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Abstract. A non-stationary isentropic filtration of gases in porous media is
considered. Thermodynamics in terms of contact and symplectic geometries

is briefly discussed. Algebra of symmetries for the PDE system is found, and
the classification of media with respect to admissible symmetries is given.
Solution for one class of media is found and the phase transitions for this

solution are studied.

1. Introduction

In this paper we consider an isentropic filtration process of gases in a porous
medium with constant porosity. Unlike [4], where steady filtration of gases was
studied, non-stationary processes are considered here.

The system of differential equations describing such processes consists of the
following equations:

• the Darcy law
u = −µ(v, T )gradp, (1.1)

where the vector u(t, x, y, z) = (u1, u2, u3) is the gas volumetric flow,
p(t, x, y, z) is the pressure, T (t, x, y, z) is the temperature, v(t, x, y, z) is
the specific volume of the gas, the function µ(v, T ) depends on the gas
viscosity and the medium permeability;

• the mass conservation law

q vt + u · gradv = vdivu, (1.2)

where constant q is the medium porosity;
• the energy conservation law, which in the case of isentropic process, has
the form

st + u · grads = 0, (1.3)

where s(t, x, y, z) is the specific entropy.

See also [1] for details.
The paper is organized as follows. Section 2 briefly reminds the thermodynam-

ical principles in terms of contact and symplectic geometries. In Section 3, we find
point symmetries of the isentropic filtration PDE system. The classification of
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porous media with respect to admissible symmetries groups is given. In Section 4,
we find a solution that is invariant with respect to a certain symmetries subgroup.
This leads to an ODE system, which can be solved explicitly. We find solution for
the ideal gas model and a certain class of media. Then the ideal gas solution is
used to construct a solution for real gases described by van der Waals equations.
Finally, possible phase transitions are studied.

Many of the computations in this paper were done in Maple with the Differential
Geometry package by I. Anderson and his team. Maple files with the most impor-
tant computations in this paper can be found on the web-site http://d-omega.org.

2. Thermodynamics

Here we briefly recall the thermodynamical principles expressed in terms of
contact and symplectic geometries that we need for the further discussion (for
details see [3], [4], [5]).

Consider a 5-dimensional contact manifold R5 equipped with the coordinates
(p, T, ϵ, v, s) and the contact 1-form

θ = ds− T−1dϵ− T−1pdv,

here ϵ is the specific energy, and v = ρ−1 is the specific volume.
The thermodynamical states are a 2-dimensional Legendrian manifold L, i. e.

such surface L that the first law of thermodynamics θ
∣∣
L
= 0 holds.

Using the projection π : R5 → R4, π : (p, T, ϵ, v, s) 7−→ (p, T, ϵ, v), eliminate
the specific entropy s from the description of the thermodynamic states. The
restriction of this projection on the state surface L leads to a Lagrangian manifold
L̄ in the 4-dimensional symplectic space R4 equipped with the structure form

Ω = −dθ = T−1dp ∧ dv − T−2dT ∧ (dϵ+ pdv).

Therefore, the thermodynamic states can be considered as the Lagrangian sub-
manifolds in the symplectic space (R4,Ω), and it can be defined by the equations{

f(p, T, ϵ, v) = 0,

g(p, T, ϵ, v) = 0
(2.1)

if

[f, g] = 0 on L̄, (2.2)

where [f, g] is the Poisson bracket with respect to the symplectic form Ω.
In order to find the state manifolds L̄ for real gases, we consider the following

two equations: {
f(p, T, ϵ, v) = p−A(v, T ),

g(p, T, ϵ, v) = ϵ−B(v, T ).

The first equation is called thermic equation of state, and the second one is
called caloric equation of state. Then the compatibility condition (2.2) for them
has the form

(T−2B)v = (T−1A)T .

Moreover, the following theorem is valid.
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Theorem 2.1. Thermodynamical states of real gases are defined by Massieu-
Planck potential function ϕ(v, T ) and have the following form:

p = RTϕv, ϵ = RT 2ϕT , s = R(ϕ+ TϕT ), (2.3)

where function ϕ has the following expression in terms of virial coefficients Ak,

ϕ(v, T ) =
n

2
lnT + ln v−A1(T )v

−1− 1

2
A2(T )v

−2− . . .− 1

k
Ak(T )v

−k − . . . . (2.4)

The domain of applicable states on the plane (v, T ) is given by inequalities

ϕvv < 0, TϕTT + 2ϕT > 0. (2.5)

Phase transitions occur near the curve

ϕvv = 0.

Thus, by the system E of differential equations describing the isentropic fil-
tration process of gases we mean the differential equations (1.1)—(1.3) and the
equations of state (2.3).

3. Symmetry Lie algebra

By a symmetry of the system E we mean a point symmetry, i.e. a vector field
X on the 0-jet space such that its second prolongation X(2) is tangent to the
submanifold E(2) ⊂ J2(4, 7).

Using the standard techniques of the symmetries computations we obtain (see
the Maple file) the following result.

Theorem 3.1. The Lie algebra g of point symmetries of the system E of dif-
ferential equations describing the isentropic filtration process of real gases in an
arbitrary porous medium is generated by the vector fields

X1 = ∂x, X5 = y ∂x − x ∂y,

X2 = ∂y, X6 = z ∂x − x ∂z,

X3 = ∂z, X7 = z ∂y − y ∂z,

X4 = ∂t, X8 = 2t ∂t + x ∂x + y ∂y + z ∂z.

(3.1)

So, transformations corresponding to elements of the algebra g are compositions
of the translations, the rotations SO(3) and the scale transformation X8.

Consider the case when the gas satisfies ideal gas model, in other words, the
thermodynamic states are given by the potential function

ϕ(v, T ) =
n

2
lnT + ln v.

Denote the corresponding system of differential equations Eid.
Depending on the properties of the gas and the rigid medium, we use different

functions µ(v, T ) and, accordingly, the algebra of point symmetries has different
additional symmetries.
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µ(v, T ) = f(v)Tα X9 = (1 + α) t ∂t − T ∂T

µ(v, T ) = f(T )vα X9 = (1− α) t ∂t + v ∂v

µ(v, T ) = αvβT γ
X9 = t ∂t −

1

β + γ
(v ∂v + T ∂T )

X10 = (1 + γ)v ∂v + (1− β)T ∂T

µ(v, T ) = α

(
T

v

)β

X9 = (1 + β) t ∂t + v ∂v

µ(v, T ) = f(vT )v3−q X9 = (q − 1) t ∂t + v ∂v − T ∂T

Summarizing, we get the following result.

Theorem 3.2. The Lie algebra gid of point symmetries of the system Eid of differ-
ential equations describing the isentropic filtration of ideal gases is generated by the
vector fields X1, X2, . . . , X8 and by one or two additional symmetries which form
depends on the particular properties of a medium, i.e. depends on the function
µ(v, T ).

4. Invariant solutions

In this section we find some invariant solutions of the system E .
In order to find these solutions consider the subalgebra

g4 = so(3)⊕ ⟨X8⟩ ⊂ g.

The corresponding Lie group has three-dimensional orbits and the invariant of its
action has the form

r2 =
x2 + y2 + z2

t
.

We find a solution that is invariant with respect to the action of this group.

4.1. Ideal gas solution. First, we consider the case of ideal gas. Then reduction
of system Eid with respect to the action of g4 leads to the system of ODEs
(
2Rµ(v, T ) (vrT − vTr)− rv2

)
(2vrT + nvTr) = 0,

2Rµ(v, T ) (rv (vrrT − vTrr) + (3rvr − 2v) (vrT − vTr))+

rv (2Rµr(v, T ) (vrT − vTr) + qrvvr) = 0.

Note that the second factor in the first equation corresponds the case when the
entropy s is constant.

The proof of the following theorem can be found in the Maple file.
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Theorem 4.1. The g4-invariant solution of the system Eid for the case of ideal
gas depends on the properties of a porous medium and has the form

v(r) = RC1r
3

1−q ,

p(r) = −1

2

∫
r

µ(v, T )
dr,

T (r) =
p(r)v(r)

R
,

where r =

√
x2 + y2 + z2

t
, t > 0 and C ∈ R.

Consider some cases of the function µ(v, T ) from the table above and corre-
sponding expression for the pressure.

(1) µ(v, T ) = α

(
T

v

)β

, β ̸= −1, p(r) = R

(
(1 + β)(C2 − r2)

4αR

) 1
1+β

(2) µ(v, T ) = α
v

T
, p(r) = C2 exp

(
− r2

4αR

)
(3) µ(v, T ) = αvβT γ , p(r) =

(
C2 +

C−β−γ
1 (1 + γ)(1− q)

2αRβ(3γ + 3β + 2q − 2)
r

3γ+3β+2q−2
q−1

) 1
1+γ

(4) µ(v, T ) = αvβT−1, p(r) = C2 exp

(
C1−β

1 (1− q)

2αRβ(3β + 2q − 5)
r

3β+2q−5
q−1

)
Example. Let us write a solution for a certain gas and medium for the second

case, where µ(v, T ) = α v
T . This gives us understanding when the solution is

applicable and has physical sense.
For example, we consider methane as the gas, and the values of parameters are

the following q = 0, 55, α ≈ 5 · 10−4, C1 ≈ 2, 7 · 10−3, C2 ≈ 3 · 105.
Instead of a domain in terms of the invariant r, we present it as a region on the

plane of distance d =
√

x2 + y2 + z2 (vertical axis) and time t (horizontal axis).
In the Figure 1 the gray-filled region shows where the gas density is sufficiently

small to fit into the ideal gas model. Since the maximum pressure equals C2, it
can be set small enough. But the region with negligibly small pressure should
also be excluded as physically impossible. The Figure 2 depicts this region. The
similar restrictions are imposed on the gas temperature. The grey-filled region
in the Figure 3 is where the solution for temperature is in certain bounds, for
example between the melting and kindling points.

The intersection of all three regions is presented in the Figure 4.

4.2. van der Waals gas. In this section we find an asymptotic solution of the
system E for a real gas model. We use asymptotic in terms of virial coefficients
and, for example, consider the model of van der Waals gas.

Recall that thermodynamic state of a van der Waals is given by the Massieu-
Planck potential of the form:

ϕ =
n

2
lnT + ln(v − b) +

a

RvT
=

n

2
lnT + ln v − b

v
− a

RvT
+ o2,
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Figure 1

Figure 2

Figure 3

Figure 4

where a, b are the gas parameters, and o2 is the terms of the second order of a and
b. Denote by Ew the corresponding system of differential equations.
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Note the value of function ϕ, if a = b = 0, corresponds to the ideal gas potential,
so it is a zero order approximation for real gases.

Further we look for an asymptotic solution for Ew in the form

T = T0 + aT1 + bT2 + o2,

p = p0 + ap1 + bp2 + o2,

v = v0 + av1 + bv2 + o2,

s = s0 + as1 + bs2 + o2,

u = u0 + au1 + bu2 + o2,

(4.1)

where functions T0, p0, v0, s0, and u0 are the solution of the system Eid, and T1,
T2, p1, . . . , u2 are the first-order corrections.

For this we write function µ in the form

µ(v, T ) = µ(v0, T0) + µv(v0, T0) (av1 + bv2) + µT (v0, T0) (aT1 + bT2) + o2

and substitute this expression and (4.1) into the system E . Collecting coefficients
for a and b we get the following system

u1 + µ(v0, T0)gradp1 + gradp0 (v1µv(v0, T0) + T1µT (v0, T0)) = 0,

u2 + µ(v0, T0)gradp2 + gradp0 (v2µv(v0, T0) + T2µT (v0, T0)) = 0,

q(v1)t + u1 · gradv0 + u0 · gradv1 − v0divu1 − v1divu0 = 0,

q(v2)t + u2 · gradv0 + u0 · gradv2 − v0divu2 − v2divu0 = 0,

(s1)t + u0 · grads1 + u1 · grads0 = 0,

(s2)t + u0 · grads2 + u2 · grads0 = 0.

So in order to find the first order corrections, we need to solve the linear system
of ODEs on the functions T1, T2, p1 . . . , u2.

For example, consider the invariant solution for the function

µ(v, T ) = α
v

T
.

As in the previous section, we are looking for a g4-invariant solution, i.e. the
first-order corrections T1, T2, p1 . . . , u2 also depend on the invariant r.

Substituting the expression for the function µ(v, T ) and the solution of the
system Eid into the our system we get a linear system of ODEs that can be found
in the Maple file. Solution of this system delivers the first-order corrections for
volume and temperature

v1(r) = 0, v2(r) = 0,

T1(r) =

(
6

C1R2(q − 1)

∫
exp

(
r2

4αR

)
r

q−7
1−q dr + C3

)
r

3
1−q exp

(
− r2

4αR

)
,

T2(r) =

(
C2(q − 1)r2

2(2q + 1)αR2
− C2

R
+ C4r

3
1−q

)
exp

(
− r2

4αR

)
.

Example. Let us draw plots for the temperature first-order corrections for the
example we considered above. Given values for constants a ≈ 9 ·10−5, b ≈ 3 ·10−3,
C3 = 0, C4 = 0 the graphics of the functions T1 and T2 are presented on the
Figures 5, 6 correspondingly.
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Figure 5

Figure 6

The last question we investigate is whether phase transitions occur in the fil-
tration process described by the solution.

In terms of the Massieu-Planck potential the phase coexistence curve on the
plane (v, T ) is given by equations [3]{

ϕv(v1, T )− ϕv(v2, T ) = 0,

ϕ(v2, T )− ϕ(v1, T ) + v1ϕv(v1, T )− v2ϕv(v2, T ) = 0,

where v1 and v2 are the specific volumes of phases. Substituting the solution into
these equations we obtain four phase transition curves on the plane (d, t), see the
orange curves in the Figure 7 . Note that, though, one of these curves is practically
indistinguishable from the t-axis it is also a parabola.
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Figure 7

We see that for this solution phase transitions do not occur in the domain when
it has physical sense.
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