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Abstract. Variational problems for composite two-dimensional cracked bod-
ies with a system of joined rigid inclusions are considered. The deformation

of the body’s matrix is described using the classical elastic constitutive equa-
tions. Nonlinearity of the considered problem is caused by an inequality-type
boundary condition that describes mutual nonpenetration of opposite crack
faces. We investigate two types of equilibrium models that correspond to dif-

ferent types of rigid inclusions. For the first model, we suppose that the body
has a volume rigid inclusion which is described by a corresponding domain,
and the second one describes the body containing a set of fastened thin rigid
inclusions, each of which corresponds to a curve. The crack is defined by

the same curve in both models. An optimal control problem is formulated
in the framework of the both model, such that a control is specified by the
number of thin rigid thin rectilinear segments and by the limiting case which
as it turned out, fits to the first model. A quality functional is defined by an

arbitrary continuous functional in a suitable Sobolev space. The solvability
of the optimal control problem is proved.

1. Introduction

Composite materials have emerged as the materials of choice for their attractive
mechanical, thermal, environmental properties. Modern capabilities of engineer-
ing approaches allow us to simulate the possible behavior of composites based on
appropriate mathematical models. Various problems concerned with deformations
of composite bodies with inhomogeneities give rise to numerous new approaches
and solutions in the field of applied mathematics. Difficulties in studying prob-
lems of this type can be associated with the non-smoothness of domains and the
complexity of taking into account the conjugation of various materials.

It is well known that the presence of inclusions or cracks in loaded solids can
cause significant stress concentrations. This, in turn, can lead to generation of
delaminations and cracks near inclusions. Another cause of cracking may be the
peculiarities of temperature regimes of an operating environment. Various models
of composite solids with both rigid inclusions and cracks, are under active studying
[1–9].
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In this work, we follow the well-known approach that uses inequality-type
boundary conditions on the crack faces [10–17]. This circumstance determines
the nonlinearity of boundary conditions and leads to variational formulations. As
well as for the well-known Signorini problems, the problem statements exclude a
priori knowledge of the contact zones of mechanical interaction of opposite crack
faces. The generality of the variational calculus gives us the opportunity to pro-
vide successful formulations and investigations of various problems for composite
solids with elastic or rigid inclusions, see, for example [18–32]. Optimal control
problems concerning geometrical properties of cracks or rigid inclusions in elastic
bodies are investigated in [5, 19, 24] and many other papers.

In fact, in this paper, we formulate a new optimal control problem, which,
from a practical point of view, has a quite clear interpretation. In particular,
it deals with the issues of strengthening the body with rigid elements. As well
as in the paper [32], we consider two different types of two-dimensional models
describing the equilibrium of an elastic body with a rigid inclusion. According to
the paper [20], we will adopt the following characterizations for inclusions: the
term ”thin inclusion” is used when the dimension of inclusion’s set is one less than
the matrix’s dimension, while the term ”volume inclusion” is used when these
dimensions coincide. For the first type of an equilibrium model, we suppose that
the body has a volume inclusion with an initially-debonded patch on its interfacial
surface. So, we have a initial delamination crack lying on a part of the volume
inclusion boundary. The second type of model concerns a system of joined thin
rigid inclusions, which specified by a union of a finite number of straight line
segments and a curve joining these segments. It should be noted that both types
of considered inclusions are connected in a clear geometrical sense and cracks are
given by the same curve in both models. We formulate an optimal control problem,
where a control is specified by the number of rectilinear segments that fit thin rigid
inclusions and by the limiting case of infinite segments which corresponds to the
first model. A quality functional is defined by an arbitrary continuous functional
in a suitable Sobolev space. The solvability of the optimal control problem is
proved.

2. Equilibrium problem for an elastic body with a volume rigid
inclusion

Let us formulate an equilibrium problem for an elastic body containing a volume
rigid inclusion. We consider the case of the partly delaminated inclusion. In this
case we have an interfacial crack passing along the inclusion boundary. In addition,
we suppose that the rest of the crack can be situated inside the elastic medium.
Consider a bounded domain Ω ⊂ R2 with the boundary Γ ∈ C0,1. We consider
a strictly inner subdomain ω of Ω ( ω ⊂ Ω) having the shape of a curvilinear
rectangle of width a:

ω = {(x1, x2) | 0 < x1 < 1, g(x1) < x2 < g(x1) + a}, a > 0,

where g ∈ C0,1(0, 2). The crack in the body is defined by the unclosed Lipschitz
curve

γ = {(x1, x2) | 0 < x1 < 1 + λ, x2 = g(x1) + a}, γ̄ ⊂ Ω, −1 < λ < 1,
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which lies on the part of the boundary of ω. We assume that the domain Ω
can be split into two subdomains Ω1 and Ω2 with Lipschitz boundaries such that
γ ⊂ ∂Ω1∩∂Ω2, meas(∂Ωi∩Γ) > 0, i = 1, 2. This condition guarantees the validity
of the Korn inequality in the non-Lipschitz domain Ωγ = Ω\γ̄. Depending on the
direction of the normal ν = (ν1, ν2) to γ we will speak about a positive face γ+ or
a negative face γ− of the curve γ.

The domain ω fits a volume rigid inclusion, while the domain Ωγ\ω corresponds
to an elastic part of the body. Denote by W = (w1, w2) the displacement vector.

Figure 1. Geometry of the cracked body with a volume rigid inclusion.

Introduce the Sobolev spaces

H1,0(Ωγ) = {v ∈ H1(Ωγ) | v = 0 on Γ}.

Introduce the tensors describing the deformation of the body

εij(W ) =
1

2
(wi,j + wj,i), i, j = 1, 2, (wi,j =

∂wi

∂xj
),

σij(W ) = cijklεij(W ), i, j = 1, 2,

where cijkl is the given elasticity tensor, assumed to be symmetric and positive
definite:

cijkl = cklij = cjikl, i, j, k, l = 1, 2, cijkl = const.,

cijklξijξkl ≥ c0|ξ|2, ∀ξ, ξij = ξji, i, j = 1, 2, c0 = const., c0 > 0.

Due to the presence of the rigid inclusion in the body, the displacement field
satisfies a special kind of relations on the corresponding domain ω. The linear
space of infinitesimal rigid displacements R(ω) is defined as follows [33]:

R(ω) = {ρ = (ρ1, ρ2) | ρ(x) = b(x2,−x1) + (c1, c2); b, c1, c2 ∈ R, x ∈ ω}.

The condition of mutual nonpenetration of opposite faces of the crack is given by
[10, 33]

[W ]ν ≥ 0 on γ,

where [W ] = W |γ+ −W |γ− is the jump of W on γ with two opposite crack faces
γ+ and γ−.
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In order to provide a variational formulation describing the equilibrium state
for the body with the rigid inclusion ω, and the crack γ, we introduce the energy
functional

Π(W ) =
1

2

∫
Ωγ

σij(W )εij(W )−
∫
Ωγ

FW,

where the vector F = (f1, f2) ∈ L2(Ωγ)
2 describes the external forces acting on

the body, FW = fiwi. Consider the minimization problem:

find Uω ∈ K such that Π(Uω) = inf
W∈K

Π(W ), (2.1)

where

K = {W ∈ H1,0(Ωγ)
2 | [W ]ν ≥ 0 on γ; W |ω ∈ R(ω)}.

The problem (2.1) is known to have a unique solution Uω ∈ K, which satisfies the
variational inequality [32, 33]∫

Ωγ\ω

σij(Uω)εij(W − Uω) ≥
∫
Ωγ

F (W − Uω) ∀W ∈ K. (2.2)

We note that because of the structure of the displacement in the domain ω we
have εij(W ) = 0, i, j = 1, 2, for all W ∈ K. Therefore, the inequality (2.2) can be
rewritten as

Uω ∈ K,

∫
Ωγ

σij(Uω)εij(W − Uω) ≥
∫
Ωγ

F (W − Uω) ∀W ∈ K.

3. Family of equilibrium problems for an elastic bodies with a thin
rigid inclusion

Along with the equilibrium problem (2.1), we will consider the following equi-
librium problems for a special thin rigid inclusion [32]. We start with a description
of the geometrical properties of the inclusions’ shape. We suppose that Qn is a
union of line segments and a special Lipschitzian curve L, so that

Qn = (
k=2n∪
k=1

lnk ) ∪ L, n = 1, 2, ... ,

where 2n is a quantity of the following similar line segments

lnk = {(x1, x2) |x1 = k/2n, g(x1) < x2 < g(x1) + a}, k = 1, 2, ...2n,

and L is the curve

L = {(x1, x2) | 0 ≤ x1 ≤ 1, x2 = ψ(x1)}

defined by the function ψ ∈ C0,1[0, 1] satisfying

g(x1) ≤ ψ(x1) < g(x1) + a, 0 ≤ x1 ≤ 1.

Next we fix n ∈ N and assume that the set Qn fits rigid inclusion, so that the
corresponding space of infinitesimal rigid displacements has the form

R(Qn) = {ρ = (ρ1, ρ2) | ρ(x) = b(x2,−x1) + (c1, c2); b, c1, c2 ∈ R, x ∈ Qn}.
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Figure 2. Geometry of the cracked body with a system of joined
thin inclusions (example of Q3).

A variational statement of the equilibrium problem for an elastic body with a
system of joined thin rigid inclusions and a crack has the following form

find Un ∈ Kn such that Π(Un,Ω) = inf
W∈Kn

Π(W,Ω), (3.1)

Kn = {W ∈ H1,0(Ωγ)
2 | [W ]ν ≥ 0 on γ; W |Qn

∈ R(Qn)}.
The existence and uniqueness of solution Un of problem (3.1) can be proven as
in the case for one delaminated inclusion, see [4]. The corresponding variational
inequality takes the form

Un ∈ Kn,

∫
Ωγ

σij(Un)εij(W − Un) ≥
∫
Ωγ

F (W − Un) ∀W ∈ Kn.

4. Optimal control problem

It is known that the sequence of solutions {Un} converge to Uω strongly in
H1,0(Ωγ)

2 as n tends to ∞ [32]. Therefore, for an arbitrary continuous functional
G : H(Ω) → IR we can define a cost functional J : N ∪ ∞ → IR of an optimal
control problem with the use of the following equalities JG(n) = G(U(n)), n ∈ N
where U(n) is the solution of the problem (2.1), JG(∞) = G(Uω).

As examples of such functionals having important physical sense, we can pro-
vide the functional G1(W ) = ∥W −W0∥H(Ω) characterizing the deviation of the
displacement vector from a given function W0. Under assumptions that 0 < λ < 1
and that the part

γr = {(x1, x2) | 1 < x1 < 1 + λ, x2 = g(x1) + a}

of the crack’s curve γ lying inside the elastic medium is a straight line, i.e. g(x1) =
c, c = const, the second example could be given by the first derivative of the
energy functional with respect to the crack length. It is well-known that Griffith
rupture criterion relies on values of the first derivative of the energy functional
with respect to the crack length [34, 35]. It is known (see [33]) that the functional
of the first derivative of the energy functional with respect to the crack length can
be expressed as
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G(W ) =

∫
Ω0

{1

2
θ,1 σij(W )εij(W ) − σij(W )wi,1θ,j

}
−

∫
Ω0

(θfi),1 wi,1. (4.1)

In the formulae (4.1) the value of the derivative of the energy functional is in-
dependent of the choice of function θ satisfying supp(θ) ⊂ O1 and θ = 1 in O2.
Here O2 and O1 are some small neighbourhoods of the point (1 + λ, a+ c) ∈ R2,
O2 ⊂ O1 ⊂ Ω, O1 ∩ ω̄ = ∅. We can refer to paper [36] for expanded explanations
related to the first derivative of the energy functional for a two-dimensional body
with a rigid inclusion and a crack.

Consider the optimal control problem:

Find n∗ ∈ N ∪∞ such that JG(n
∗) = sup

n∈N∪∞
JG(n). (4.2)

This means that we want to find the optimal inclusion’s amount which provides
the maximal value for the cost functional. The following is our main existence
result.

Theorem 4.1. There exists a solution of the optimal control problem (4.2).

Proof. We will distinguish the following two cases:
1. For some m ∈ N

J(m) ≥ J(n), ∀n ∈ N;

2. For every m ∈ N there exists a number n ∈ N such that n > m and

J(m) < J(n).

Obviously, for the first case we have a solution of (4.2) given by the value n∗ = m.
For the second case we can construct a subsequence {nk} such that

J(n1) < J(n2) < ... < J(nk) < ... ,

where J(nk) = G(U(nk)). Since Unk
→ Uω converges to Uω strongly in H1,0(Ωγ)

2

as k → ∞, we have for every fixed number m there exists nm ∈ N, such that for
all k ≥ nm hold J(m) < J(nk). Therefore,

J(m) ≤ lim
k→∞

J(nk) = lim
k→∞

G(U(nk)) = G(Uω).

In this case a solution of (4.2) is given by n∗ = ∞. The theorem is proved. �
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