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Abstract. The prominent objective of present study is to develop an ef-

ficient stochastic framework for availability evaluation of harvesting system
(HS) using the concept of partial failure of subsystems. A harvesting system

is very complex structure configured with four subsystems in series structure.

The failure and repair laws of all subsystems are exponentially distributed.
The sufficient repair facility available with system and harvesting system work

as new after repair. Markovian birth-death methodology is opted for devel-

opment of Chapman-Kolmogorov differential-difference equations of proposed
stochastic framework. The steady state availability of HS system is derived for

a particular case. Later, an effort is made to predict the optimal availability

and respective optimal parameters of subsystems using metaheuristics algo-
rithms. It is revealed that HS can attain optimal limit of availability 0.9999967

at population size 5 after 25 iterations. This study adds to the body of knowl-
edge about harvesting systems by providing an all-encompassing viewpoint

on availability optimization. The study’s findings can be utilized in designing

reliable harvesting systems. The proposed methodology can be used in other
similar kind of mechanical systems.

1. Introduction

Agriculture plays an important role in economic development of any nation.
As well as it can also contributes to achieve the world’s development goals by
providing healthy, sustainable, and inclusive food systems. But due to climate
change agriculture production affected. Several times ripened crops destroyed in
lack proper and timely harvesting. So, a proper and efficient harvesting system is
needed to avoid this economic loss to farmers and maintain the sustainable supply
of food grains. In this scenario, harvesting system play a prominent role for timely
harvesting the crop. It is a crucial and complex part of agriculture in which several
subsystems viz. tractor, combine, wagon, and human work together to successfully
gather crops. In the harvesting system human ensure the coordinated and fruitful
harvest by operating the machinery, tractor ensures supply power, combine do the
harvesting, and wagon facilitate crop transportation. Due to the involvement of
various subsystems, harvesting system and other agricultural machinery become
complex. Lub et al. [5] analysed the impact of technology systems in agricultural
crop harvesting, with a special focus on sugar beets. Fue et al. [6] assessed the

2000 Mathematics Subject Classification. 90B25 and 60K10.
Key words and phrases. Harvesting system, Stochastic modeling, Availability optimization,

Metaheuristic algorithms, Markovian approach.
* Corresponding author.

Global and Stochastic Analysis   
Vol. 11 No. 2 (March, 2024)  
 
Received: 30th November 2023               Revised: 25th January 2024           Accepted: 29th January 2024  

 

34



ASHISH KUMAR, NAVEEN KUMAR, MONIKA SAINI, AND DEEPAK SINWAR

prospects and obstacles in the field of agricultural robotics, particularly in the
context of cotton harvesting. Idoje et al. [7] studied the revolutionary influence
of smart technology and the Internet of Things (IoT) in agriculture. It examined
cutting-edge technology, their uses in the production of crops and animals, and
the difficulties and knowledge gaps to improve the sustainability and global food
supply. Xaliqulov et al. [8] presented a bibliometric database on root harvesters
from 1982 to 2022. The complexity of the system causes several kinds of snags
and faults that influences the functioning of the harvesting. In such conditions
it becomes necessary to design and operate these machines with high reliabil-
ity and availability. Several studies conducted to evaluate the reliability measures
of process industries, mechanical equipment and industrial systems using several
methodologies viz. Markovian approach, semi-Markovian approach, minimal cut
set and tie set approach etc. Madalli [3] talked about the difficulties and solutions
associated with harvesting metadata in fields related to agriculture. Dahiya et al.
[4] analysed fuzzy reliability of a harvesting system. Saini et al. [2] developed a sto-
chastic model and performed sensitivity analysis of condenser reliability. Colombo
et al. [9] used Markovian models in reliability and availability analysis of engi-
neering systems. In order to increase system availability and profit, the impact of
fault coverage factor, failure rates, and repair rates observed on these measures.
Though all these approaches provide the local solutions for the reliability mea-
sures and unable to predict the optimal reliability of system. For this purpose,
several researchers used computational intelligence techniques and metaheuristic
algorithms for estimation of parameters and reliability measures of these systems.
Semaan et al. [1] evaluated the importance of cost as an optimization parameter in
the size of rainwater harvesting systems. Some well-known optimization algorithms
for reliability prediction are grey wolf optimization (GWO), particle swarm opti-
mization (PSO), dragonfly algorithm (DA), grasshopper optimisation algorithm
(GOA), moth flame optimizer (MFO), and sine cosine algorithm (SCA). Marouf-
poor et al. [10] used GWO and adaptive neural fuzzy inference system as a hybrid
model for soil moisture simulation. It is evident from the facts and figures discussed
above that the harvesting system’s availability optimization has not contemplated
yet. It motivates to develop an efficient stochastic model for harvesting system.
The main contribution of present study is summarized as follows:

• Development of stochastic framework for steady-state availability evalua-
tion of harvesting system.

• Availability optimization of proposed framework of harvesting system us-
ing metaheuristic algorithms GWO, PSO, DA, GOA, MFO and SCA.

• Investigation of impact of increased failure and repair rates on availability
of harvesting system.

By keeping above facts in mind, here an efficient stochastic framework for avail-
ability evaluation of harvesting system (HS) is proposed under the concept of expo-
nentially distributed failure and repair laws. The sufficient repair facility available
with system and harvesting system work as new after repair. Markovian birth-
death methodology is opted for development of Chapman-Kolmogorov differential-
difference equations of proposed stochastic framework. The steady state availabil-
ity of HS system is derived for a particular case. Later, an effort is made to predict
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the optimal availability and respective optimal parameters of subsystems using
metaheuristics algorithms. The study’s findings can be utilized in designing reli-
able harvesting systems. The proposed methodology can be used in other similar
kind of mechanical systems.

2. Material and Methods

2.1. Notations. A stochastic model of complex harvesting system is developed
using notations appended in Table 1.

Table 1. Taxonomy for Stochastic model development

S. No. Sub-system Mode Failure rate/hr.αi Repair rate/hr.µi

Working Mode Failure Mode

1 Human A a α1 µ1

2 Tractor B B′ B′ b α2 α5 µ2 µ2

3 Combine C C′ C′ c α3 α6 µ3 µ3

4 Wagon D D1 D1 d α4 α7 µ4 µ4

P ′
1(t) : Represent derivative of the P1(t)

P1(t) : At time t, the system is in the initial state
◦ : Operational state □ : State of failure

2.2. Harvesting System Description. This section explains the operational
procedure of the complex harvesting system and its configuration. The proposed
system is made up of four subsystems: human, tractor, combine and wagon.

2.2.1. Human. For harvesting systems successful operation, involvement of hu-
man is essential. A harvesting operation’s efficiency, sustainability, and ability to
perform its assigned task are all guaranteed by effective human engagement. The
suggested system human is considered as a single unit subsystem whose failure and
repair rates are exponentially distributed and its failure causes complete system
failure.

2.2.2. Tractor. The mainstay of contemporary harvesting methods is tractor.
They offer the strength, agility, and adaptability required to carry out a variety of
jobs in forestry and agriculture operations. They are a crucial part of mechanical
harvesting procedures since they not only improve efficiency but also lessen the
physical demands on human work. Consists of a single unit, and when it failed,
the entire system failed. With an exponential distribution of the failure and repair
rates, it might continue to function in a partially failed condition.

2.2.3. Combine. Because they combine numerous key duties into a single equip-
ment, combines are the workhorses of grain crop harvesting systems. Their ef-
ficiency, precision, and versatility make them important in modern agriculture,
letting farmers to rapidly and efficiently harvest, thresh, separate, and clean grain
harvests. Consists of a single unit, and its failure caused the entire system to fail,
with failure and repair rates exponentially distributed. It may remain operational
in a partially failed state with an exponentially distributed failure and repair rate.
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2.2.4. Wagon. Wagons serve an important part in harvesting systems by moving
harvested crops from the field to storage or processing areas, facilitating harvest
collecting and logistics. It is made up of a single unit, and its failure caused the
entire system to fail. A backup unit (D1) is available. Its failure and repair rates
follow an exponential distribution.

Figure 1. Flow chart of harvesting system

Table 2. Failure and repair rates of subsystems

Subsystems Availability and Markov
Analysis
Base values

Search space of metaheuristics algo-
rithms

Failure Rates Repair rates Failure Rates Repair rates

Human α1= 0.0011 µ1 = 0.083 [0.000009-0.0871] [0.000079-2.757]
Tractor α2= 0.0017

α5 = 0.0057
µ2 = 0.091
µ2 = 0.091

[0.000019- 0.0448]
[0.000049- 0.0886]

[0.000089-2.349]
[0.000089-2.349]

Combine α3 = 0.0021
α6 = 0.0048

µ3 = 0.052
µ3 = 0.052

[0.000029-0.0915]
[0.000059-0.0784]

[0.000099-3.315]
[0.000099-3.315]

Wagon α4 = 0.0041
α7 = 0.0061

µ4 = 0.046
µ4 = 0.046

[0.000039-0.0939]
[0.000069-0.0989]

[0.000099-1.356]
[0.000099-1.356]

2.3. Optimization Strategies. The reliability evaluation techniques like semi-
Markovian Approach, Markov approach, minima cut set etc. provide the local
solution to the reliability evaluation problems. In order to predict the optimal
availability of the systems, the utilization of modern computational intelligence
techniques is solicited. In this regard, metaheuristic approaches are found to be
suitable for solving such problems. Due to the nature of the objective function
and constraints GWO (Grey Wolf Optimizer), PSO (Particle Swarm Optimizer),
DA (Dragonfly Algorithm), GOA (Grasshopper Optimisation Algorithm), MFO
(Moth-Flame Optimization) and SCA (Sine Cosine Algorithm) are well recom-
mended techniques for availability optimization of process industries. GWO pro-
posed by Mirjalili et al. [11] is a method inspired by nature that is used to solve
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complex optimization issues. It uses grey wolves’ social order and hunting behav-
ior to iteratively improve solutions and discover optimal outcomes across multiple
areas. PSO developed by Kennedy and Eberhart [12] is a population-based meta-
heuristic technique that models the behavior of birds or particles. It optimizes
the problem by iteratively changing solution candidates in complex search spaces
to obtain the best potential solution. PSO strikes a balance between exploration
and exploitation in order to find optimal or near-optimal solutions. Dragonfly
Algorithm as proposed by Mirjalili [13] is an also an optimization method that
balances the exploration and exploitation to find optimal or nearly optimal solu-
tions in a variety of domains by modeling the swarming behavior of dragonflies,
which allows for fast exploration of complex solution spaces. Grasshopper Opti-
misation Algorithm as developed by Saremi et al. [14] is a metaheuristic method
that mimics the swarming and foraging behaviour of grasshoppers, drawing inspi-
ration from nature. It is a global optimization that solves complicated problems
through iteratively improving candidate solutions and adjusting to changing en-
vironmental variables. Moth Flame Optimizer (Mirjalili [15]) is a metaheuristic
algorithm that draws inspiration from the way moths navigate artificial lighting.
MFO seeks to identify global or near-global optima in a variety of optimization ar-
eas by iteratively improving solutions to complex problems. Sine Cosine Algorithm
(Mirjalili [13]) solve optimization challenges by iteratively improves potential solu-
tions by simulating the oscillatory behavior of the sine and cosine functions. SCA
effectively searches through intricate search spaces to find the best or almost best
answers to a variety of optimization issues.

2.4. Experimental Setup. The investigation is performed on RStudio using
Windows10 64-bit with 4 GB of primary RAM and an Intel Core i3 5th generation
CPU.

3. Stochastic Modeling of Harvesting System

In this section, Chapman-Kolmogorov differential equations associated with the
proposed stochastic framework of harvesting system is developed using Markov-
ian birth-death process. The set of Chapman-Kolmogorov differential equations is
given below:

[P1(t+ δt) = (1− (α1 + α2 + α3 + α4)δt)P1(t) + µ1P2(t)δt

+ µ2P3(t)δt+ µ3P4(t)δt+ µ4P5(t)δt

⇒ P1(t+ δt)− P1(t)

δt
= −(α1 + α2 + α3 + α4)P1(t) + µ1P2(t) + µ2P3(t)

+ µ3P4(t) + µ4P5(t)

Taking limit δt → 0, we get

P ′
1(z) = −(α1 + α2 + α3 + α4)P1(t) + µ1P2(t) + µ2P3(t) + µ3P4(t) + µ4P5(t)

(3.1)

Similarly,

P ′
2(t) = −µ1P2(t) + α1P1(t), (3.2)
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Figure 2. State transition diagram of harvesting system

P ′
3(t) = −(α1 + α5 + α3 + α4 + µ2)P3(t) + µ1P6(t) + µ2P7(t) + µ4P9(t)

+ µ3P8(t) + α2P1(t), (3.3)

P ′
4(t) = −(α1 + α2 + α6 + α4 + µ3)P4(t) + µ1P10(t) + µ2P8(t) + µ3P1(t)

+ µ3P11(t) + µ4P12(t), (3.4)

P ′
5(t) = −(α1 + α7 + α2 + α3 + µ4)P5(t) + µ1P13(t) + µ4P14(t) + α4P1(t)

+ µ2P9(t) + µ3P12(t), (3.5)

P ′
6(t) = −µ1P6(t) + α1P3(t), (3.6)

P ′
7(t) = −µ2P7(t) + α5P3(t), (3.7)

P ′
8(t) = −(α1 + µ2 + α4 + α6 + α5 + µ3)P8(t) + µ1P15(t) + α2P4(t)

+ µ4P18(t) + µ3P17(t) + α3P3(t) + µ2P16(t), (3.8)

39



A NOVEL STOCHASTIC FRAMEWORK FOR AVAILABILITY OPTIMIZATION. . .

P ′
9(t) = −(α1 + α3 + µ2 + α7 + µ4 + α5)P9(t) + µ1P19(t) + µ3P18(t)

+ µ4P21(t) + µ2P20(t) + α4P3(t) + α2P5(t), (3.9)

P ′
10(t) = −µ1P10(t) + α1P4(t), (3.10)

P ′
11(t) = −µ3P11(t) + α6P4(t), (3.11)

P ′
12(t) = −(α1 + α2 + α7 + µ3 + µ4 + α6)P12(t) + µ1P23(t) + µ2P18(t)

+ µ4P22(t) + α3P5(t) + α4P4(t) + µ3P24(t), (3.12)

P ′
13(t) = −µ1P13(t) + α1P5(t), (3.13)

P ′
14(t) = −µ4P14(t) + α7P5(t), (3.14)

P ′
15(t) = −µ1P15(t) + α1P8(t), (3.15)

P ′
16(t) = −µ2P16(t) + α5P8(t), (3.16)

P ′
17(t) = −µ3P17(t) + α6P8(t), (3.17)

P ′
18(t) = −(α1 + α5 + µ3 + α7 + µ4 + α6 + µ2)P18(t) + µ1P25(t)

+ µ2P26(t) + α3P9(t) + µ4P28(t) + α4P8(t) + µ3P27(t)

+ α2P12(t), (3.18)

P ′
19(t) = −µ1P19(t) + α1P9(t), (3.19)

P ′
20(t) = −µ2P20(t) + α5P9(t), (3.20)

P ′
21(t) = −µ4P21(t) + α7P9(t), (3.21)

P ′
22(t) = −µ4P22(t) + α7P12(t), (3.22)

P ′
23(t) = −µ1P23(t) + α1P12(t), (3.23)

P ′
24(t) = −µ3P24(t) + α6P12(t), (3.24)

P ′
25(t) = −µ1P25(t) + α1P18(t), (3.25)

P ′
26(t) = −µ2P26(t) + α2P18(t), (3.26)

P ′
27(t) = −µ3P27(t) + α6P18(t), (3.27)

P ′
28(t) = −µ4P28(t) + α7P18(t) (3.28)

The associated initial conditions are given as:

Pi(t = 0) =

{
1, if i = 0,

0, if i ̸= 0
(3.29)

Applying limit t → ∞ on above equations (1)-(28), the system converts into a
system of linear equation along with initil condition (3.29). As sum of transition

probabilities is one, i.e.,
∑28

i=1 Pi = 1, we have

P2 =

(
α1

µ1

)
P1; P3 =

(
α2

µ2

)
P1; P4 =

(
α3

µ3

)
P1; P5 =

(
α4

µ4

)
P1;

P6 =

(
α1

µ1

α2

µ2

)
P1; P7 =

(
α5

µ2

α2

µ2

)
P1; P8 =

(
α3

µ3

α2

µ2

)
P1;

P9 =

(
α4

µ4

α2

µ2

)
P1; P10 =

(
α1

µ1

α3

µ3

)
P1; P11 =

(
α3

µ3

α6

µ3

)
P1; P12 =

(
α3

µ3

α4

µ4

)
P1;
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P13 =

(
α1

µ1

α4

µ4

)
P1; P14 =

(
α4

µ4

α7

µ4

)
P1; P15 =

(
α1

µ1

α2

µ2

α3

µ3

)
P1; ;

P16 =

(
α5

µ2

α2

µ2

α3

µ3

)
P1 P17 =

(
α6

µ3

α2

µ2

α3

µ3

)
P1; P18 =

(
α4

µ4

α2

µ2

α3

µ3

)
P1;

P19 =

(
α1

µ1

α2

µ2

α4

µ4

)
P1; ;P20 =

(
α2

µ2

α4

µ4

α5

µ2

)
P1; P21 =

(
α2

µ2

α4

µ4

α7

µ4

)
P1;

P22 =

(
α3

µ3

α4

µ4

α7

µ4

)
P1; P23 =

(
α1

µ1

α4

µ4

α3

µ3

)
P1; P24 =

(
α6

µ3

α4

µ4

α3

µ3

)
P1;

P25 =

(
α1

µ1

α2

µ2

α4

µ4

α3

µ3

)
P1; P26 =

(
α5

µ2

α2

µ2

α4

µ4

α3

µ3

)
P1; P27 =

(
α6

µ3

α2

µ2

α4

µ4

α3

µ3

)
P1;

P28 =

(
α7

µ4

α2

µ2

α4

µ4

α3

µ3

)
P1, (3.30)

where

P1 =

[
1 +

(
α1

µ1

)
+

(
α2

µ2

)
+

(
α3

µ3

)
+

(
α4

µ4

)
+

(
α2

µ2

){(
α1

µ1

)
+

(
α5

µ2

)
+

(
α3

µ3

)
+

(
α4

µ4

)}
+

(
α3

µ3

){(
α1

µ1

)
+

(
α6

µ3

)
+

(
α4

µ4

)}
+

(
α4

µ4

){(
α1

µ1

)
+

(
α7

µ4

)}
+

(
α2α3

µ2µ3

){(
α1

µ1

)
+

(
α5

µ2

)
+

(
α6

µ3

)
+

(
α4

µ4

)}
+

(
α2α4

µ2µ4

){(
α1

µ1

)
+

(
α5

µ2

)
+

(
α7

µ4

)}
+

(
α4α3

µ4µ3

){(
α1

µ1

)
+

(
α6

µ3

)
+

(
α7

µ4

)}
·
(
α2α3α4

µ2µ3µ4

) {(
α1

µ1

)
+

(
α5

µ2

)
+

(
α6

µ3

)
+

(
α7

µ4

)}]−1

(3.31)

Using the above transition probabilities appended in equation (3.30), steady state
availability (SSA) of harvesting system is derived as follows:

SSA = P1 + P3 + P4 + P5 + P8 + P9 + P12 + P18

=

{
1 +

(
α2

µ2

)
+

(
α3

µ3

)
+

(
α4

µ4

)
+

(
α2α3

µ2µ3

)
+

(
α2α4

µ2µ4

)
+

(
α4α3

µ4µ3

)
+

(
α2α3α4

µ2µ3µ4

)}[
1 +

(
α1

µ1

)
+

(
α2

µ2

)
+

(
α3

µ3

)
+

(
α4

µ4

)
+

(
α2

µ2

){(
α1

µ1

)
+

(
α5

µ2

)
+

(
α3

µ3

)
+

(
α4

µ4

)}
+

(
α3

µ3

){(
α1

µ1

)
+

(
α6

µ3

)
+

(
α4

µ4

)}
+

(
α4

µ4

){(
α1

µ1

)
+

(
α7

µ4

)}
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+

(
α2α3

µ2µ3

){(
α1

µ1

)
+

(
α5

µ2

)
+

(
α6

µ3

)
+

(
α4

µ4

)}
+

(
α2α4

µ2µ4

){(
α1

µ1

)
+

(
α5

µ2

)
+

(
α7

µ4

)}
+

(
α4α3

µ4µ3

){(
α1

µ1

)
+

(
α6

µ3

)
+

(
α7

µ4

)}
·
(
α2α3α4

µ2µ3µ4

){(
α1

µ1

)
+

(
α5

µ2

)
+

(
α6

µ3

)
+

(
α7

µ4

)}]−1

(3.32)

4. Numerical Results and Discussion

In this section, numerical results for availability of harvesting system derived
for a particular case in two phases. Initially, the steady state availability of the
proposed harvesting system is determined with respect to failure and repair rates.
Later, the availability of the system is optimized by considering equation (3.32) as
the objective function. It is also observed that how different failure and repair rates
affect steady-state availability of harvesting system. The steady state availability
of harvesting system appended in Table 3. It is revealed that the availability of
the harvesting system declines sharply with the increase of failure rate (α1) of
subsystem human. Similarly, the failure rates of all subsystems increased 15%,
and the effect on steady state availability is observed. It is identified that failure
rate (α4) of subsystem wagon influences the availability of the harvesting system
sharply. The steady state availability decline from 0.9705784 to 0.8971419 with
respect to failure rate (α1) after 15% increase in the failure rate of wagon.

Table 3. Steady state availability behaviour of harvesting sys-
tem with respect to various failure rates

α1 Base Val-
ues

α2 + 15%
of α2

α3 + 15%
of α3

α4 + 15%
of α4

α5 + 15%
of α5

α6 + 15%
of α6

α7 + 15%
of α7

0.0011 0.9719712 0.9718119 0.9714863 0.9705784 0.9718085 0.9714638 0.9704358

0.0021 0.9607207 0.9605651 0.9602469 0.9593599 0.9605617 0.9602249 0.9592206

0.0031 0.9497277 0.9495756 0.9492646 0.9483978 0.9495723 0.9492431 0.9482617

0.0041 0.9389834 0.9388347 0.9385307 0.9376834 0.9388315 0.9385097 0.9375503

0.0051 0.9284794 0.9283340 0.9280369 0.9272083 0.9283309 0.9280163 0.9270782

0.0061 0.9182079 0.9180657 0.9177751 0.9169647 0.9180626 0.9177550 0.9168375

0.0071 0.9081611 0.9080220 0.9077377 0.9069450 0.9080191 0.9077181 0.9068206

0.0081 0.8983319 0.8981958 0.8979176 0.8971419 0.8981928 0.8978983 0.8970201

Numerical results for steady state availability of harvesting system with respect to
variation repair rates is shown in Table 4. It is revealed that, the 15% variation in
various repair rates µ2, µ3, and µ4 resulted 0.027%, 0.084% and 0.251% variation
occurs in the steady state availability of harvesting system. The highest gain in
availability is observed corresponding to the wagon’s repair rate (µ4).
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Table 4. Steady state availability behaviour of harvesting sys-
tem with respect to various repair rates

µ1 Base values µ2 + 15% of µ2 µ3 + 15% of µ3 µ4 + 15% of µ4

0.183 0.978861548 0.979128023 0.979686246 0.981318548

0.283 0.980900944 0.981168531 0.981729083 0.983368206

0.383 0.981878385 0.982146505 0.982708176 0.984350572

0.483 0.982451994 0.982720427 0.983282755 0.984927074

0.583 0.982829189 0.983097829 0.983660588 0.985306173

0.683 0.983096107 0.983364893 0.983927958 0.985574438

0.783 0.983294940 0.983563835 0.984127128 0.985774275

0.883 0.983448793 0.983717772 0.984281242 0.985928905

Further in phase two, various metaheuristic algorithms viz. GWO, PSO, DA, GOA,
MFO, and SCA applied on equation (3.32) to predict the optimal value of the
harvesting system availability. The optimal solution is explored in the search space
appended in Table 2. The various algorithm characteristics given in Table 5.

Table 5. Search space for metaheuristic algorithms

Algorithms Parameters

Gray Wolf Optimization Population size 5, 15, 25, 55, 155, 255, 555; Number
of maximum iterations =2155

Particle Swarm Optimiza-
tion

Population size 5, 15, 25, 55, 155, 255, 555; Number of
maximum iterations = 2155; Maximum particle’s ve-
locity = 2; Inertia weight = 0.99; Individual cognitive
= 1.5; Group cognitive = 2.8

Grasshopper Optimization
Algorithm

Population size 5, 15, 25, 55, 155, 255, 555; Number
of maximum iterations = 2155

Dragonfly Algorithm Population size 5, 15, 25, 55, 155, 255, 555; Number
of maximum iterations = 2155

Moth Flame Optimizer Population size 5, 15, 25, 55, 155, 255, 555; Number
of maximum iterations = 2155

Sine Cosine Algorithm Population size 5, 15, 25, 55, 155, 255, 555; Number
of maximum iterations = 2155

Tables 6-7 appended the predicted availability of harvesting system derived using
various algorithms at various population sizes up to 2155 iteration size. It is ob-
served that after 25 iterations, dragonfly algorithm predicts the highest availability
of 0.9999961 at population size 255. Though all the other algorithm attains the
optimum value 0.9999967 at the population size 5 after 25 iterations.
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Table 6. Predicted availability of harvesting system at various
population size

Algorithms Population\ 25 55 105 155 555 1055 2155

Iteration

GWO 5 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

15 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

25 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

55 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

155 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

255 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

555 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

PSO 5 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

15 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

25 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

55 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

155 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

255 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

555 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

DA 5 0.999993 0.9999954 0.9999931 0.999708 0.9970455 0.9999924 0.9994391

15 0.9999899 0.9999921 0.999996 0.9997159 0.999992 0.9999962 0.9998805

25 0.9999939 0.999993 0.9992904 0.9999963 0.9999967 0.9998729 0.9999803

55 0.9968549 0.9999933 0.9999928 0.995068 0.9995924 0.9999954 0.9991013

155 0.998734 0.9999963 0.9999957 0.9999925 0.9999941 0.9998868 0.999714

255 0.9999961 0.9999954 0.9998378 0.9999829 0.9999941 0.9999327 0.9999934

555 0.9999945 0.9999964 0.9995389 0.9999958 0.9998739 0.9999932 0.9999949

Table 7. Predicted availability of harvesting system at various
population size

Algorithms Population\ 25 55 105 155 555 1055 2155

Iteration

GOA 5 0.9999967 0.9999963 0.9999965 0.9999967 0.9999967 0.9999964 0.9999967

15 0.9999966 0.9999967 0.9999967 0.9999965 0.9999967 0.9999964 0.9999966

25 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999964

55 0.9999952 0.9999967 0.9999943 0.9999965 0.9999967 0.9999967 0.999995

155 0.9999967 0.9999967 0.9999967 0.9999967 0.9999965 0.9999965 0.9999964

255 0.9999967 0.9999967 0.9999965 0.9999967 0.9999967 0.9999966 0.9999967

555 0.9999967 0.9999966 0.9999966 0.9999967 0.9999967 0.9999967 0.9999942

MFO 5 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

15 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

25 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

55 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

155 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

255 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

555 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

SCA 5 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

15 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

25 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

55 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

155 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

255 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

555 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967 0.9999967

44



ASHISH KUMAR, NAVEEN KUMAR, MONIKA SAINI, AND DEEPAK SINWAR

5. Conclusion

For a particular case, steady state availability of the proposed stochastic model
of harvesting system under concept of partial failure is derived with respect to
failure and repair rates. The impact of variation in failure and repair rates is
observed on steady state availability of harvesting system. It is observed that
steady state availability increases with the increase of repair rates while sharply
declined with the increment in failure rates. At 15% variation in repair rates µ2,
µ3, and µ4 availability shows 0.027%, 0.084% and 0.251% changes respectively.
The availability of wagon is most sensitive. The maximum predicted availability
by dragonfly algorithm is 0.9999961 at population size 255 after 25 iterations while
other algorithms predict the optimal availability is 0.9999967 at population size
5 after 25 iterations. So, it is revealed that GWO, PSO, GOA, MFO and SCA
outperform over dragonfly algorithm in prediction of availability of harvesting
systems. The derived results can be used in designing the harvesting systems as well
as planning the maintenance strategies for better operation of such equipment’s.
The proposed methodology can be used in performance evaluation of other similar
kind of systems. The study is performed under the assumption of constant failure
and repair rates further it may be carried out by considering arbitrarily distributed
parameters.

Acknowledgment. Authors are thankful to the reviewers for giving suggestions
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