λi = |S|.

(2)
n∑

i=1

λ2
i = |S|+ 2

n∑
i=1

(xi + yi)c
2
vi .

Proof. (1) Sum of eigenvalues of MR(G⊕ S) is equal to trace of MR(G⊕ S),
n∑

i=1

λi =
n∑

i=1

rii = |S|.

(2) The sum of squares of eigenvalues of MR(G⊕S) is the trace of M2
R(G⊕S).

i.e.,

n∑
i=1

λ2
i =

n∑
i=1

n∑
i=1

rijrji

=

n∑
i=1

r2ii +
∑
i ̸=j

rijrji

n∑
i=1

λ2
i = |S|+ 2

n∑
i=1

(xi + yi)c
2
vi .

□

Theorem 2.2. Let G⊕S = (V,ES) be a connected subgraph complement of a graph
G = (V,E). Let ϕ{MR(G⊕ S), λ} = a0λ

n + a1λ
n−1 + a2λ

n−2 + a3λ
n−3 + . . .+ an

be the maximum reverse degree characteristic polynomial of graph G⊕ S. Then,

(1) a0 = 1.
(2) a1 = −|S|.
(3) a2 =

(|S|
2

)
−

n∑
i=1

(xi + yi)c
2
vi .

Proof. (1) From the definition of ϕ{MR(G⊕ S), λ}, it follows that a0 = 1.
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(2) Sum of diagonal elements of MR(G⊕ S) is equal to cardinality of the set
S. Hence, (−1)a1 = trace{MR(G⊕ S)} = −|S|.

(3) We have

(−1)2a2 =
∑

1≤i<j≤n

∣∣∣∣rii rij
rji rjj

∣∣∣∣
=

∑
1≤i<j≤n

riirjj −
∑

1≤i<j≤n

rjirij

a2 =

(
|S|
2

)
−

n∑
i=1

(xi + yi)c
2
vi .

□

3. Bounds for maximum reverse degree energy of connected subgraph
complementary graphs

Theorem 3.1. Let G ⊕ S be connected subgraph complement of a graph G with
|S| = k. Then

√
|S|+ β ≤ EMR(G⊕ S) ≤

√
n(|S|+ β).

Proof. Taking ai = 1, bi = |λi| in Cauchy Schwarz inequality, we get(
n∑

i=1

λi

)2

≤

(
n∑

i=1

1

)(
n∑

i=1

λ2
i

)

(EMR(G⊕ S))2 ≤ n

(
|S|+ 2

n∑
i=1

(xi + yi)c
2
vi

)
.

Let

2

n∑
i=1

(xi + yi)c
2
vi = β.

EMR(G⊕ S) ≤
√

n(|S|+ β).

Equality holds if G = Kn with |S| = n.
Also, (

n∑
i=1

λi

)2

≥
n∑

i=1

λ2
i

(EMR(G⊕ S))2 ≥ |S|+ 2
n∑

i=1

(xi + yi)c
2
vi

EMR(G⊕ S) ≥
√
(|S|+ β).

Equality holds if G = Kn with |S| = n. □

Theorem 3.2. Let λ1 ≥ λ2 ≥ . . . ≥ λn represent maximum reverse degree eigen-
values of G⊕ S. Then EMR(G⊕ S) ≤ |λ1|+

√
(n− 1)(|S|+ β − |λ1|2).
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Proof. Applying Cauchy Schwarz inequality for (n− 1) terms,(
n∑

i=2

λi

)2

≤

(
n∑

i=2

1

)(
n∑

i=2

λ2
i

)
.

(EMR(G⊕ S)− |λ1|)2 ≤ (n− 1)(|S|+ β − |λ1|2)

(EMR(G⊕ S)− |λ1|) ≤
√

(n− 1)(|S|+ β − |λ1|2)

EMR(G⊕ S) ≤ |λ1|+
√

(n− 1)(|S|+ β − |λ1|2).
Equality holds if G = Kn with |S| = n. □

Theorem 3.3. Let G ⊕ S be a connected subgraph complement of a graph G on
n vertices with induced set S of order k. Then

EMR(G⊕ S) ≥
√
|S|+ β + n(n− 1)P

2
n , where P = |MRp

(G⊕ S)|.

Proof. Using arithmetic and geometric mean inequality,

1

n(n− 1)

∑
i ̸=j

|λi||λj | ≥

∏
i̸=j

|λi||λj |


1

n(n− 1)

=

(
n∏

i=1

|λi|2(n−1)

) 1

n(n− 1)

=

(
n∏

i=1

|λi|

) 2

n

= P
2
n ,

where P = |MRp
(G⊕ S)|. ∑

i ̸=j

|λi||λj | ≥ n(n− 1)P
2
n .

Now,

(EMR(G⊕ S))2 =

(
n∑

i=1

|λi|

)2

(EMR(G⊕ S))2 =

n∑
i=1

|λi|2 +
∑
i ̸=j

|λi||λj |

EMR(G⊕ S) ≥
√
|S|+ β + n(n− 1)P

2
n .

Equality holds, when
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(1) G = Kn with |S| = n.
(2) G = Kn with |S| = n.

□

Theorem 3.4. Let G ⊕ S = (V,ES) be a connected subgraph complement of a
graph G = (V,E) and ρ(G ⊕ S) = max

1≤i≤n
|λi| be the maximum reverse degree

spectral radius of G⊕ S. Then,

√
|S|+ β

n
≤ ρ(G⊕ S) ≤

√
|S|+ β.

Proof. Consider

ρ2(G⊕ S) = max
1≤i≤n

{|λi|}

≤
n∑

j=1

λ2
j

= |S|+ 2

n∑
i=1

(xi + yi)c
2
vi

ρ(G⊕ S) ≤
√

|S|+ β,

where β = 2
n∑

i=1

(xi + yi)c
2
vi .

Equality holds if G = Kn with |S| = n.
Next,

nρ2(G⊕ S) ≥ max
1≤i≤n

{|λi|}

≥ |S|+ β

ρ(G⊕ S) ≥
√

|S|+ β

n√
|S|+ β

n
≤ ρ(G⊕ S) ≤

√
|S|+ 2β.

Equality holds if G = Kn with |S| = n. □

4. Maximum reverse degree energy of subgraph complement of some
families of graphs

Theorem 4.1. Let Kn be complete graph, where |S| = k, k < n. Then

EMR(Kn ⊕ S) = (n− 2) +
√
(k − n)2 − 4{(k − n)(k3 − 1)− 1}.

Proof. Let MR(Kn ⊕ S) =

[
(I)k kJk×(n−k)

kJ(n−k)×k (J − I)(n−k)

]
n

be the maximum reverse

degree subgraph complement matrix of Kn ⊕ S, where J is matrix of all 1’s. The
result is proved by showing MR(Kn ⊕ S)Z = λZ for certain vector Z and by
making use of fact that the geometric multiplicity and algebraic multiplicity of
each eigenvalue λ is same, as MR(Kn ⊕ S) is real and symmetric.
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Let Z =

[
X
Y

]
be an eigenvector of order 2n partitioned conformally with

MR(Kn ⊕ S). Consider,

[MR(Kn ⊕ S)− λI]

[
X
Y

]
=

[
[(1− λ)I]X + (kJ)Y

(kJ)X + [J − (1 + λ)I]Y

]
n

. (4.1)

Case 1. Let X = Xj , j = 2, 3, . . . , k and Y = 0n−k. Using equation (4.1),
[(1−λ)I]Xj+(kJ)0n−k = (1−λ)Xj , then λ = 1 is the eigenvalue with multiplicity
of at least k − 1 since there are k − 1 independent vectors of the form Xj .

Case 2. Let X = 0k and Y = Yj , j = 2, 3, . . . , n − k. From equation (4.1),
(kJ)0k + [J − (1 + λ)I]Yj = −(1 + λ)Yj , then λ = −1 is the eigenvalue with
multiplicity of at least n− k − 1 since there are n− k − 1 independent vectors of
the form Yj .

Case 3. Let X = 1k and Y =

(
1− λ

k2 − kn

)
1n−k. Here, λ denotes root of the

equation

λ2 + λ(k − n) + k4 − k3n+ n− k − 1 = 0.

From equation (4.1),

(kJ)(n−k)×k1k + [J − (1 + λ)I](n−k)×(n−k)

(
1− λ

k2 − kn

)
1n−k

= k21n−k + (n− k − λ− 1)

(
1− λ

k2 − kn

)
1n−k

=

{
k2 + (n− k − λ− 1)

(
1− λ

k2 − kn

)}
1n−k

=
λ2 + λ(k − n) + k4 − k3n+ n− k − 1

k2 − kn
1n−k.

So,

λ =
−(k − n) +

√
(k − n)2 − 4{(k − n)(k3 − 1)− 1}

2
and

λ =
−(k − n)−

√
(k − n)2 − 4{(k − n)(k3 − 1)− 1}

2
are the eigenvalues with multiplicity at least one.

Thus, spectrum of Kn ⊕ S is

(
1 −1 λ1 λ2

k − 1 n− k − 1 1 1

)
,

where λ1 =
−(k − n) +

√
(k − n)2 − 4{(k − n)(k3 − 1)− 1}

2
,

λ2 =
−(k − n)−

√
(k − n)2 − 4{(k − n)(k3 − 1)− 1}

2
.

Therefore,

EMR(Kn ⊕ S) = (n− 2) +
√
(k − n)2 − 4{(k − n)(k3 − 1)− 1}.
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□

Theorem 4.2. Let Km,n be complete bipartite graph, where |S| = m. Then

EMR(Km,n ⊕ S) =
√
m2 + 4mn3.

Proof. Let

MR(Km,n ⊕ S) =

[
(J)m (nJ)m×n

(nJ)n×m 0n

]
m+n

be the maximum reverse degree subgraph complement matrix of Km,n⊕S. The
result is proved by showing MR(Km,n ⊕ S)Z = λZ for certain vector Z and by
making use of fact that the geometric multiplicity and algebraic multiplicity of
each eigenvalue λ is same, as MR(Km,n ⊕ S) is real and symmetric.

Let Z =

[
X
Y

]
be an eigenvector of order 2n partitioned conformally with

MR(Km,n ⊕ S). Consider,

[
MR(Km,n ⊕ S)− λI

] [X
Y

]
=

[
(J − λI)X + (nJ)Y
(nJ)X − (λI)Y

]
m+n

. (4.2)

Case 1. Let X = Xj , j = 2, 3, . . . ,m and Y = 0n. Using equation (4.2),
(J −λI)Xj +(nJ)0n = −λXj , then λ = 0 is the eigenvalue with multiplicity of at
least m− 1 since there are m− 1 independent vectors of the form Xj .

Case 2. Let X = 0m and Y = Yj , j = 2, 3, . . . , n. From equation (4.2), (nJ)0m−
λIYj = λYj , then λ = 0 is the eigenvalue with multiplicity of at least n− 1 since
there are n− 1 independent vectors of the form Yj .

Case 3. Let X = 1m and Y =
mn

λ
1n. Here, λ denotes root of the equation,

λ2 −mλ−mn3 = 0.

From equation (4.1),

(J − λI)1m + nJ
(mn

λ

)
1n =

(
m− λ+ n2

(mn

λ

))
1m

=

(
m− λ+mn

(
n2

λ

))
1m

=

(
λ2 −mλ−mn3

λ

)
1m.

So, λ =
m+

√
m2 + 4mn3

2
and λ2 =

m−
√
m2 + 4mn3

2
are the eigenvalues

with multiplicity of at least one.

Thus, the spectrum of Km,n ⊕ S is

(
0 0 λ1 λ2

m− 1 n− 1 1 1

)
,

where λ1 =
m+

√
m2 + 4mn3

2
, λ2 =

m−
√
m2 + 4mn3

2
.

Therefore,

EMR(Km,n ⊕ S) =
√

m2 + 4mn3.
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□

Corollary 4.3. For the star graph K1,n−1 , let S be the set of k non-pendant

vertices. Then EMR(K1,n−1 ⊕ S) =
√
1 + 4(n− 1)3.

Proof. On substituting m = 1 and n = n− 1 in theorem (4.2), we get

EMR(K1,n−1 ⊕ S) =
√
1 + 4(n− 1)3.

□

Theorem 4.4. Let Kn×2 be cocktail party graph, where |S| = n. Then

EMR(Kn×2 ⊕ S) =
√
n2 − 4{n− n2(n− 1)2 − 1}.

Proof. LetMR(Kn×2⊕S) =

[
(I)n n(J − I)n

(n(J − I))n (J − I)n

]
2n

be the maximum reverse

degree subgraph complement matrix of Kn×2⊕S. The result is proved by showing
MR(Kn×2 ⊕ S)Z = λZ for certain vector Z and by making use of fact that the
geometric multiplicity and algebraic multiplicity of each eigenvalue λ is same, as
MR(Kn×2 ⊕ S) is real and symmetric.

Let Z =

[
X
Y

]
be an eigenvector of order 2n partitioned conformally with

MR(Kn×2 ⊕ S). Consider,

[
MR(Kn×2 ⊕ S)− λI

] [X
Y

]
=

[
(1− λ)IX + n(J − I)Y

n(J − I)X + (J − I(1 + λ))Y

]
2n

. (4.3)

Case 1. Let X = Xj , j = 2, 3, . . . , n and Y = −λ− 1

n
Xj .

Now, equation (4.3) implies

n(J − I)Xj + (J − I(1 + λ)) = n(−Xj)− (J − (1 + λ)I)
λ− 1

n
Xj

= −n+
1

n
(λ2 − 1)Xj

=
(λ2 − 1)− n2

n
Xj .

So, λ = ±
√
1 + n2 are the eigenvalues with multiplicity at least n − 1 since

there are n− 1 independent vectors of the form Xj .

Case 2. Let X = 1n and Y =
λ− 1

n(n− 1)2
1n. Here, λ denotes root of the equation

λ2 − λn+ (n− 1)− n2(n− 1)2 = 0.

Equation (4.3) implies

n(J − I)1n + (J − I(1 + λ))
λ− 1

n(n− 1)2
1n = n+ (n− 1− λ)

λ− 1

n(n− 1)2
1n

=
λ2 − nλ+ (n− 1)− n2(n− 1)2

n(n− 1)2
1n.
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So, λ =
n+

√
n2 − 4{n− n2(n− 1)2 − 1}

2
and

λ =
n−

√
n2 − 4{n− n2(n− 1)2 − 1}

2
are the eigenvalues with multiplicity of

at least one.

Thus, the spectrum of Kn×2 ⊕ S is

(√
n2 + 1 −

√
n2 + 1 λ1 λ2

n− 1 n− 1 1 1

)
,

where λ1 =
n+

√
n2 − 4{n− n2(n− 1)2 − 1}

2
,

λ2 =
n−

√
n2 − 4{n− n2(n− 1)2 − 1}

2
.

Therefore,

EMR(Kn×2 ⊕ S) =
√

n2 − 4{n− n2(n− 1)2 − 1}.

□

Theorem 4.5. Let S0
n be crown graph, where |S| = n, then

EMR(S
0
n ⊕ S) = 2n(n− 1) +

√
n2 + 4n2(n− 1)2.

Proof. Let MR(S
0
n ⊕ S) =

[
(J)n n(J − I)n

(n(J − I))n (0)n

]
2n

be the maximum reverse

degree subgraph complement matrix of S0
n ⊕ S. The result is proved by showing

MR(S
0
n ⊕ S)Z = λZ for certain vector Z and by making use of fact that the

geometric multiplicity and algebraic multiplicity of each eigenvalue λ is same, as
MR(S

0
n ⊕ S) is real and symmetric.

Let Z =

[
X
Y

]
be an eigenvector of order 2n partitioned conformally with

MR(S
0
n ⊕ S). Consider

|MR(S
0
n ⊕ S)− λI|

[
X
Y

]
=

[
(J − λI)X + [n(J − I)]Y

[n(J − I)]X − λIY

]
2n

. (4.4)

Case 1. Let X = Xj , j = 2, 3, . . . , n and Y =
n(J − I)

λI
Xj .

Now, (4.4) implies

(J − λI)Xj + n(J − I)
n(J − I)

λI
Xj = −λXj +

n2

λ
(J − I)(−Xj)

= −λXj +
n2

λ
(Xj)

=
n2 − λ2

λ
Xj .

So, λ = ±n are the eigenvalues with multiplicity of at least n − 1 since there
are n− 1 independent vectors of the form Xj .

Case 2. Let X = 1n and Y =
λ− n

n(n− 1)
1n. Here, λ denotes root of the equation

λ2 − nλ− n2(n− 1)2 = 0.
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From equation (4.4), we have

n(J − I)1n − (λI)
λ− n

n(n− 1)
1n =

(
n(n− 1)− λ

λ− n

n(n− 1)

)
1n

=
λ2 − λn− n2(n− 1)2

n(n− 1)
1n.

So, λ =
n+

√
n2 + 4n2(n− 1)2

2
and λ =

n−
√
n2 + 4n2(n− 1)2

2
are the eigen-

values with multiplicity of at least one.

Thus, the spectrum of S0
n ⊕ S is given by

(
n −n λ1 λ2

n− 1 n− 1 1 1

)
,

where λ1 =
n+

√
n2 + 4n2(n− 1)2

2
, λ2 =

n−
√
n2 + 4n2(n− 1)2

2
.

Therefore,

EMR(S
0
n ⊕ S) = 2n(n− 1) +

√
n2 + 4n2(n− 1)2.

□

Theorem 4.6. Let S(l,m) be the double star and S = {u1, u2, . . . , ul}. Then,
characteristic polynomial of S(l,m)⊕ S is given by,

(−λ)m−1(1−λ− r)l−1{λ4+λ3(r− 1− lr)−λ2(k2+mp2+ lr2)+λ(k2+mp2−
k2r + k2lr −mp2r + lmp2r) + lmp2r2}.

Proof. Let

MRp
(S(l,m)⊕ S) =



0 k q q · · · q 0 0 0 · · · 0 0
k 0 0 0 · · · 0 n n n · · · n n
q 0 1 r · · · r 0 0 0 · · · 0 0
q 0 r 1 · · · r 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
q 0 r r · · · 1 0 0 0 · · · 0 0
0 n 0 0 · · · 0 0 0 0 · · · 0 0
0 n 0 0 · · · 0 0 0 0 · · · 0 0
0 n 0 0 · · · 0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
0 n 0 0 · · · 0 0 0 0 · · · 0 0
0 n 0 0 · · · 0 0 0 0 · · · 0 0


l+m+2

be the maximum reverse degree subgraph complement matrix of S(l,m)⊕S, where
k = max{cuo , cvo},
q = max{cuo , cui}, 1 ≤ i ≤ l
n = max{cvo , cvj}, 1 ≤ j ≤ m
r = max{c′ui

s}, 1 ≤ i ≤ l
p = max{c′vjs}, 1 ≤ j ≤ m.
On applying row operation Ri −→ Ri − Ri+1, 1 ≤ i ≤ l − 1, 1 ≤ j ≤ m − 1

and column operations Ci −→ Ci + Ci−1 + . . . + C1, 1 ≤ i ≤ l, 1 ≤ j ≤ m in
|MRp

(S(l,m)⊕ S)− λI|, we get
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(−λ)m−1(1− λ− r)l−1

∣∣∣∣∣∣∣∣
−λ k lr 0
k −λ 0 mp
r 0 ((l − 1)r + 1)− λ 0
0 p 0 −λ

∣∣∣∣∣∣∣∣ .
On further simplifying, we get
ϕp{MR(S

0
n ⊕S)} = (−λ)m−1(1−λ− r)l−1{λ4 +λ3(r− 1− lr)−λ2(k2 +mp2 +

lr2) + λ(k2 +mp2 − k2r + k2lr −mp2r + lmp2r) + lmp2r2}. □

Theorem 4.7. Let B3
n be triangular book graph and S = {v1, v2}, where v1v2 is

the base of n triangles, then EMR(B
3
n ⊕ S) = 1 +

√
1 + 8n(1− n)2.

Proof. Let MR(B
3
n ⊕ S) =

[
(I)2 (n− 1)J2×n

(n− 1)Jn×2 (0)n

]
n+2

be the maximum re-

verse degree subgraph complement matrix of B3
n ⊕ S. The result is proved by

showing MR(B
3
n ⊕ S)Z = λZ for certain vector Z and by making use of fact that

the geometric multiplicity and algebraic multiplicity of each eigenvalue λ is same,
as MR(B

3
n ⊕ S) is real and symmetric.

Let Z =

[
X
Y

]
be an eigenvector of order 2n partitioned conformally with

MR(B
3
n ⊕ S). Consider,

[
λI −MR(B

3
n ⊕ S)

] [X
Y

]
=

[
(λ− 1)IX + (1− n)JY

(1− n)JX + λIY

]
n+2

. (4.5)

Case 1. LetX = 12 and Y = 0n. Using equation (4.5), [(λ−1)I]12+[(1−n)J ]0n,
then λ = 1 is an eigenvalue with multiplicity of at least 1.

Case 2. Let X = 02 and Y = Yj , j = 2, 3, . . . , n. From equation (4.5), (1 −
n)J02+λIYj = λYj , then λ = 0 is the eigenvalue with multiplicity of at least n−1
since there are n− 1 independent vectors of the form Yj .

Case 3. Let X = 12 and Y =

(
−2(1− n)

λ

)
1n. Here, λ denotes root of the

equation

λ2 − λ− 2n(1− n)2 = 0.

From equation (4.5),

[(λ− 1)I]12 + (1− n)J

(
−2(1− n)

λ

)
1n =

{
(λ− 1)− (1− n)n

(
2(1− n)

λ

)}
12

=

{
λ2 − λ− 2n(1− n)2

λ

}
12.

So, λ =
1 +

√
1 + 8n(1− n)2

2
and λ =

1−
√
1 + 8n(1− n)2

2
are the eigenvalues

with multiplicity of at least one.

Thus, spectrum of B3
n ⊕ S is

(
0 1 λ1 λ2

n− 1 1 1 1

)
,

where λ1 =
1 +

√
1 + 8n(1− n)2

2
, λ2 =

1−
√
1 + 8n(1− n)2

2
.
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Therefore,

EMR(B
3
n ⊕ S) = 1 +

√
1 + 8n(1− n)2.

□

Theorem 4.8. Let Amal(k,Kn) be the k times amalgamation of complete graph
Kn. If S = v0 which is the central vertex, then EMR(Amal(k,Kn)⊕ S) = C(n−
2)(2k − 1) +

√
(1 + C(n− 1))2 − 4{C(n− 1)− C2k(n− 1)}.

Proof. Let

MR(Amal(k,Kn)⊕ S) =


J1 CJ1×n−1 CJ1×n−1 · · · CJ1×n−1

CJ1×n−1 CBn−1 0n−1 · · · 0n−1

CJ1×n−1 0n−1 CBn−1 · · · 0n−1

...
...

...
. . .

...
CJ1×n−1 0n−1 0n−1 · · · CBn−1


k+1

be the maximum reverse degree subgraph complement matrix of Amal(k,Kn),
where C = (n − 1)(k − 1) + 1 and B is the adjacency matrix of subgraph of the
complete graph.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|λI −MR(Amal(k,Kn)⊕ S)| = λ− 11 −CJ1×n−1 −CJ1×n−1 · · · −CJ1×n−1

−CJ1×n−1 λI − CBn−1 0n−1 · · · 0n−1

−CJ1×n−1 0n−1 λI − CBn−1 · · · 0n−1

..

.
..
.

...
. . .

...

−CJ1×n−1 0n−1 0n−1 · · · λI − CBn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k+1

.

(4.6)

On replacing Ri by Ri − Ri+1 for i = 2, . . . , k + 1 and replacing Ci by Ci +
Ci−1 + · · ·+C2 for i = k + 1, k, . . . , 3, 2 in (4.6), a new determinant say det(D) is
obtained.

det(D) = |(λI − CB)n−1)|(k−1)

∣∣∣∣λ− 1 −CkJ
−CJ λI − CB

∣∣∣∣
n

. (4.7)

Consider,

|(λI − CB)n−1)| =

∣∣∣∣∣∣∣∣∣
λ −C −C · · · −C
−C λ −C · · · −C
...

...
...

. . .
...

−C −C −C · · · λ

∣∣∣∣∣∣∣∣∣
n−1

. (4.8)

On replacing Ri by Ri−Ri+1 for i = 1, . . . , n− 2 and replacing Ci by Ci+Ci−1+
· · ·+ C2 + C1 for i = 1, 2, . . . , n− 1 in (4.8), we have

{(λ+ C)n−2(λ− C(n− 2))}k−1. (4.9)
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Next,

∣∣∣∣λ− 1 −CkJ
−CJ λI − CB

∣∣∣∣
n

=

∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −Ck −Ck · · · −Ck
−C λ −C · · · −C
−C −C λ · · · −C
...

...
...

. . .
...

−C −C −C · · · λ

∣∣∣∣∣∣∣∣∣∣∣
n

. (4.10)

On replacing Ri by Ri − Ri+1 for i = 2, . . . , n − 1 and replacing Ci by Ci +
Ci−1 + · · ·+ C2, i = 2, . . . , n in (4.10), we have

(λ+ C)n−2{λ2 − λ(1 + C(n− 1)) + C(n− 1)− C2k(n− 2)}. (4.11)

Substituting (4.9) and (4.11) in (4.7), we obtain
ϕp{MR(Amal(k,Kn)⊕S)} = (λ+C)k(n−2){λ−C(n−2)}k−1{λ2−λ(1+C(n−

1)) + C(n− 1)− C2k(n− 2)}.

Thus, spectrum of Amal(k,Kn)⊕ S is

(
−C C(n− 2) λ1 λ2

(n− 2)k k − 1 1 1

)
,

where λ1 =
1 + C(n− 1) +

√
(1 + C(n− 1))2 − 4{C(n− 1)− C2k(n− 1)}

2

and λ2 =
1 + C(n− 1)−

√
(1 + C(n− 1))2 − 4{C(n− 1)− C2k(n− 1)}

2
.

Therefore, EMR(Amal(k,Kn)⊕ S) = C(n− 2)(2k − 1)

+
√
(1 + C(n− 1))2 − 4{C(n− 1)− C2k(n− 1)}. □

5. Conclusion

Graph energy has so many applications in the field of chemistry, physics and
mathematics. The maximum reverse degree subgraph complement energy depends
on the chosen induced set of graph such that resultant subgraph complement is
connected. In this paper, we have obtained some bounds for maximum reverse
degree energy of subgraph complement of graphs. Also, a generalized expression
for maximum reverse degree energy of subgraph complement of complete graph,
cocktail party graph, crown graph, complete bipartite graph, double star graph,
triangular book graph and amalgamation of Kn are also computed.
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