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ABSTRACT: The paper investigates the process of scattered destruction of a thick pipe with 

uniform pressure on the inner boundary of the pipe. The process of fracture of a cylindrically 

isotropic pipe under the action of internal pressure, assuming that the pipe material behind the 

fracture front completely loses its bearing capacity and the acting external pressure is transferred 

to a new boundary surface, which is a moving fracture front. The process of damaging is 

described by the kinetic equation. The problem was solved taking into account the residual 

strength of the pipe material behind the fracture front. The problem was solved taking into 

account the residual strength of the pipe material behind the fracture front. 

Keywords: stress intensity, damageability, destruction front, strongly affects, fracture, fracture 

front, damage volume. 

 

1.İntroduction 

The specificity of calculating the strength of bodies in a non-uniform stress state is the 

difference in the time of destruction of its individual parts. Expansion of destroyed parts 

changes the interface between destroyed and non-destroyed parts. This movable boundary 

surface is called the fracture front and was first introduced by L.M. Kachanov [1]. As already 

noted, a similar situation occurs for an inhomogeneous stress state with a structure. 

Theories of strength are unsuitable for studying the destruction of such bodies, because the 

element of the material for which the strength criterion is satisfied is considered to be 

completely destroyed and completely lost its resistance to loading. It is impossible to 

describe the further behavior of such an element under continued loading within the 

framework of strength theories. Great opportunities here are opened by damage theories or 

theories of scattered destruction. 

One of the ways to analyze the destruction of a body in an inhomogeneous stress state is the 

way based on the concept of a fracture front. In this case, in addition to the governing 

Global and Stochastic Analysis                                                                    Vol. 9 No.1 (January-June, 2022)



MATHEMATICAL MODELING OF DAMAGE OF A CYLINDRICALLY ISOTROPIC THICK PIPE UNDER 

A COMPLEX STRESS STATE 

 

48 
 

equations and the fracture criterion, additional assumptions are required that do not follow 

from the deformation and destruction of the model. 

Since the stress levels at different points are different in a non-uniform stress state, the 

degree of damage to these points also differs accordingly. The equations that relate stresses 

to strains - the defining equations - at each point will be valid until the corresponding failure 

criterion is met for it. From this moment on, this particle of material is not able to fulfill its 

functional duty, bear a certain load and collapse. As a result, a redistribution of stresses 

occurs in the body, which subsequently leads to the destruction of a neighboring particle of 

the material. Over time, the destroyed part of the body increases until the entire structure 

loses its bearing capacity. 

From this moment on, this particle of material is not able to fulfill its functional duty, bear a 

certain load and collapse. As a result, a redistribution of stresses occurs in the body, which 

subsequently leads to the destruction of a neighboring particle of the material. Over time, 

the destroyed part of the body increases until the entire structure loses its bearing capacity. 

In the future, this area of  the body increases. The movement of the destruction front, 

which characterizes the increase in the destroyed area, occurs until the moment when the 

entire construction of the theory, the bearing capacity, completely fails. The period of time 

from 0t  to pt  is called the stage of destruction propagation. Determining the point in time 

requires pt additional assumptions. So, for example, it is possible that the velocity of the 

destruction front should turn to infinity. However, such a condition is not always 

acceptable, because for some structures the speed of the destruction front during the entire 

stage of the propagation of destruction remains finite.  

The equation of motion of the destruction front is determined by the kinetic equation. 

As a basic model of a damaged body, the article takes the model [2], which considers 

destruction as a critical stage in material deformation. The convenience of using this theory 

is that the same operator characterizing the process of damage accumulation is included as a 

kinetic equation. 

 

2. Materials and Methods 

We take the criterion of the destruction in the form, also following the works [3]: 

  0iM1   
                                                      (1) 

where i  - stress intensity, which is for a thick one, that is in a complex stress state, has the 

form [4]: 

222
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p3 


                                           (2) 

Here a  and b  - respectively, the inner and outer radii of the pipe, r - current pipe radius, р 



ESMIRA MUSTAFAYEVA ET.AL. 

49 
 

– pressure on the inner surface of the pipe, which is created by the placeholder. 

Initially, the pipe consists of a single unauthorized material. The maximum value of the 

stress intensity is reached on the inner surface of the pipe, where the most intense process of 

damage accumulation takes place. This process leads to the emergence of a destruction zone 

there at the moment of time 0t , which is determined on the basis of the criterion of 

destruction: 

  пomaxiM1    .                                           (3) 

designating 0/ ba  and g
p3
oп 


 and considering (5) in (6), we will get: 
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Let us give an explicit form for the initial destruction time for two types of nuclei )(tM  
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 Further, the boundary of the destruction zone - the destruction front will move 

towards the outer surface of the pipe. The destruction zone itself is an annular zone. The 

material of this fracture zone retains its bearing capacity, but to a much lesser extent than 

the original material ahead of the fracture front. We will assume that at the fracture front, 

the pipe material sharply changes its instantaneous rheological characteristics; in this 

problem, the value of the shear modulus is G . Let's take for  1G  - shear modulus of the 

pipe material ahead of the fracture front, and 0G  - is a destruction front. Let’s introduce 

the notation: 

                                                                          
1

0

G

G
                                                                 

(7) 

It's obvious that 1 . 

 The stress state at an arbitrary moment of time is defined as for a two-layer pipe 

with different elastic characteristics. 

 For the intensity of stresses in the pipe area ahead of the fracture front, which will 
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supply the index 1, according to the well-known formulas [4], we obtain, taking the material 

incompressible, we get: 

222

22
(1)
i r

1

kb

bk
q3 


                                                   (8) 

Where q  - fracture front pressure, к – destruction front radius. 

For the radial displacements of the points of the region behind and in front of the fracture 

front, provided the material is incompressible, again according to [3], we have: 
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From the condition of continuity of displacements at the fracture front 
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We get: 
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Introducing the dimensionless quantity b/)t(k)t(  , with respect to this dimensionless 

radial coordinate of the fracture front, we obtain the following nonlinear integral equation: 
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The stress intensity in formula (9) in the dimensionless radial coordinate has the form [6]: 
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      (13) 

The kinetic equation for the development of the destruction front was adopted as follows: 

)(
)(

idt

td



                                                        (14) 

where )( i  - strain rate functions, (t) – radius of the destruction front. 

Stresses at a point in time t  causes elastic deformation Eii /~   . Therefore, the total 

deformation at the moment of time t  consists of this deformation and deformation arising 

from the stresses acting up to the moment of time t [5], 

 

t

iii dtM
0
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Then the expression obtained from (15), substituting into equation (14), we obtain, 

 

t
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.     (16) 

Taking into account formula (13) in equation (16), we obtain, 
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Thus, we have a system of two nonlinear integral equations (12), (17) relative to the radial 

coordinate )t(  fracture front and pressure )t(q~  on it. Note that if 0t  - time of initial 

destruction, that is, destruction of the inner surface of the pipe 0  , determined 

according to formula (6), so in the system (12), (17) at 0t  should be 

assumed pq ~)(~;)( 0   . Integral equation (17) makes sense only for 0tt  . 

Equations (12), (17) can be reduced to solving one nonlinear integral equation. For this, 

using the identity of the structure of the integral terms of equations (12) and (17), excluding 

them, we obtain the following explicit representation of the dependence of the pressure at 

the fracture front from its radial coordinate: 
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Taking into account this representation by the integro-differential equation (17), we obtain 

the following nonlinear integral equation: 
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(19) 

 

3. Solution Method 

The solution to equation (19) determines the nature of the expansion of the annular 

fracture zone )(t  . Further, using formula (20), the pressure at the destruction front 

is determined. It should be noted that the solution to the integral equation is valid as long 

as the pressure q(t)  calculated by formula (18) is positive. Its equality to zero or its 

negativity means violation of the material overshoot with the formation of an arc crack 

along the destruction front [7]. 

In order to clarify the qualitative picture of the destruction process, we will take as the 

kernel of the damage operator: constm)-M(t  , then, introducing dimensionless 

time mt  and  m , equation (19) takes the form: 
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Differentiating by dimensionless time , we obtain the following differential equation: 
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The initial conditions for equation (21) are condition (6): 

  0;11;
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d
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g                                     (22) 

The resulting Cauchy problem (21), (22) was solved numerically for the values of the input 

parameters: 9,5;7,4;9,3g;5,00   and 6,0;4,0;2,0;0 . Figure 1-2 

shows the curves of the destruction front movement for three values of the residual strength 

parameter   depending on the parameter g .  

  

Fig. 1. Curves of the destruction front 

movement for the damage kernel 

.constm)t(M   For :01,0  1. 

,9,3g   2. ,7,4g   3. 9,5g  . 

Fig. 2. Curves of the destruction front 

movement for the damage kernel 

.)t()t(M    For 

:25,0;2,0    1. ,9,3g   2. 

,7,4g   3. 9,5g  . 
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Figure 3-4 shows the curves of the destruction front movement for various values of the 

residual strength parameter depending on the parameter g .  

 

  

Fig. 3. Curves of the destruction front 

movement for the damage kernel 

.constm)t(M   For :7,4g   1. 

,0  2. ,2,0  3. 6,0 . 

Fig. 4. Curves of the destruction front movement 

for the damage kernel .)t()t(M    

For :25,0;9,5g    1. ,2,0  2. 

,4,0  3. 6,0  

     4. Discussion of results 

As follows from the graph, the movement of the destruction front occurs with a 

decreasing speed. Calculations also showed that the presence of residual strength 

behind the destruction front has little effect on the nature of the destruction front 

movement, but it strongly affects the time of the onset of delamination [8].  

As it turns out, an aggressive environment affects only the magnitude of the 

instantaneous strength. The damage process is described by an integral operator of 

hereditary type. The problem is solved taking into account the residual strength of 

the pipe material behind the fracture front.  

Numerical calculations are carried out and dependences of the coordinates of the 

fracture front on time are constructed for various values of the concentration of an 

aggressive medium and residual strength behind the fracture front. 

 

     5. Conclusions 

1. A kinetic equation is derived for the radial coordinate of the destruction front, taking 

into account the process of damage to the material of the pipe itself. 

2. Explicit formulas are obtained for the contact pressures at the destruction front. An 

analysis of the relationship between critical situations of delamination at the destruction 

front and analysis of destruction due to the accumulation of a critical volume of damage 

are given. 
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