
SYMMETRIC LEVY PROCESSES WITH REFLECTION

PAVEL IEVLEV

Abstract. In this paper we give meaning to the notion of reflecting Levy

process in a smooth domain D in terms of the domain of its generator. In con-
trast with other approaches, we work with the classical Neumann conditions.
The main idea is to construct a suitable continuation of an initial function f
defined on D to Rd, and then associate with it some Markov semi-group..

1. Introduction and related work

Let (ξ(t))t≥0 be a d-dimensional Levy process with characteristic function

φt(p) = exp(−tL(p)), L(p) = −
∫
Rd

(
eip·x − 1− ip · x

)
dΠ(x) . (1.1)

We shall suppose that the corresponding Levy measure Π is rotation-invariant and
has finite second moment.

Our aim is to define a version of this process whose sample paths remain in a
smooth bounded domain D ⊂ Rd and reflect off the boundary ∂D elastically.

As it is pointed out in [6], from a mathematician’s perspective, Levy processes –
and α-stable processes in particular – confined to bounded domains are of interest
because of their limit counterparts (α = 2) being nothing but the well-known
probabilistic models for reflecting/absorbing Brownian motion.

The applied side of reflecting processes theory (reflecting Levy processes in par-
ticular) resides in the area of stochastic models with restrictions. Such models
naturally arise in stochastic control theory and financial mathematics ([28]), mod-
els for queues of finite capacity ([4], [10], [11], [12]) and various models for dams
and fluids ([1], [27]).

Different versions of ξ with values in D could be defined in terms of a “free”
(unrestricted) process semi-group

(T tf)(x) = Ef(x+ ξ(t)).

In these terms, there is a natural way of defining the “version of ξ with paths in
D”. By this we shall mean the process whose generator A is a specific restriction of
generator L of T t to a certain class of functions defined on D. The process whose
restricted domain satisfies Dirichlet conditions is naturally called the absorbing
version of ξ, whereas the one with the Neumann conditions imposed is called the
reflecting version.
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2 PAVEL IEVLEV

The generator of Levy process ξ(t) is the non-local operator given by (Theorem
31.5, [24])

−Lf(x) =
∫
Rd

(
f(x+ y)− f(x)− f ′(x) · y

)
dΠ(y) (1.2)

with a kernel C∞
c (Rd) ⊂ D(L), −L ≥ 0. Its associate semi-group (T t)t≥0 is con-

tinuous in the space C0(Rd) of continuous functions tending to zero at infinity.
We shall, however, employ a slightly different approach, since the non-local char-

acter of L causes trouble with straightforward restriction. Following the work [17],
instead of restricting L, we shall construct a special continuation for a given initial

function f ∈ W 2
2 (D) to the function f̃ belonging to the domain D(L). Using this

continuation, we shall define the semi-group P t by setting

P tf = T tf̃ .

The continuation f 7→ f̃ will be chosen so that the boundary conditions be “hard-
wired” into it and the plan described above be carried out.

Further study of P t is a subject of future research. Let us note in passing that the
problem of constructing a process with a given semi-group is not trivial, although
it can be dealt with analytically. The work [3] presents an example of investigating
properties of a process associated with Dirichlet form

E(u, v) =
∫
D

∇u · ∇v dx, D[E ] =W 1
2 (D)

in Hölder domain D. It is easy to see that this form is nothing but the Laplace-
Neumann quadratic form. The corresponding process therefore is the reflecting
Brownian motion in our sense. In the work Bass and Pei invoke general theory
of correspondence between Dirichlet forms (i.e. closed quadratic forms having the
so-called Markovian property) and Hunt processes (quasi-left continuous strictly
Markovian processes), developed throughout the ’60s in works of Hunt, Dynkin,
Beurling, Deny and reached its finished form in the book [14] by Fukushima.
Specifically, the general theory states that to each regular Dirichlet form there
is associated a Hunt process (Theorem 6.2.1 from [14]). If, moreover, the form pos-
sesses the so-called local property, then the process is continuous (Theorem 4.5.1
from [14]). Finally, the work generalizes the representation of Neumann problem
γ1u = f ∈ B(∂D) solution u in terms of average over the reflecting Brownian
motion paths

u(x) = lim
t→∞

1

2
Ex

∫ t

0

f(Xs) dLs,

(theorem due to Broslamer [7]). Here, Xs denotes the Brownian motion reflecting in
D, Ls is its local time on the boundary (see [5]). The local time is also constructed
via means of Dirichlet forms technique (Theorem 5.1.1 from [14]).

The Dirichlet forms technique does not require path continuity and can therefore
be applied to jump processes directly. The most general closable Markovian form
in L2(D) possessing C∞

0 (D) as its kernel is given by the Beurling – Deny formula
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SYMMETRIC LEVY PROCESSES WITH REFLECTION 3

(Theorems 2.2.1 and 2.2.2 from [14])

E(u, v) =
∫
D

uxi(x)vxj (x) νij(dx)+

+

∫
D×D\d

(
u(x)− u(y)

)(
v(x)− v(y)

)
J(dx× dy)+

+

∫
D

u(x)v(x) k(dx)

for u, v ∈ D(E). The first term is easily identified as the diffusion part. The family
of measures νij is symmetric νij = νji and positively defined in the sense that for
a given compact set K ⊂ D and a vector ξ ∈ Rd holds∑

ij

ξiξjνij(K) ≥ 0.

The second term is interpreted as the jumps. The measure J(dx× dy) is supposed
to be positive outside the diagonal d and for each compact set K ⊂ D satisfy∫

K×K\d
|x− y|2 J(dx× dy) <∞.

The only condition on k(x) is that it should be a positive measure. The last term
represents the absorption part.

We are interested solely in the second term. However, the space C∞
0 (D) is not

dense inW 1
2 (D) and therefore cannot be a kernel of reflecting Levy process Dirichlet

form.
It should be noted that in case of diffusion processes reflecting in a sufficiently

smooth domain (e.g. having C3-boundary; see [22]) one can construct the sample
paths directly. The method is due to Skorokhod [26]. In the simplest case of
reflecting Brownian motion w(t) on [0,∞) we can make use of the Tanaka formula
(see [18] or [?])

|w(t)| d
= w(t) + ζ(t).

Here ζ(t) is the local time. The process |w(t)| is easily checked (by making use of
the Skorokhod lemma) to be the reflecting version in the generator sense.

In the present work we shall to a certain extent reproduce this semimartingale
decomposition (although our results will be essentially weaker, partially because
Levy processes do not have local times). For this purpose for a given initial func-

tion f ∈ W 2
2 (D) we shall construct not one but two continuations f and f̃ , both

belonging to D(L). To f we associate a semi-group Rt, corresponding to the part of

the process inside D (analogue of w(t) in the Tanaka formula). To f̃ we associate a
semi-group P t, representing the reflecting version (analogue of |w(t)|). It is natural
to expect that their difference is concentrated on the boundary ∂D. We shall show
that this difference can be conveniently rewritten in terms of a specific operator
family

Qt : W
1/2
2 (∂D) →W 2

2 (D).

As stated in [17], we can give natural meaning to this operator. Namely, it rep-
resents the momentum, accumulated by the boundary to the time t, as a result
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4 PAVEL IEVLEV

of reflections. Moreover, we will show that the accumulated momentum can be
defined path-wisely (not only on the average) in the L2(dx× dP )-sense.

There are a few rather general results on reflecting Hunt processes in the Dirich-
let form sense in a smooth domain D. All of them are rooted in the papers by
Silverstein [25] and Chen [8]. By analogy with W 1

2 (D) orthogonal decomposition
(see [19], ch. 2, §10, Theorem 4)

W 1
2 (D) =W 1,0

2 (D)⊕G1
2(D), (1.3)

where G1
2(D) is the space of harmonic functions belonging to W 1

2 (D), the authors
take a Dirichlet form E with kernel C∞

c (D) ⊂ D(E), define the notion of harmonicity
relative to E , and then define form Eref on the new domain

D(Eref) = D(E)⊕ G̃1
2(D).

The Hunt process associated with Eref can be called the reflection in the Silverstein
– Chen sense.

In some cases it is possible to go further. In the work [6] the authors constructed
processes associated to the Dirichlet form of the fractional Laplacian in D

E(u, v) = 1

c

∫
D

∫
D

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|d+α

dx dy

on the domain F consisting of functions u ∈ L2(D) such that∫
D

∫
D

(
u(x)− u(y)

)2
|x− y|d+α

dx dy <∞.

They have shown that their processes are indeed the reflection processes in the
Silverstein – Chen sense. The latter inequality defines the domain of Eref .

Another approach was proposed in [23]. Namely, the authors consider the frac-
tional Laplacian in Rd

E(u, v) = 1

c

∫
Rd

∫
Rd

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|d+α

dx dy,

with domain satisfying the so-called non-local Neumann condition

Nsu(x) =

∫
D

u(x)− u(y)

|x− y|d+α
dy = 0 for x ̸∈ D.

This set up has several advantages. Among them, a clear probabilistic meaning.
The process with the this generator, when leaving D, immediately comes back at
a random point of D with density proportional to |x− y|−d−α.

It is worth noting the work [13], where the initial point is the fractional Laplacian
in the sense of the spectral theorem.

Finally, in the works [16] and [15] the authors provide constructions for a deter-
ministic return of the process inside the domain D upon leaving. They prove that
their construction is linked to some Neumann problem for some non-local operators.

Our work succeeds the work [17]. It differs from the results stated above primarily
in the fact that we work with the Levy process generator with the classical Neumann
condition. That is to say, we consider an analogue AN of the generator L in D with
domain D(AN ) = N (D), where

N (D) =
{
u ∈W 2

2 (D) : γ1u = 0
}
,

where γ1 : W
2
2 (D) →W

1/2
2 (D) is the normal derivative.
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The case ξ = w (the Brownian motion) is the subject of our paper [20]. In
this case AN is nothing but the usual Neumann – Laplace operator, and all our
results coincide with the mentioned above. It can be shown that in a simple case
of D = [−1, 1] our reflection is exactly the Skorokhod reflection.

To motivate our setup, let us mention that every solution u ∈ C∞(Rd) of

−∆u = κ2u

satisfies

−Lu = L(κ)u,

where L is defined by (1.2), L(p) is defined by (1.1) (which in our case depends
solely on p = |p|. At that, holds the inequality

|L(p)| ≤ Cp2

for all p ≥ 0.
Let us emphasize that the generality of results is not in our ambitions. We restrict

ourselves to the smooth boundary case and pure-jump symmetric Levy processes
with finite second moment. The diffusion part could be easily included and poses
no new problems for our method. Levy processes not having finite second moment
could also be dealt with, however, in that case the direct approach fails and some
additional tricks are required. The symmetry of the process remains an essential
restriction on our method.

2. Notation

Let us assume for simplicity that D is a smooth domain in Rd (3-smoothness is
sufficient). Let us denote x = |x| and x̂ = x/x for x ∈ Rd. The Lebesgue measure
on the boundary ∂D we denote by dS.

The eigenvalues of the Laplace – Neumann operator in D arranged in the in-
creasing order obey the Weyl law (formula (17.3.6) in [?])

κ2m ∼ 4Γ2/d

(
d

2
+ 1

)
m2/d as m→ ∞.

Let us denote the L2(D)-normed eigenfunction corresponding to κ2m by sm.
We call N (D) the domain of Laplace – Neumann operator in W 2

2 (D)

N (D) =
{
u ∈W 2

2 (D) : γ1u = 0
}

where γ1 : W
2
2 (D) →W

1/2
2 (∂D) is the normal derivative operator.

It is a well-known fact that for every f ∈W 1
2 (D) the series

f =
∞∑

m=0

(f, sm)L2(D)sm (2.1)

converges to f in the W 1
2 (D)-norm. If additionally f ∈ W 2

2 (D), then the latter
series converges in W 2

2 (D). It should be noted that f belonging to W 2
2 (D) is not

enough to ensure the convergence.
We denote by h(x, z) the Green function of the Laplace – Neumann operator in

D, that is, the solution of the equation

−∆zh(x, z) = δx − |D|−1,
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satisfying ∫
D

h(x, z) dx = 0.

If a function g satisfies the Neumann problem solvability condition (i.e. has van-
ishing average over the boundary), then

f(x) =

∫
∂D

h(x, z) g(z) dS(z)

solves the Neumann problem −∆f = 0 in D, γ1f = g on ∂D.
We need some notation concerning the Laplace – Neumann operator in the unit

ball {x < 1}. Let L2(S
d−1) denote the space of square-integrable functions on Sd−1

with respect to dS. The eigenfunctions Y µ
λ , λ ∈ Z+, µ = 1, . . . , d(λ) of the Laplace

– Beltrami operator on sphere are known as spherical harmonics (the number d(λ)
is given by (2.46) from [2]). They constitute an orthogonal basis in L2(S

d−1). We
will omit the summation indices when summing series in spherical harmonics since
no confusion can arise.

We set α = d/2 − 1. Then the Laplace – Neumann eigenfunctions in the unit
ball can be written as

jdλ(κλkx)Y
µ
λ (x̂),

where jdλ is the d-dimensional hyperspherical Bessel function of order λ, and κλk,
κ ≥ 0 are the zeros of J ′

λ+α. They can be shown to be analytic in x ∈ Rd and

belonging to C∞
0 (Rd).

It will be important for us that the function u(x) = jdλ(κx)Y
µ
λ (x̂) belongs to

D(L) (formula (1.2)), and is therefore an eigenfunction of L

−Lu = L(κ)u. (2.2)

The notation A b B means that the set A compactly belongs to B.

3. W 2
2 (D) decomposition

Let us define a quadratic form a by

a(u, v) =

∫
D

∆u ·∆v dx, D(a) =W 2
2 (D).

It is easy to see that a(u, u) = 0 if and only if the function u belongs to the class
G2

2(D). Therefore, a is a norm in W 2
2 /G

2
2. Since the Neumann problem has a

unique solution up to a constant, the form a is non-degenerate in

N 0 =

{
u ∈ N :

∫
D

u(x) dx = 0

}
.

We will need the following lemma.

Lemma 3.1. The space W 2
2 (D) has the following a-orthogonal decomposition:

W 2
2 (D) = N 0(D)⊕BG2,0

2 (D).

Here

BG2,0
2 (D) =

{
u ∈W 2

2 (D) : ∆2u = 0, γ1∆u = 0
}
.

The form a is non-degenerate on N 0(D).
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One can easily check that the subspace of BG2,0
2 (D) on which the form a is

non-degenerate is one-dimensional. We take the a-normed vector

χ(x) =
x2√
2d|D|

and define the a-projection onto χC by

fb(x) = a(f, χ) χ(x) = χ(x)

∫
D

∆f ·∆χdy .

Lemma 3.2. The space W 2
2 (D) has the following a-orthogonal decomposition:

W 2
2 (D) = N 0(D)⊕ χC⊕G2

2(D).

The form a is non-degenerate in N 0(D) and χC and vanishes on G2
2(D).

4. Two continuations

We begin the section with a short summary of the main idea, and afterwards
proceed to the formal presentation. To each point x ∈ D we associate a ball
neighborhood x+D(x) b D, where D(x) is the ball of radius r(x) > 0 f ∈W 2

2 (D)

we construct in every neighborhood a sequence of tangential functions f̃M (x, · ),
M ∈ N, converging to f in this neighborhood. In addition, we choose the sequence
fM so that each function fM be defined in Cd (in contrast with f), and, moreover,
belongs to D(L). Having defined fM , we define the operator A by

Af(x) = lim
M→∞

LyfM (x,y)
∣∣∣
y=0

.

Such tangential families we shall by terminology abuse refer to as the continuations
of f . Clearly, there exists quite a lot of such tangential families, and we are only

concerned with two specific ones. In our case the role of f̃M and fM will be played
by partial sums of some special series.

Now we turn to the formal exposition. We begin with employing Lemma (3.2)

f = f0 + fb + fh,

where f0 ∈ N 0(D), fh ∈ G2
2(D) and fb = a(f, χ)χ. Let us first focus on the

harmonic component fh. For every y ∈ D(x) holds

fh(x+ y) =
∑

(fh, Y
µ
λ )

(
y

r(x)

)λ

Y µ
λ (ŷ),

where (·, ·) denotes the L2(∂(x +D(x))-scalar product. The series converges uni-
formly, and while the whole sum depends solely on x+ y, the partial sums

fhM (x,y) =
∑
λ≤M

(fh, Y
µ
λ )

(
y

r(x)

)λ

Y µ
λ (ŷ), M ∈ N,

depend both on x ∈ D and y ∈ D(x). More importantly, fhM (x,y) is analytic in
Cd as a function of y. That said, for y ̸∈ D(x) the limit does not exist in general.
Let us specifically point out that fhM (x, 0) = fh(x) for every M ∈ N.

Next, we construct a continuation of f0. For that we employ its series expansion
in sm, and then re-expand the functions sm in it. As before, for every y ∈ D(x)
holds

sm(x+ y) =
∑

cmλµ(x)j
d
λ(κmy)Y

µ
λ (ŷ)
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uniformly. Denote the partial sums by smM (x,y), x ∈ D and y ∈ D(x)

smM (x,y) =
∑
λ≤M

cmλµ(x)j
d
λ(κmy)Y

µ
λ (ŷ).

It should be noted that smM is analytic in its second argument in Cd, and, as before,
smM (x, 0) = sm(x). Since smM ∈ D(L) and by virtue of (2.2), the functions smM

are the eigenfunctions of L corresponding to the same eigenvalue L(κm). It follows
that for every y ∈ Cd holds

−LysmM (x,y) = L(κm)smM (x,y).

Define the partial sums f0M (x,y):

f0M (x,y) =
∑

m≤M

(f0, sm)smM (x,y) x ∈ D,y ∈ Rd.

Given that smM (x, 0) = sm(x), takes place the convergence

f0M (·, 0) → f0 in W 2
2 (D) as M → ∞.

The conditions under which f0M (x,y) converges to f0 are not so easy to establish,
being intimately related to the eigenfunctions behaviour.

At last, we define our first continuation f̃M by setting for x ∈ D and y ∈ Cd

f̃M (x,y) = fb(x+ y) + fhM (x,y) + f0M (x,y).

As it was indicated before, the limits of fM (x,y) may not exist in general if y ̸∈
D(x). Even the convergence inside D(x) requires some additional knowledge on
the eigenfunctions behaviour. However at y = 0 it follows from the f0 ∈ N (D) and
smM (x, 0) = sm(x) that

f̃M (·, 0) → f as M → ∞ in W 2
2 (D).

Our second continuation we define by expanding f in sm and then taking its
partial sums. For x ∈ D and y ∈ Cd let

fM (x,y) =
∑

m≤M

(f, sm)smM (x,y).

As noted earlier, the expansion of f in sm converges only in W 1
2 (D) and not in

W 2
2 (D):

fM (·, 0) → f as M → ∞ in W 1
2 (D).

Note that thus defined f̃M (x,y) and fM (x,y) lie in the domainD(L) as functions
of y. Making use of the two continuations, we define for x ∈ D two corresponding
semi-groups

(P tf)(x) = lim
M→∞

Ef̃M (x, ξ(t)) and (Rtf)(x) = lim
M→∞

EfM (x, ξ(t)) .

The generators of the two semi-groups could be expressed in terms of the “free”
process generator −L (formula (1.2)) as follows. The generator −A of P t acts on
D(A) =W 2

2 (D) by formula

(Af)(x) = lim
M→∞

(Lf̃M )(x, 0) as x ∈ D.

Hereinafter the operator L acts in the second variable.
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The generator −AN of Rt acts on its domain D(AN ) = N (D) ⊂ W 2
2 (D) by

formula

(ANf)(x) = lim
M→∞

(LfM )(x, 0) as x ∈ D.

5. Boundary operator

In the current section we show that the difference between P t and Rt is concen-
trated on the boundary ∂D. This is an analogue of the support lemma for a local
time process.

With this idea in mind, let us find a few handy formulas for the difference of the
semi-groups.

Lemma 5.1. If f ∈W 2
2 (D) and x ∈ D, then

(P tf)(x)− (Rtf)(x) = − lim
M→∞

∫ t

0

P τL
(
f̃M − fM

)
(x, 0) dτ .

The limit also exists in the W 2
2 (D)-sense.

Proof. By virtue of Theorem 2.4 from [21], which is valid for any f ∈ W 2
2 (D) and

does not require that f lie in the domain of −AN , we have

Rtf − f = −AN

∫ t

0

Rτf dτ .

However, it is not possible to put −AN inside the integral. To remedy this, we
suitably approximate f

fM =
∑

m≤M

(f, sm)sm.

Since Rτf = (L2) limRτfM , we obtain

Rtf − f = −AN lim
M→∞

∫ t

0

RτfM dτ .

It follows from the closedness of AN

AN lim
M→∞

fM = lim
M→∞

ANfM in L2(D),

therefore

Rtf − f = − lim
M→∞

∫ t

0

RτANfM dτ .

By the definition of AN and the fact that (fM )M (x, 0) = fM (x, 0) follows that
ANfM (x, 0) = LfM (x, 0). We thus proved that

(Rtf)(x)− f(x) = − lim
M→∞

∫ t

0

RτLfM (x, 0) dτ .

The generator −A is defined on the whole W 2
2 (D), and we can write

P tf − f = −
∫ t

0

P τAf dτ .

Recall the definition of A to get

(P tf)(x)− f(x) = − lim
M→∞

∫ t

0

P τLf̃M (x, 0) dτ .
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10 PAVEL IEVLEV

To conclude the proof, it now remains to subtract the formula for P t from the
formula for Rt and note that in the formula for Rt we can interchange Rτ for
P τ . �

Making use of the lemma above, we will find yet another formula for the difference
and show that the difference can be expressed in terms of a certain operator acting

on W
1/2
2 (∂D).

Lemma 5.2. If f ∈W 2
2 (D), then

(P tf)(x)− (Rtf)(x) =

∫
∂D

Qt(x, z)(γ1f)(z) dS(z),

where

Qt(x, z) =
1

2

∫ t

0

R̃τ (x, z) dτ

and

R̃τ (x, z) =

∞∑
l=0

L(κl)

κ2l
e−tL(κl)sl(x)sl(z).

Proof. We begin with calculating the difference of our continuations

f̃M (x) = fb(x+ y) + fhM (x,y) + f0M (x,y)

and
fM (x,y) = (fb)M (x,y) + (fh)M (x,y) + (f0)M (x,y)

under the integral sign. Note that the continuations agree on f0

f̃0M − (f0)0M = 0.

Next, we omit the fhM terms since they do not have any effect on the semi-group

difference L f̃hM (x, 0) = 0.

It remains to find a suitable expression for the difference fb − (fb)M − (fh)M .
Let us rewrite the three functions in terms of integrals over the boundary. For fh
we have

fh(x) =

∫
∂D

dS(z)(γ1f)(z)

[
h(x, z)−

∫
∂D

dS(w)(γ1χ)(w)h(x,w)

]
.

Thus,

(fh)M (x,y) =

∫
∂D

dS(z)(γ1f)(z)φM (x,y, z),

where

φM (x,y, z) =
M∑
l=0

(
h(·, z)−

∫
∂D

dS(w)h(·,w)(γ1χ)(w), sl

)
slM (x,y).

For fb we have

(fb)M (x,y) =

∫
∂D

dS(z)(γ1f)(z)ψM (x,y),

where

ψM (x,y) =

M∑
l=0

(χ, sl)slM (x,y).

Our problem is now reduced to the calculation of

χ(x+ y)− φM (x,y, z)− ψM (x,y).
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Let us rewrite φM + ψM as follows:

φM (x,y, z) + ψM (x,y) =

=
M∑
l=0

(
χ(·)−

∫
∂D

dS(w)(γ1χ)(w)h(·,w), sl

)
slM (x,y)+

+
M∑
l=0

(
h(·, z), sl

)
slM (x,y).

The function

θ(x) = χ(x)−
∫
∂D

dS(w)(γ1χ)(w)h(x,w)

lies in N (D). It follows that its series in sl converges in W 2
2 (D). Keeping this in

mind, we get

M∑
l=0

(θ, sl) slM (x,y) = χ(x)−
∫
∂D

dS(w)(γ1χ)(w)h(x,w) + r
(0)
M (x) + r

(1)
M (x,y)

where the residual terms r
(0,1)
M are

r
(0)
M (x) =

∞∑
l=M+1

(θ, sm)sm(x), r
(1)
M (x,y) =

M∑
l=0

(θ, sm)
(
slM (x,y)− sl(x)

)
.

In order to evaluate the last term we make use of the fact that h is the Laplace
– Neumann Green function: (

h(·, z), sl
)
=

1

κ2l
sl(z).

So far we have obtained

χ(x+ y)− φM (x,y, z)− ψM (x,y) =

=
M∑
l=0

1

κ2l
sl(x)sl(z) +

∫
∂D

dS(w)(γ1χ)(w)h(x,w)+

+ r
(0)
M (x) + r

(1)
M (x,y) + r

(2)
M (x,y, z)

where the residual term r
(2)
M is given by

r
(2)
M (x,y, z) =

M∑
l=0

1

κ2l

(
slM (x,y)− sl(x)

)
sl(z).

Applying −L and taking y = 0, we get

− Ly

(
χ(x+ y)− φM (x,y, z)− ψM (x,y)

)∣∣∣
y=0

=

=
M∑
l=0

L(κl)

κ2l
sl(x)sl(z) + Lr

(0)
M (x).
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We use the fact that the second and the third residual terms are zero, since
slM (x, 0) = sl(x).

This establishes the formula

(P tf)(x)− (Rtf)(x) =

= (W 2
2 ) lim

M→∞

1

2

∫ t

0

dτ

∫
∂D

dS(z) (γ1f)(z) P
τ

(
M∑
l=0

L(κl)

κ2l
sl(x)sl(z)

)
, (5.1)

since the last residual term

RM (x) =

∫ t

0

dτ

∫
∂D

dS(z)(γ1f)(z)P
τLr

(0)
M (x)

tends to zero in W 2
2 (D). Indeed,

RM (x) = Cf

∞∑
l=M+1

cl(θ, sl)sl(x),

where cl = 1− exp(−tL(κl)) ≤ 1, while the θ series converges in W 2
2 (D). �

We now define the operator family Qt for g ∈W
1/2
2 (D) and t > 0 by

(Qtg)(x) =

∫
∂D

Qt(x,y)g(y) dS(y) .

Another handy formula for this operator follows from the previous lemma. We take

g ∈W
1/2
2 (∂D) and form a function Gb ∈ χC from it as follows

Gb(x) = χ(x)

∫
∂D

g(z) dS(z) (5.2)

and Gh ∈ G2
2(D)

Gh(x) =

∫
∂D

h(x, z)g(z) dS(z) . (5.3)

Then G = Gb +Gh ∈W 2
2 (D), and Qt acts on g as

(Qtg)(x) = lim
M→∞

∫ t

0

P τL
(
G̃M −GM

)
(x, 0) dτ . (5.4)

From what we have proved follow three theorems below ( 5.3, 5.4 and 5.5).

Theorem 5.3. The operator families Rt and Qt satisfy the following evolution
relations

Rt+s = RtRs,

Qt+s = Qt + R̃tQs.

At that, R0 = I and Q0 = 0.

Theorem 5.4. If f ∈ L2(D) and t > 0, then

∂

∂t
Rtf =

1

2
ANRtf.

Theorem 5.5. If g ∈W
1/2
2 (∂D) and t > 0, then

∂

∂t
Qtg =

1

2

∫
∂D

R̃t(x,y)g(y) dS(y) .
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6. Pathwise accumulated momentum

In the previous section we have constructed two operator families Rt and Qt.
Now we will show that there is a natural way to define them as the average of some
random operators defined pathwisely.

Let us define a random operator Pτ = Pτ [ξ(·)] onW 2
2 (D) = N 0(D)⊕BG2,0

2 (D).
Set for f ∈ N 0(D)

(Pτf)(x) =
∑

eiκmξ1(τ)(f, sm)sm(x),

and
(Pτf)(x) = f(x+ ξ(τ))

for f ∈ BG2,0
2 (D). Obviously, P t = EPt. We could have defined Pτ as the shift

along ξ(τ) still having the same average, since

Eeiκmξ1(τ)sm(x) = e−τL(κm)sm(x) = Esm(x+ ξ(τ)).

Our definition turns out to be more computationally advantageous. Note that only
the first coordinate ξ1(τ) of ξ(τ) is involved in the definition. This is due to rotation
symmetry of ξ.

We proceed by defining one more random operator Qt = Qt[ξ(·)], by employing
the formula (5.4)

(Qtg)(x) = lim
M→∞

∫ t

0

PτL
(
G̃M −GM

)
(x, 0) dτ, (6.1)

where G = Gb +Gh ∈W 2
2 (D), while Gb and Gh are defined by (5.2), (5.3).

Theorem 6.1. The limit on the right-hand side of (6.1) exists in L2(H, µ), where
H = D × Ω and dµ = dx× dP.

Proof. The proof is based on the formula (5.4), in which we replace P τ with Pτ :

(Qtg)(x) =
1

2
lim

M→∞

∫
∂D

∫ t

0

g(z)Pτ
M∑
l=0

L(κl)

κ2l
sl(x)sl(z) dS(z) dτ .

It suffices to prove that for each t > 0 the sequence

Ψm(x, ξ(·)) =
∫
∂D

∫ t

0

g(ŷ)Pτ
M∑
l=0

L(κl)

κ2l
sl(x)sl(z) dS(z) dτ

is a Cauchy sequence in L2(H, µ).
Let us estimate the norm of the difference Ψm −Ψn, m > n

∥Ψm −Ψn∥2L2(H,µ) =

=

∫
D

E

∣∣∣∣∣
∫
∂D

∫ t

0

g(z)

m∑
l=n+1

L(κl)

κ2l
Pτsl(x)sl(z) dS(z) dτ

∣∣∣∣∣
2

dx =

=

∫
D

E

∣∣∣∣∣
∫ t

0

m∑
l=n+1

eiκlξ1(τ)
L(κl)

κ2l
glsl(x) dτ

∣∣∣∣∣
2

dx,

where

gl =

∫
∂D

g(z)sl(z) dS(z) .
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It is easy to check that∣∣∣∣∫ t

0

φ(τ) dτ

∣∣∣∣2 = 2

∫ t

0

dτ1

∫ τ1

0

dτ2 Re
(
φ(τ1)φ(τ2)

)
for any φ ∈ L1[0, t]. By making use of it, we get

∫
D

E

∣∣∣∣∣
∫ t

0

m∑
l=n+1

eiκlξ1(τ)
L(κl)

κ2l
glsl(x) dτ

∣∣∣∣∣
2

dx = (6.2)

= 2E
∫ t

0

dτ1

∫ τ1

0

dτ2 Re

(
m∑

l=n+1

eiκl(ξ1(τ2)−ξ1(τ1))
L2(κl)

κ4l
|gl|2

)
= (6.3)

= 2

∫ t

0

dτ1

∫ τ1

0

dτ2 Re

(
m∑

l=n+1

e−(τ2−τ1)L(κl)
|L(κl)|2

κ4l
|gl|2

)
= (6.4)

≤ Ct
m∑

l=n+1

|gl|2
|L(κl)|
κ4l

(6.5)

In the last inequality we use the fact that Re L(κl) ≥ 0. Since |L(κl)| ≤ κ2l , it
remains to show that the sequence

m∑
l=n+1

|gl|2

κ2l

tends to zero, which in its turn follows from the fact that D(
√
−∆N ) = W 1

2 (D)
and therefore

√
−∆NG ∈ L2(D). Indeed, by Green’s identity

gl =

∫
∂D

(γ1G)(z)sl(z) dS(z) =

∫
D

∇G · ∇sl dx =

=
(√

−∆NG,
√
−∆Nsl

)
= κl

(√
−∆NG, sl

)
,

thus
∞∑
l=1

|gl|2

κ2l
=

∞∑
l=1

∣∣∣(√−∆NG, sl

)∣∣∣2 <∞.

�

We now show that the average of Qt over the paths of ξ(·) equals Qt.

Theorem 6.2. If g ∈W
1/2
2 (∂D), then

E(Qtg)(x) = (Qtg)(x).

38



SYMMETRIC LEVY PROCESSES WITH REFLECTION 15

Proof. Once again making use of (5.1), in which we replace P τ for Pτ , we get

E(Qtg)(x) = E
1

2
lim

M→∞

∫
∂D

∫ t

0

g(z)Pτ
M∑
l=0

L(κl)

κ2l
sl(x)sl(z) dz dτ =

=
1

2
lim

M→∞

∫
∂D

∫ t

0

g(z)
∞∑
l=0

Eeiκlξ1(τ)
L(κl)

κ2l
sl(x)sl(z) dS(z) dτ =

=
1

2

∫
∂D

∫ t

0

R̃t(x, z)g(z) dS(z) dτ .

�
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