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Abstract. The decomposition problem for the control systems with singular
perturbations is considered in the paper. A global invariant manifolds of

slow motions are applied to show that the system under considferation can
be reduced to two subsystems of the lower dimension. A two-link horisontal
manipulator model is considered to illustrate the mathematical results. In
contradictory to the works of other authors, asymptotic expansions are used

for the approximate construction of splitting transformations, and not for
solving initial or boundary value problems.

1. Introduction

Consider the following differential system:

ẋ = f(x, y, t, ε), εẏ = g(x, y, t, ε), (1.1)

where t ∈ R, x ∈ Rm, y ∈ Rn, and ε is a small positive parameter. The sec-
ond equation of the system contains ε at the derivative. That makes the system
singularly perturbed. Systems with singular perturbations are a typical object of
study in control theory (see, for example, [1, 2, 3, 4] and references therein). Such
systems are typical for some classes of robotic systems. The goals of the paper are
to construct a transformation reducing (1.1) to the system

v̇ = φ(v, t, ε), εż = η(v, z, t, ε).

For example, the differential system ẋ = x, εẏ = −y − x2 can be reduced to
the form v̇ = v, εz = −z using transformation x = v, y = z − v2/(1 + 2ε),
and the differential system ẋ = y, εẏ = −y − y2 can be reduced to the form
v̇ = 0, εz = −z − z2 using the transformation x = v − ε ln(1 + z), y = z.

In the case of linear stationary systems, this is a well-known transformation
that brings a linear homogeneous system to a block-diagonal form. A detailed
description and history of the issue are reflected in the book [2]. In the case of
non-stationary systems, this transformation was extended in the works of [5, 6].
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It should be noted that in the paper[6] the case of weak extinction of transient
processes was also considered. This approach was suggested in [5] and it has been
successfully used to solve a number of problems in control theory [7, 8, 9, 10, 11].
However, it is not a straightforward procedure to construct the transformation in
the general case. One of the crucial steps is to find functions that describe slow
and fast integral manifolds. The pioneered work [12] described the construction
of a slow integral manifold as an asymptotic expansion in powers of a small pa-
rameter. This method was later used and well-studied by many authors (see, for
example, the book [13] and references therein). Unfortunately, the construction
of a fast integral manifold function is a much more complicated problem. There
are no methods that work in the general case, and it is more art than science.
Nevertheless, we describe some classes of systems for which these functions can be
effectively constructed.

2. Method of Decomposition

We will use the method of decomposition of the system into two independent
subsystems using the splitting transformation. Consider the differential system

ẋ = y, (2.1)

εΨ(x)ẏ = ξ0(x) + εξ1(x) + [Ξ0(x) + εΞ1(x)]y + εΥ(x, y), (2.2)

where x ∈ Rn, y ∈ Rn, t > 0, elements of vector-function Υ(x, y) are quadratic
forms with respect to coordinates of vector y.

2.1. Main Assumptions. We will consider two types of systems. The first type
is systems with a boundary layer, which main characteristic is a very rapid extinc-
tion of transient processes. The second type is systems with so-called weak energy
dissipation. Transient processes in such systems fade away relatively slowly, but
they make high-frequency oscillations.

2.1.1. Systems with Boundary Layer. The most common version of the basic as-
sumption is as follows. We assume that the roots λi(x) of the equation det |λΨ(x)−
Ξ0(x)| = 0 have the property Re λi(x) ≤ −2γ < 0, where x ∈ Rn. Moreover, the
matrix- and vector-functions Ψ, ξ0, ξ1, Ξ0, Ξ1, the coefficients of all quadratic forms
of Υ(x, y), and their partial derivatives with respect to the arguments x ∈ Rn are
continuous and bounded. Then, any function of the boundary layer type can be
considered as a function describing the transient process, for example, exp(−γt/ε)
or exp(−γt/ε) cos(t/ε).

2.1.2. Systems with Weak Dissipation. In this case, any function of the form
exp(−t) cos(t/ε) can be considered as a typical function describing the transient
process. If matrices Ψ, Ξ0, and Ξ1 are constant, we assume that Ψ and −Ξ1 are
symmetric and positive definite, and Ξ0 is nonsingular and skew-symmetric. If
these matrices depend on x, we assume the fulfillment of similar conditions. For
gyroscopic systems and manipulators, these matrices usually depend on x in a
periodic manner, and it can be assumed that the above conditions are satisfied for
all x.
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2.2. Slow Invariant Manifold. When the assumptions for the corresponding
type of system hold, (2.1), (2.2) has an attractive global slow invariant manifold

y = h(x, ε) = h0(x) + εh1(x) + . . . .

The functions hi can be derived from the invariance equation

εΨ
∂h

∂x
h = ξ + Ξh+ εΥ(x, h),

where Ξ(x, ε) = Ξ0(x) + εΞ1(x), ξ(x, ε) = ξ0(x) + εξ1(x). The formulae for the
coefficients of the asymptotic expansions of slow invariant manifold h = h(x, ε)
take the form h0 = −Ξ−1

0 ξ0, h1 = Ξ−1
0

[
Ψ∂h0

∂x h0 − ξ1 − Ξ1h0 −Υ(x, h0)
]
.

2.3. Fast Invariant Manifold. In this case the invariance equation for the fast
invariant manifold H = H(v, z, ε) takes the form [5, 7]

ε
∂H

∂v
h(v, ε) +

∂H

∂z
Ψ−1(v + εH)[Ξ(v + εH, ε)

−ε∂h
∂x

(v + εH, ε)]z = z + h(v + εH, ε)− h(v, ε).

Setting ε = 0, we obtain
∂H0

∂z
Ψ−1(v)Ξ0(v)z = z. It is possible to represent

H(v, z, ε) in the form H(v, z, ε) = D(v, z, ε)z [5]. This implies H0(v, z) = D0(v)z,
where the matrix D0(v) satisfies the equation D0(v)Ψ

−1(v)Ξ0(v) = I, and, there-
fore, H0(v, z) = Ξ−1

0 (v)Ψ(v)z.

2.4. Representation of Solutions. Let (x(t), y(t)) be a solution to (2.1), (2.2)
with an initial condition x(t0) = x0, y(t0) = y0. There exists a solution (v(t), z(t))
of

v̇ = h(v, ε), εΨ(v + εH(v, z, ε)) ż = Z(v, z, ε),

with the initial condition v(t0) = v0, z(t0) = z0, such that [5]

x(t) = v(t) + εH(v(t), z(t), ε), y(t) = z(t) + h(x(t), t, ε). (2.3)

This means that the solution x = x(t, ε), y = y(t, ε) of the original system (2.1),
(2.2) that satisfied the initial condition x(0, ε) = x0, y(t0, ε) = y0 can be repre-
sented as

x(t, ε) = v(t, ε) + εφ1(t, ε),
y(t, ε) = ȳ(t, ε) + φ2(t, ε).

(2.4)

From the main assumption it follows the existence of number M > 1 such that
∥z(t, ε)∥ ≤M exp(−γt/ε)∥z0∥, t ≥ 0, i.e.,

∥φi∥ ≤Mi exp(−γt/ε)∥z0∥, t ≥ 0, i− 1, 2, (2.5)

for the systems with boundary layers and ∥z(t, ε)∥ ≤M exp(−γt)∥z0∥, t ≥ 0, i.e.,

∥φi∥ ≤Mi exp(−γt)∥z0∥, t ≥ 0, i− 1, 2, (2.6)

for the systems with weak dissipation. Thus, this solution is represented as a sum
of solution which lies on the slow invariant manifold, i.e.

x = x(t, ε) = v(t, ε), ȳ(t, ε) = h(v(t, ε), ε),
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and exponentially decreasing functions

εφ1(t, ε) = εH(v(t, ε), z(t, ε), ε),

φ2(t, ε) = z(t, ε) + h(v(t, ε)

+εH (v(t, ε), z(t, ε), ε)− h (v(t, ε), ε) .

Neglecting terms of order o(ε), we use the transformation

x = v + εH0(v, z), y = z + h0(x) + εh1(x) (2.7)

to reduce (2.1) to a nonlinear block-triangular form:

v̇ = h0(v) + εh1(v) +O(ε2),

εΨ(v)ż =

[
Ξ0(v) + ε

(
Ξ1(v) +

∂Ξ0

∂x
(v)Ξ−1

0 (v)Ψ(v)z

−Ψ(v)
∂h0
∂x

(v)

)
+O(ε2)

]
z.

2.5. Lyapunov Reduction Principle. The representation (2.4) and inequali-
ties (2.5), (2.6) immediately imply the validity of the Lyapunov Reduction Princi-
ple. It means that any solution which lies on the slow invariant manifold is stable
(asymptotically stable, unstable), if and only if the corresponding solution of

v̇ = h(v, ε),

is stable (asymptotically stable, unstable). The Lyapunov Reduction Principle can
be extended to systems with a manifold of equilibrium states.

3. Two-Link Robotic Manipulator Model with Symmetric Manifolds
of Steady States

Let us consider the model of horizontal robotic manipulator [15]

ε(α+ β + 2 cos q2)q̈1 + ε(β + cos q2)q̈2

−ε(2q̇1q̇2 + q̇22) sin q2 = u1,

ε(β + cos q2)q̈1 + εβq̈2 + εq̇21 sin q2 = u2.

It should be noted that in the absence of control, the considered differential
system has a symmetric manifold of steady states q1 = const, q2 = const, q̇1 =
0, q̇2 = 0. Therefore, it seems natural to consider the problem of reaching one of
the states on this manifold.

Let the goal of control is to attach some given position q1 = q̃1, q2 = q̃2, q̇1 =
0, q̇2 = 0. Let(

x1
x2

)
=

(
q1 − q̃1
q2 − q̃2

)
,

(
y1
y2

)
=

(
q̇1
q̇2

)
, u =

(
u1
u2

)
.

then

Ψ(x) =

(
α+ β + 2 cos(x2 + q̃2) β + cos(x2 + q̃2)
β + cos(x2 + q̃2) β

)
,

Υ(x, y) =

(
−(2y1y2 + y22) sin(x2 + q̃2)

y21 sin(x2 + q̃2)

)
.

We will consider two cases.
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3.1. Rapid Control. Setting the control of form u1 = −γ1x1 − κ1y1, u2 =
−γ2x2−κ2y2, with positive γ1, γ2, κ1, κ2, we obtain the following representations

ξ0 =

(
−γ1x1
−γ2x2

)
Ξ0 =

(
−κ1 0
0 −κ2

)
,

ξ1 = 0, Ξ1 = 0.

3.2. Splitting Transformation. In the case under consideration the character-
istic equation takes the following form[

αβ − cos2(x2 + q̃2)
]
λ2 + {κ1β + κ2 [α+ β + 2 cos(x2 + q̃2)]}λ+ κ1κ2 = 0.

Taking into account that αβ > 1 [15], it is easy to see that all the coefficients
of this equation are positive, which immediately entails the fulfillment of the con-
dition on the roots of this equation.

The zero-order approximation of slow invariant manifold takes the form

h0(x1, x2) =

(
− γ1

κ1
x1

− γ2

κ2
x2

)
.

The main term of the fast manifold takes the form

H0(v, z) = Ξ−1
0 (v)Ψ(v)z

=

(
− 1

κ1
(α+ β + 2 cos v2) − 1

κ1
(β + cos v2)

− 1
κ2
(β + cos v2) − 1

κ2
β

)(
z1
z2

)
.

Using the splitting transformation (2.7) we obtain the independent slow sub-
system

v̇ = h0(v) + εh1(v) +O(ε2),

and fast subsystem

εΨ(v)ż = [Ξ0(v)− εΨ(v)
∂h0
∂x

)(v) +O(ε2)]z,

since Ξ0 is a constant matrix, with

Ξ0(v)− εΨ(v)
∂h0
∂x

(v) =

(
−κ1 0
0 −κ2

)
+ε

( γ1

κ1
(α+ β + 2 cos v2)

γ2

κ2
(β + cos v2)

γ1

κ1
(β + cos v2)

γ2

κ2
β

)
.

Strictly speaking, in the case of quick control, there is no need to calculate the first-
order terms. The motion on a slow invariant manifold is described by a differential
system

v̇ =

[(
− γ1

κ1
0

0 − γ2

κ2

)
+O(ε)

]
v,

and transient processes are described by a differential system

εΨ(v)ż =

[(
−κ1 0
0 −κ2

)
+O(ε)

]
z.

It is clear that the zero solution is exponentially stable, and the transients decay
almost instantly. In conclusion, we present the reduced equations for a system
with weak decay of transient processes.

23



6 VLADIMIR SOBOLEV

3.3. Soft Control. Setting the control of form u1 = −γ1x1 − εκ1y1 + κy2, u2 =
−γ2x2 − εκ2y2 − κy1, with positive γ1, γ2, κ, κ1, κ2, we obtain the following repre-
sentations

ξ0 =

(
−γ1x1
−γ2x2

)
, Ξ0 =

(
0 κ
−κ 0

)
,

Ξ1 =

(
−κ1 0
0 −κ2

)
, ξ1 = 0.

The zero-order approximation of slow invariant manifold takes the form

h0(x1, x2) =

(
−γ2

κ x2
γ1

κ x1

)
.

To obtain the first order approximation it is necessary to use the representation

h1 = Ξ−1
0

[
Ψ
∂h0
∂x

h0 − Ξ1h0 −Υ(x, h0)

]
.

The flow on the slow invariant manifold is described by the differential system

v̇ =

[(
0 −γ2

κ
γ1

κ 0

)

+
ε

κ2

(
−γ1κ2 + γ1γ2ψ2/κ γ1γ2ψ2/κ

−γ1γ2ψ1/κ −γ2κ1 − γ1γ2ψ2/κ

)

+O(ε2) + εO(∥v∥)

]
v.

Here ψi, i = 1, 2, 3 are elements of Ψ(0), i.e.,

ψ1 = α+ β + 2 cos(q̃2), ψ2 = β + cos(q̃2), ψ3 = β.

By virtue of the Lyapunov’s Indirect Method, this subsystem is asymptotically
stable. Thus, we can conclude that the control goal has been achieved taking into
account that the solutions of the subsystem which describes the transient processes,
exponentially fade away. To verify that the transient processes decay exponentially
we can use a well-known Ważevski inequality. Recall that any solution of the linear
homogeneous system

dx

dt
= A(t)x

with continuous on (0,+∞) matrix A satisfies the Ważevski inequality

∥x(0)∥e(
∫ t
0
λ(τ)dτ) ≤ ∥x(t)∥ ≤ ∥x(0)∥e(

∫ t
0
Λ(τ)dτ).

Here ∥·∥ is the Euclidean norm, λ(t) and Λ(t) are smallest and greatest eigenvalues
of matrix

1

2

(
A(t) +AT (t)

)
,

where AT (t) is a transpose matrix, see [16].
Transient processes are described by a differential system

εΨ(v)ż =

[
Ξ0 − εΨ(v)

∂h0
∂x

+ εΞ1 +O(ε2)

]
z.
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Here

Ψ(v)
∂h0
∂x

(v) =

(
ψ1 ψ2

ψ2 ψ3

)(
0 −γ2

κ
γ1

κ 0

)
,

where ψi(v), (i = 1, 2, 3) are elements of Ψ(v), i.e., ψ1(v) = α + β + 2 cos(v2 +
q̃2), ψ2(v) = β+cos(v2 + q̃2), ψ3 = β. Thus, setting γ1 = γ2 = γ and κ2 = κ1, we
obtain the following equation for z

εΨ(v)ż =

[(
0 −γ

κ
γ
κ 0

)

+ε

(
−κ1 − γψ2(v)/κ γψ1(v)/κ

−γψ3/κ −κ1 + γψ2(v)/κ

)

+O(ε2) + εO(∥z∥)

]
z.

To analyse the last system it is convenient to introduce a new vector variable z1
by the formula

z1 = Φ(v)z,

where Φ(v) is a unique positive definite square root of Ψ(v), i.e., Φ2 = Ψ. Then,

εż1 = [A0(v) + εA1(v) +O(ε2) + εO(∥z1∥)]z1.
Here

A0(v) = Φ(v)−1

(
0 −γ

κ
γ
κ 0

)
Φ(v)−1.

Note that A0(v) is a skew-symmetric matrix and, therefore, A0(v) +AT
0 (v) = 0.

The matrix A1(v) may be represented in the form

A1(v) = −κ1Ψ−1(v) +
γ

κ

(
−ψ2(v) ψ1(v)
−ψ3 ψ2(v)

)
+
γ

2κ

∂Ψ(v)

∂v
Ψ−1(v)

(
0 −1
1 0

)
v.

Since Ψ−1(v) is a symmetric positive definite matrix , then with a suitable
choice of parameters κ1 and κ (or γ), the largest eigenvalue of the matrix

1

2

(
A1(v) +AT

1 (v)
)

will be negative. By virtue of the Ważevski equality, this means that transient
processes exponentially fade away and the control goal can be considered achieved.

4. Conclusion

In this paper, we investigated the decomposition problem for a special class of
systems of differential equations with singular perturbations. Unlike most of the
available literature on the subject, we considered not only systems with a boundary
layer, but also systems with weak energy dissipation, a characteristic feature of
which is a relatively slow decay of transient processes. The proposed approach
tested here shows that the use of the decomposition method greatly simplifies the
analysis of models of manipulation robots.
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