
THE CAUCHY PROBLEM OF COUPLE-STRESS ELASTICITY
IN R3

IQBOL ERGASHEVICH NIYOZOV

Abstract. In this paper, we consider the problem of the analytical contin-
uation of the solution of the system of equations of the moment theory of
elasticity in the spatial domain in terms of its values and the values of its
stresses on a part of the boundary of this domain, i.e. the Cauchy problem.
The conditions for the solvability of this problem are considered.

1. Introduction

In this paper, we propose an explicit formula for reconstructing the solution
of of the moment theory of elasticity systems in a spatial domain based on its
values and the values of stresses given only on part of the domain boundary. Two
directions are considered: the search for reasonable conditions of solvability and
the derivation of formulas for solutions as well as criteria for the solvability of the
problem.

A solution of the Cauchy problem for the one-dimensional system of CauchyRie-
mann equations was first obtained in 1926 by Carleman [2]. He proposed the idea
of introducing an additional function into the Cauchy integral formula, which al-
lows one to use the passage to the limit in order to damp the influence of integrals
over that part of the boundary where the values of the function to be continued
are not given. Carlemans idea was developed in 1933 by Goluzin and Krylov [5],
who found a general way to obtain Carlemans formulas for the one-dimensional
system of CauchyRiemann equations.

Based on the results of Carleman and GoluzinKrylov, Lavrentev introduced the
concept of the Carleman function for the one-dimensional system of CauchyRie-
mann equations. Lavrentevs method [9] consists in approximating the Cauchy
kernel on the additional part of the domain boundary outside the support of the
data of the Cauchy problem.

The Carleman function of the Cauchy problem for the Laplace equation is a
fundamental solution that depends on a positive numerical parameter and tends
to zero together with its normal derivative on the part of the domain boundary
outside the Cauchy data support as the parameter tends to infinity. Using the
Carleman function and Greens integral formula, a Carleman formula is produced
that gives an exact solution of the Cauchy problem when the data are specified
exactly. Having constructed the Carleman function also allows one to construct a
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regularization if the Cauchy data are given approximately. The existence of the
Carleman function follows from the Mergelyan approximation theorem [17].

In 1959, Fock and Kuni [4] found an application of the Carleman formula to
the one-dimensional system of CauchyRiemann equations. For the case in which
part of the domain boundary is a segment of the real axis, they used the Carleman
formula to establish a criterion for the solvability of the Cauchy problem for the
system of CauchyRiemann equations on the plane. An analog of the Carleman
formula and criteria for the solvability of the Cauchy problem were obtained in
[6], [8] for analytic functions of several variables, in [26]-[28], [24] for harmonic
functions, and also in the papers [18]-[23] by the present authors. The Cauchy
problem for matrix factorizations of the Helmholtz equation is considered in papers
D.A. Juraev (see, for instance [11], [12], [13], [14], [15], [16] and [30])

The Cauchy problem for solutions of elliptic equations has been studied since
the 1950s when it entered geophysics. If the Cauchy data are posed on an open part
of the boundary, then the Cauchy problem has at most one solution. However,
the solution fails to depend continuously on the Cauchy data, unless they are
controlled on the whole boundary. Thus, in a natural setting, the Cauchy problem
for elliptic equations is ill posed; and the character of instability is similar to that
in the problem of analytic continuation.

The monographs [9], [25], [10], [1] are a fairly complete survey regarding Carle-
mans formulas.

In the present paper, a regularized solution of the Cauchy problem for the
system of Couple-Stress Elasticity equations is constructed on the basis of the
Carleman function method. [9].

Let x = (x1, x2, x3) and y = (y1, y2, y3) be points in real Euclidean space R3, let
D be a bounded simply connected domain in R3 with piecewise smooth boundary
∂D, and let S be the smooth part of ∂D.

Let a six-component vector function

U(x) = (u1(x), u2(x), u3(x), v1(x), v2(x), v3(x))∗ = (u(x), v(x))∗,

where from now on ∗ denotes the operation of transposition, satisfy the system
of Couple-Stress Elasticity equations [7].

{
(µ + α)∆u + (λ + µ− α)graddiv u + 2α rotv + ρω2u = 0,
(ν + β)∆v + (ε + ν − β)graddiv v + 2α rotu− 4αv + θω2v = 0,

(1.1)

where ∆ is the Laplace operator, i is the imaginary unit, i.e., i2 = −1, the co-
efficients λ, µ, ρ, ω, and θ-the characteristics of the medium satisfy the conditions
µ > 0, 3λ + 2µ > 0, α > 0, 3ε + 2ν > 0, β > 0 and γη > 0, and ω is some real
number called the vibration frequency, ρ- density of the medium.

For brevity of presentation, in what follows, system (1.1) is conveniently written
in matrix form. For this purpose, we introduce the matrix differential operator

M = M(∂x) =
∣∣∣∣
∣∣∣∣

M (1) M (2)

M (3) M (4)

∣∣∣∣
∣∣∣∣ ,
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where
M (q) =

∥∥∥M
(q)
kj

∥∥∥
3×3

, q = 1, 2, 3, 4,

M
(1)
kj = δkj(µ + α)(M +ω2

1) + (λ + µ− α)
∂2

∂xk∂xj
,

M
(2)
kj = M

(3)
kj = −2α

3∑
p=1

εkjp
∂

∂xp
,

M
(4)
kj = δkj(ν + β)(M +ω2

2) + (ε + ν − β)
∂2

∂xk∂xj
,

ω2
1 =

ρω2

µ + α
, ω2

2 =
θ ω2 − 4α

ν + β
, δkj =

{
1, if k = j
0, if k 6= j,

εkjp so-called ε−tensor or

Levi-Civita’s symbol, which defend following equaliti’s

εkjp =





0, if at least two of three-subscripts k, j, p are equal,
1, if (k, j, p) is an even permutation,
−1, if (k, j, p) is an odd permutation.

Then system (1.1) maybe write in matrix from in the following way:

M(∂x)U(x) = 0, (1.2)

where U =
(

u
v

)
.

Now let us introduce the stress operator of the dynamic elasticity equations.
Let x = (x1, x2, x3) be a point of the medium, and let n(x) = (n1(x), n2(x), n3(x))
be an arbitrary unit vector at the point x. We introduce the matrix differential
operator

T (∂x, n(x)) =
∣∣∣∣
∣∣∣∣

T (1)(∂x, n(x)) T (2)(∂x, n(x))
T (3)(∂x, n(x)) T (4)(∂x, n(x))

∣∣∣∣
∣∣∣∣ ,

T (i)(∂x, n(x)) =
∥∥∥T

(i)
kj (∂x, n(x))

∥∥∥
3×3

, i = 1, 2, 3, 4,

T
(1)
kj (∂x, n(x)) = λnk

∂

∂xj
+ (µ− α)nj(x)

∂

∂xk
+ (µ + α)δkj

∂

∂n(x)
, k, j = 1, 2, 3,

T
(2)
kj (∂x, n(x)) = −2α

3∑
p=1

εkjpnp(x), T
(3)
kj (∂x, n(x)) = 0, k, j = 1, 2, 3,

T
(4)
kj (∂x, n(x)) = ε nk(x)

∂

∂xj
+ (ν − β)nj(x)

∂

∂xk
+ (ν + β)

∂

∂n(x)
, j = 1, 2, 3.

The main purpose of the couple-stress elasticity theory is to determine the
elastic oscillation state. The state should continuously depend on the boundary
data. The matter is that these data are obtained by measurements and therefore
they always differ from their exact values. Hence the concrete state which has
been found by such approximate data will be of practical importance if it differs
from the true state to the same extent as the data differ from their exact values.
The problem thus posed is called correct.
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In the couple-stress elasticity theory four main problems of oscillation are con-
sidered. They consist in finding the elastic oscillation state of the medium if on
the boundary we are given the displacements and rotations in the first problem,
the force- and couple-stresses in the second problem, the displacements and cou-
plestresses in the third problem, the rotations and force-stresses in the fourth
problem, [7], Ch. IX.

2. Fundamental solution and the Somiliana formula

The homogeneous equation of steady-state oscillations of the couple-stress the-
ory has the form MU = 0. By the (two-sided) fundamental solution of convolution
type for M is meant any (6 × 6) -matrix Ψ whose entries are distributions in all
of R3, such that M(Ψ ∗U) = U and Ψ ∗ (MU) = U holds for each C∞ function U
with compact support and values in R6. A familiar argument shows that this just
amounts to saying that

This definition implies

M(∂x)Ψ(x− y) = δ(x− y)E6,

M ′(∂y)(Ψ(x− y))> = δ(x− y)E6,

for all (x, y) ∈ R3×R3,where M ′ stands for the transposed differential operator of
M , Ψ> for the transposed matrix of Ψ, and δ - for the Dirac functional supported
at the origin.

Such a fundamental solution can be obtained by the formula Ψ = Mϕ, where
M− is the complementary matrix of M , i.e., the matrix satisfying the equations
MM = MM = (det M)E6, and ϕ a fundamental solution of convolution type
for the scalar differential operator detM. An elementary, though cumbersome,
computation shows that

We denote the algebraic complement of the element Mkj(∂x)(k, j = 1, 6) in
detM(∂x), by Mkj(∂x). An elementary, though cumbersome, computation for
element’s Mkj(∂x) the matrix

M(∂x) =
∣∣∣∣
∣∣∣∣
M(1)(∂x) −M(3)(∂x)
−M(2)(∂x) M(4)(∂x)

∣∣∣∣
∣∣∣∣
6×6

,
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get

M(1)
kj = α0

{
δkj(∆ + k2

1)(∆ + ω2
2)

µ + α
− 1

λ + 2µ

[
(λ + µ− α)(∆ + ω2

2)
µ + α

−

− 4α2

(µ + α)(ν + β)

]
∂2

∂xk∂xj

}
(∆ + k2

2)(∆ + k2
3)(∆ + k2

4),

M(2)
kj = M(3)

kj =

=
2αα0

(µ + α)(ν + β)

3∑
q=1

εkjq
∂

∂xq
(∆ + k2

1)(∆ + k2
2)(∆ + k2

3)(∆ + k2
4),

M(4)
kj = α0

{
δkj(∆ + k2

2)(∆ + ω2
1)

ν + β
− 1

ε + 2ν

[
(ν + ε− β)(∆ + ω2

1)
ν + β

−

− 4α2

(µ + α)(ν + β)

]
∂2

∂xk∂xj

}
(∆ + k2

1)(∆ + k2
3)(∆ + k2

4),

(2.1)

where k, j = 1, 2, 3, k2
1 =

ρω2

λ + 2µ
, k2

2 =
θω2 − 4α

ε + 2ν
, k2

3 and k2
4 satisfy the conditions

k2
3 + k2

4 = ω2
3 + ω2

4 +
4α2

(µ + α)(ν + β)
, k2

3k
2
4 = ω2

3ω2
4 ,

α0 = (µ + α)2(ν + β)2(λ + 2µ)(ε + 2ν) > 0.

It is easy to see that M(∂x) ( as M(∂x)) is a self-adjoint operator, i.e. M(∂x) =
(M(−∂x))

′
, where the prime denotes the transposition operation. Substituting in

M(∂x)U = 0 instead of U matrix

U = (M(∂x))
′
ϕ =

∣∣∣∣
∣∣∣∣
M(1)(∂x) M(2)(∂x)
M(3)(∂x) M(4)(∂x)

∣∣∣∣
∣∣∣∣ ϕ (2.2)

where ϕ− the required scalar function, then we get

detM(∂x)ϕ = α0

(
M +k2

1

) (
M +k2

2

) (
M +k2

3

)2 (
M +k2

4

)2
ϕ = 0.

In (2.2), each element contains the factor α0

(
M +k2

3

) (
M +k2

4

)
ϕ, therefore, it suf-

fices to find exactly the function

ψ = α0

(
M +k2

3

) (
M +k2

4

)
ϕ.

To determine it, we have the equation(
M +k2

1

) (
M +k2

2

) (
M +k2

3

) (
M +k2

4

)
ψ = 0.

For the matrix of solutions (2.2) to be fundamental, we have to find a solution
of the last equation, the sixth order partial derivatives of which have singularities
only of the form |x|−1. Such a solution, if it exists, should satisfy the conditions

(
M +k2

q+1

) (
M +k2

q+2

) (
M +k2

q+3

)
ψ = (2π|x|)−1 exp (ikq|x|) , q = 1, 2, 3, 4,

k5 = k1, k6 = k2, k7 = k3.
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Considering these relations as a system of equations for ψ, M ψ, M2 ψ, M3 ψ find

ψ =
4∑

q=1

Aq (2π|x|)−1 exp (ikq|x|) , (2.3)

where Aq =
3∏

s=1

1(
k2

q+s − k2
q

) .

Relations (2.3) make it easy to check that ψ satisfy all of the above conditions.
Now taking into account that

(
M +k2

3

) (
M +k2

4

)
ϕ = α−1

0 ψ and given the impor-
tance ψ, of (2.2) and (2.1), we obtain the matrix of fundamental solutions U(x)
of (2.2) which we denote by Ψ. Thus, the block-symmetric matrix fundamental
solutions has the form

Ψ(x) =
∣∣∣∣
∣∣∣∣

Ψ(1)(x) Ψ(2)(x)
Ψ(3)(x) Ψ(4)(x)

∣∣∣∣
∣∣∣∣
6×6

where
Ψ(i) =

∥∥∥Ψ(i)
kj (x)

∥∥∥
3×3

, i = 1, 2, 3, 4,

Ψ(1)
kj (x) =

4∑
q=1

(
δkjaq + bq

∂2

∂ xk∂ xj

)(
− 1

4π
· exp (ikq|x|)

|x|
)

,

Ψ(2)
kj (x) = Ψ(3)

kj (x) =
2α

µ + α

4∑
q=1

3∑
m=1

εqεkjm
∂

∂xm

(
− 1

4π
· exp (ikq|x|)

|x|
)

,

Ψ(4)
kj (x) =

4∑
q=1

(
δkjcq + dq

∂2

∂xk∂xj

) (
− 1

4π
· exp (ikq|x|)

|x|
)

,

for k, j = 1, 2, 3.

Theorem 2.1. Each column of the matrix Ψ(x) considered as a vector, satisfies
system (2.1) at all points of the space R3 except for the origin.

For the matrix of fundamental solutions, the following equalities hold: [22]

Ψ>(x− y) = Ψ(y − x).

The Somiliana formula holds [22].

Theorem 2.2. For any function U ∈ C1(D) with values in R6 such that
M(∂x)U ∈ L1(D) holds

∫

∂D

( {T (∂y, n(y))Ψ(y − x)}> U(y)−Ψ(x− y) {T (∂y, n(y))U(y)} )
dsy+

+
∫

D

Ψ(x− y)M(∂y)U(y)dy =
{

U(x) , x ∈ D
0 , x /∈ D.

(2.4)

where ”>” y of the matrix means the operation transposing.
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3. Solvability criterion in the language of Carleman matrix

Let us introduce the notation:

x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3, x′ = (0, x2, x3), y′ = (0, y2, y3),

s = α2 = |x′ − y′|2, r2 = |y − x|2 = s + (y1 − x1)2,

Gρ = {y ∈ R3 : |y′| < τy1, y1 > 0, τ = tg
π

2ρ
, ρ > 1},

∂Gρ = {y ∈ R3 : |y′| = τy1, y1 > 0, τ = tg
π

2ρ
, ρ > 1},

Gρ = Gρ

⋃
∂Gρ,

ε, ε1, ε2− denote sufficiently small constant positive numbers,

Gε
ρ = {y ∈ R3 : |y′| < τ(y1 − ε), y1 > ε, τ = tg

π

2ρ
, ρ > 1},

∂Gε
ρ = {y ∈ R3 : |y′| = τ(y1 − ε), y1 > ε, τ = tg

π

2ρ
, ρ > 1},

Gε
ρ = Gε

ρ

⋃
∂Gε

ρ, τ1 = sin
π

2ρ
, ρ > 1,

C - complex plane, Dρ - bounded simply connected domain with boundary
∂Dρ, consisting of a part of the cone surface ∂Gρ (in the two-dimensional case of
ray segments with a common origin) and smooth surface S (smooth curve), lying
inside the cone (of the corner) Gρ. The case ρ = 1 is limit. In this case G1 -
half-space y1 > 0 and ∂G1 - hyperplane y1 = 0, D1 - bounded simply connected
domain with a boundary, consisting of a compact connected part of the hyperplane
y1 = 0 (in the two-dimensional case, segment a ≤ y2 ≤ b) and smooth surface S
(smooth curve), lying and half-space y1 > 0, Dρ = Dρ

⋃
∂Dρ, S0− set of interior

points S.
We will construct a solution to the problem in the region Dρ, when the Cauchy

data are given on the part S of the boundary ∂Dρ.
We will assume that the solution to the problem exists (then it is unique) and

is continuously differentiable in a closed domain and the Cauchy data are specified
exactly. For this case, an explicit continuation formula is established. The found
formula allows us to formulate a simple and convenient criterion for the solvability
of the Cauchy problem. If, under the indicated conditions, instead of the Cauchy
data, their continuous approximations are given with a given error (deviation) in
the uniform metric, then an explicit regularization formula is proposed.

The result established here is a multidimensional analogue of the theorem and
a version of the Carleman formula obtained by G.M. Goluzin, V.I. Krylov, V.A.
Fock, F.M. Cooney in the theory of holomorphic functions of one variable [5], [4].

The continuation formulas proved below are explicitly expressed in terms of the
entire Mittag-Leffler function; therefore, we present its main properties without

33



8 IQBOL ERGASHEVICH NIYOZOV

proof. They are given in (see, [3], Ch. 3, 2) with detailed proofs. The entire
Mittag-Leffler function is defined by the series

Eρ(w) =
∞∑

n=0

wn

Γ(1 + n
ρ )

, ρ > 0, w ∈ C, E1(w) = exp w,

where Γ(·) Euler’s gamma function. Throughout what follows, we will assume
ρ > 1.

We choose β subject to the condition 0 < β <
π

ρ
, ρ > 1, . We let γ = γ(1, β) be

a contour in the complex z-plane traversed in the direction of nondecreasing arg z
and consisting of the following parts: 1) arg z = −β , 2) the arc −β ≤ arg z ≤ β
of the circle |z| = 1 , and 3) the ray arg z = β. The contour divides the z -plane
into two unbounded, simply-connected domains D− and D+ which lie to the left
and the right of γ = γ(1, β), respectively. We put

We will assume that
π

2ρ
< β <

π

ρ
, ρ > 1.

Under these conditions, the following integral representations are valid:

Eρ(w) = exp(wρ) + Ψρ(w), w ∈ D+, (3.1)

Eρ(w) = Ψρ(w), w ∈ D+, E
′
ρ(w) = Ψ

′
ρ(w), w ∈ D−, (3.2)

where
Ψρ(w) =

ρ

2πi

∫

γ

exp ςρdς

ς − w
, Ψ

′
ρ(w) =

ρ

2πi

∫

γ

exp ςρdς

(ς − w)2
. (3.3)

Since Eρ(w) is real for real w, we have

ReΨρ(w) =
Ψρ(w) + Ψρ(w)

2
=

ρ

2πi

∫

γ

(ς − Rew) exp(ςρ)dς

(ς − w)(ς − w)
, (3.4)

ImΨρ(w) =
Ψρ(w)−Ψρ(w)

2i
=

ρImw

2πi

∫

γ

exp(ςρ)dς

(ς − w)(ς − w)
, (3.5)

Im
Ψ
′
ρ(w)

Imw
=

ρ

2πi

∫

γ

2(ς − Rew) exp(ςρ)dς

(ς − w)2(ς − w)2
. (3.6)

Throughout what follows, in the definition of the contour γ(1, β), we will take
β =

π

2ρ
+

ε2

2
, ρ > 1. It is clear that if

π

2ρ
+ ε2 ≤ | arg w| ≤ π, (3.7)

then w ∈ D−
ρ and Eρ(w) = Ψρ(w).

At
π

2ρ
+ ε2 ≤ | arg w| ≤ π inequalities hold

|Eρ(w)| ≤ M1

1 + |w| , |E
′
ρ(w)| ≤ M2

1 + |w|2 , (3.8)

|E(k)
ρ (w)| ≤ M3

1 + |w|k+1
, k = 0, 1, 2, .... (3.9)
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where M1,M2,M3 - constant, independent of w.
Consider the Cauchy problem for system (2.1): We need to find a solution

to the system (2.1) U(x) in Dρ according to U(y) = U0(y), T (∂y, n(y))U(y) =
U1(y), y ∈ S i.e.





M (∂x)U(x) = 0 , x ∈ Dρ

U(y) = U0(y) , y ∈ S
T (∂y, n(y))U(y) = U1(y), y ∈ S,

(3.10)

where U0 ∈ C1(S) ∩ L1(S), U1 ∈ C(S) ∩ L1(S).
To solve this problem for a given simply connected domain, the method of the

Carleman function is used, i.e. the matrix is built Carleman and with the help of
this matrix a formula for finding a solution inside a domain is given.

Definition 3.1. By the Carleman matrix of the domain Dρ and surface S, we
mean an 6 × 6 matrix Π(y, x, σ) depending on the two points y, x ∈ Dρ and
positive numerical number parameter σ, satisfying the following two conditions:

1) Π(y, x, σ) = Ψ(y − x) + G(y, x, σ),

where matrix G(y, x, σ) satisfies system (1) with respect to the variable y in the
domain D, and Ψ(y− x) is a matrix of the fundamental solutions of system (2.1);

2)
∫

∂Dρ\S

(|Π(y, x, σ)|+ |T (∂y, n)Π(y, x, σ)|) dsy ≤ ε(σ),

where ε(σ) → 0, as σ → ∞; here |Π| is the Euclidean norm of the matrix Π =

||Πij ||6×6, i.e., |Π| = (
6∑

i,j=1

Π2
ij)

1
2 . In particular, |U | =

(
3∑

m=1
(u2

m + w2
m)

) 1
2

.

It is well known, that for the regular vector functions V (y) and U(y) holds
formula [7]:

∫

Dρ

[
V (y)

{
M(∂y)U(y)

}− U(y)
{
M(∂y)V (y)

}]
dy =

=
∫

∂Dρ

[
V (y)

{
T (∂y, n(y))U(y)

}− U(y)
{
T (∂y, n(y))V (y)

}]
dsy.

Substituting in this equality V (y) = G(y, x, σ) and U(y) = U(y) is solution system
(2.1), we have

0 =
∫

∂Dρ

[
G(y, x, σ){T (∂y, n(y))U(y)} − {T (∂y, n(y))G(y, x, σ)}>U(y)

]
dsy.

Now, taking into account Theorem 2.2 for M(∂y)U(y) = 0, we have
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Theorem 3.2. Any regular solution U(x) of system (2.1) in the domain Dρ is
specified by the formula∫

∂Dρ

({T (∂y, n(y))Π(y, x, σ)}>U(y)−Π(y, x, σ){T (∂y, n(y))U(y)}) dsy =

=
{

U(x) , x ∈ Dρ

0 , x /∈ Dρ.
(3.11)

where Π(y, x, σ) is matrix Carleman.

Using the Carleman matrix, it is easy to derive an estimate for the stability
of the solution to the Cauchy problem (3.10), and also indicate a method for
effectively solving this problem.

In order to construct an approximate solution to problem (3.10) we construct
the Carleman matrix as follows:

Π(y, x, σ) =
∣∣∣∣
∣∣∣∣

Π(1)(y, x, σ) Π(2)(y, x, σ)
Π(3)(y, x, σ) Π(4)(y, x, σ)

∣∣∣∣
∣∣∣∣ ,

Π(i)(y, x, σ) =
∥∥∥Π(i)

kj (y, x, σ)
∥∥∥

3×3
, i = 1, 2, 3, 4,

Π(1)
kj (y, x, σ) =

4∑
q=1

(
δkjaq + bq

∂2

∂xk∂xj

)
· Φτ (y, x, iλq), k, j = 1, 2, 3,

Π(2)
kj (y, x, σ) = Π(3)

kj (y, x, σ) =

=
2α

µ + α

4∑
q=1

3∑
m=1

εqεkjs
∂

∂xm
· Φσ(y, x, iλq), k, j = 1, 2, 3,

Π(4)
kj (y, x, σ) =

4∑
q=1

(
δkjcq + dq

∂2

∂xk∂xj

)
· Φσ(y, x, iλq), k, j = 1, 2, 3,

(3.12)

where

Φσ(y, x, λ) = Φσ(y − x, λ) =
1

−2π2

∞∫

0

Im
[
K(w)

w

]
cos(λu) du√

u2 + α2
, (3.13)

and
K(w) = exp[w2]Eρ(σw), w = i

√
u2 + α2 + y1 − x1.

From the results of [27] it follows

Lemma 3.3. The function Φσ(y− x, λ) is Carleman’s function for the Helmholtz
equation, i.e., it has the following two properties:

1) Φσ(y − x, λ) =
exp(iλr)

4πr
+ ϕσ(y − x, λ), r = |y − x|, (3.14)

where ϕσ(y, λ) is a function that is defined for all y and x satisfies Helmholtz
equation ∆(∂y)ϕσ + λ2ϕσ = 0,

2)
∫

∂Dρ\S

(
|Φσ|+ |Φσ

∂n
)|

)
dsy ≤ C(λ,Dρ)

1 + σ
(3.15)
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where C(λ,Dρ) some function bounded inside Dρ, independent of σ, ∆(∂y) =
∂2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
3

.

The function Φσ(y − x, λ) is called the Carleman function for the Helmholtz
equation. Here are some properties of the Carleman function.

Introduce the notation

Fσ(y − x, λ) =
∂

∂σ
Φσ(y − x, λ)

The following lemma holds [28].

Lemma 3.4. Let K be compact in Gρ, δ - distance from K to ∂Gρ. Then, for
σ ≥ 0 for x ∈ K, y ∈ R3 \Gρ (|y′ | ≥ τy1), the following inequalities hold:

|Φσ(y − x, λ)|+
∣∣∣∣
∂Φσ(y − x, λ)

∂yk

∣∣∣∣ 6 C1(ρ, δ)r(1 + σδ)−1, (3.16)

|Fσ(y − x, λ)|+
∣∣∣∣
∂Fσ(y − x, λ)

∂yk

∣∣∣∣ 6 C2(ρ, δ)r(1 + σ2δ2)−1, r ≥ δ > 0 (3.17)

where the constants C1, C2 do not depend on x, y and σ.

From Lemma 3.3 and Lemma 3.4 we obtain

Lemma 3.5. The matrix Π(y, x, σ) defined by formulas (3.12), (3.13) is the Car-
leman matrix for the domain Dρ and surface S.

Proof. From (3.12), (3.13) and lemma 3.2 we have

Π(y, x, σ) = Ψ(y − x) + G(y − x, σ),

where

G(y − x, σ) =
∥∥∥∥

G(1)(y − x, σ) G(2)(y − x, σ)
G(3)(y − x, σ) G(4)(y − x, σ)

∥∥∥∥ ,

G(i)(y − x, σ) =
∥∥∥G

(i)
k j(y − x, σ)

∥∥∥
3×3

, i = 1, 2, 3, 4,

G
(1)
kj (y − x, σ) =

4∑
q=1

(
δkjaq + bq

∂2

∂ xk∂ xj

)
ϕσ(y − x, kq), k, j = 1, 2, 3,

G
(2)
kj (y − x, σ) = G

(3)
k j (y − x, σ) =

2α

µ + α

4∑
q=1

3∑
m=1

εqεk j m
∂

∂xm
ϕσ(y − x, kq),

k, j = 1, 2, 3,

G
(4)
kj (y − x, σ) =

4∑
q=1

(
δkjcq + dq

∂2

∂ xk∂ xj

)
ϕσ(y − x, kq), k, j = 1, 2, 3.

Direct computations show that the matrix G(y−x, σ) in the first variable satisfies
system (2.1) everywhere in Dρ.

Based on (3.12), (3.13), and (3.16), we obtain∫

∂Dρ\S

(|Π(y, x, σ)|+ |T (∂y, n(y))Π(y, x, σ)|) dsy ≤ C1(x)
1 + σ3

, (3.18)
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where C1(x) some bounded function inside Dρ. The lemma is proved. ¤

We put

Uσ(x) =
∫

S

[{T (∂y, n(y))Π(y, x, σ)}>U(y)− (3.19)

−Π(y, x, σ){T (∂y, n(y))U(y)}]dsy x ∈ Dρ.

The following theorem is true

Theorem 3.6. Let U(x) be a regular solution to system (2.1) in the domain Dρ,
satisfying the condition

|U(y)|+ |T (∂y, n(y))U(y)| ≤ M, y ∈ ∂Dρ\S.

Then for σ ≥ 1 and x ∈ Dρ it is true

|U(x)− Uσ(x)| ≤ MC2(x)
1 + σ3

,

where C2(x) is some bounded function in Dρ.

The proof of the theorem follows from formulas (3.11), (3.19) and from inequal-
ity (3.18).

Corollary 3.7. Under the condition of the theorem 3.6, the following equivalent
extension formulas are valid

U(x) = lim
σ→∞

∫

S

[{T (∂y, n)Π(y, x, σ)}>U(y)−Π(y, x, σ){T (∂y, n)U(y)}]dsy,

(3.20)

U(x) =
∫

S

[{T (∂y, n)Π(y, x)}>U(y)−Π(y, x){T (∂y, n)U(y)}]dsy +

∞∫

0

R(σ, x)dσ,

(3.21)
where

R(σ, x) =
∫

S

[{T (∂y, n)Ω(y, x, σ)}>U(y)− Ω(y, x, σ){T (∂y, n)U(y)}]dsy, (3.22)

Ω(y, x, σ) =
∂

∂σ
Π(y, x, σ) =

∥∥∥∥
∂

∂σ
Π(i)

kj (y, x, σ)
∥∥∥∥ , i = 1, 2, 3, 4,

Π(y, x)− matrix constructed by formula (3.12) and (3.13) for

Φσ(y − x, λ) = Φ(y − x, iλ) =
exp(iλr)

4πr
, r = |x− y|.

Equivalence of extension formulas (3.20) and (3.21) follows from the formula

lim
σ→∞

Uσ(x) =

∞∫

0

dUσ(x)
dσ

dσ + U0(x).

and here from the existence of the limit on the left is equivalent to the existence
of an improper integral on the right.
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Based on the extension formula (3.20) and (3.21), we give criterion for the
solvability of the Cauchy problem (3.10). For this denote by S0 the interior points
of the surface S, that is, the surface without boundary.

Theorem 3.8. Let S ∈ C 2, U0 ∈ C 1(S) ∩ L(S), U1 ∈ C(S) ∩ L(S). Then , for
problem (3.10) to be solvable, it is necessary and sufficient that

∣∣∣∣
∞∫

0

R(σ, x)dσ

∣∣∣∣ < ∞, (3.23)

uniformly on any compact K ∈ Dρ , x ∈ K.If these conditions are satisfied then
the solutions are defined by the equivalent formulas (3.20) and (3.21).

Proof. Necessity. Let there exists a regular solution U(x) in domain Dρ, of the
system (2.1) satisfying the conditions U(y) = U0(y), T (∂y, n(y))U(y) = U1(y),
y ∈ S0, where U0 ∈ C1(S)∩L(S), U1 ∈ C(S)∩L(S), K is compact in Dρ. Choose
ε > 0 such that K ⊂ G

2ε

ρ ⊂ Gε
ρ ⊂ Gρ. Distance K to ∂Gε

ρ is not less than τ1ε.

Denote by Sε, the part of S lying in a closed corner G
ε

ρ , and through Dε
ρ to fill

in the G
ε

ρ parts of the limited surface Sε. By the definition of the matrix-valued
function R(σ, x), we need to consider the function

∂

∂σ
Φσ(y − x, λ) =

1
−2π2

∞∫

0

Im
[
exp

(
w2

)
E
′
ρ(σw)

] cosλudu√
u2 + α2

where w = i
√

u2 + α2 + y1 − x1, α2 = (y2 − x2)2 + (y3 − x3)2, α > 0, is regular

in y and x in the whole space, hence all elements of the matrix
∂

∂σ
Π(y, x, σ) are

regular. Then, according to Green’s formula applied in the area Dε
ρ with the

boundary Sε

⋃
Pε, where Pε = ∂Dε

ρ\Sε we get
∫

Sε

[{T (∂y, n)Ω(y, x, σ)}>U(y)− Ω(y, x, σ){T (∂y, n)U(y)}]dsy =

=
∫

Pε

[{T (∂y, n)Ω(y, x, σ)}>U(y)− Ω(y, x, σ){T (∂y, n)U(y)}]dsy,

Using this equality and from formula (3.22), we obtain

∣∣R(σ, x)
∣∣ ≤

∫

Sε

∣∣∣∣{T (∂y, n)Ω(y, x, σ)}>U(y)− Ω(y, x, σ){T (∂y, n)U(y)}
∣∣∣∣dsy+

+
∫

S\Sε

∣∣∣∣{T (∂y, n)Ω(y, x, σ)}>U(y)− Ω(y, x, σ){T (∂y, n)U(y)}
∣∣∣∣dsy ≤

≤
∫

Pε

[|Ω(y, x, σ)|+ |{T (∂y, n)Ω(y, x, σ)}>|] [|U0(y)|+ |U1(y)|] dsy+
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+
∫

S\Sε

[|Ω(y, x, σ)|+ |{T (∂y, n)Ω(y, x, σ)}>|] [|U0(y)|+ |U1(y)|] dsy

Let x ∈ K (|x′| < τ(x1 − 2ε), x1 > 2ε), y ∈ Pε ∪ S \ Sε, (|y′| ≥ τ(x1 − ε), y1 > ε).
Then

τy1 − τx1√
u2 + α2

≤ |y′| − |x′| − ε

|y′ − x′| ≤ 1− ε1, u ≥ 0, y′ 6= x′

and for the argument arg w = arg τw, τw = iτ
√

u2 + α2 + τy1 − τx1. Thus,
inequality (3.7) is true, if in this case y′ = x′ then Rew < 0 and this inequality is
even more true. Therefore, for Φσ(y − x, λ), Fσ(y − x, λ) estimates (3.16), (3.17)
hold, where δ ≥ ετ1. Now, based on inequalities (3.8), (3.9) and Lemma 3.3, we
have

|R(σ, x)| ≤ C(ρ, ε)
1 + ε3τ3

1 σ3
,

where C(ρ, ε) is a limited number. From the last inequality we obtain condition
(3.23). Necessity is proved.

Sufficiency. Let S ∈ C 2, U0 ∈ C 1(S), U1 ∈ C(S) and the inequality is true
(3.23). Let us show that there exists a regular solution U(x) of the system (3) such
that U(y) = U0(y), T (∂y, n(y))U(y) = U1(y), y ∈ S0. Consider the function U(x)
given by two equivalent formulas of the form (3.20) and (3.21). The first term
on the right-hand side of formula (3.21) defines two functions that are regular
solutions of the elliptic system (2.1), respectively, in the domains Dρ and R3

+ \Dρ,
such that the difference between their limit values along the normals and their
stresses ( x(1), x(2) two points on the normal, symmetric with respect to the point
y ∈ S0, when approaching y ) on S0 is equal to the vector functions U0(y) and
U1(y), respectively, and if one of these functions is continuous in the corresponding
domain up to S0, then the other also has this property. The second term on the
right side of (3.21) by virtue of (3.23) is a regular solution of system (2.1) in R3

+.
So, the right side of formula (3.21) defines two regular solutions U+(x) and U−(x)
in domains Dρ and R3

+\Dρ,respectively such that for any point y ∈ S0 the equality
{

U+(y)− U−(y) = U0(y)
T (∂y, n)U+(y)− T (∂y, n)U−(y) = U1(y), (3.24)

moreover, the limit relations are fulfilled uniformly with respect to y on each
compact part of S0. If max{y1 : y ∈ Dρ} < x1, where y ∈ S, x ∈ Gρ, then
Re w = y1 − x1 < 0 and for Φσ(y − x, λ) and its derivatives, inequality (3.16) is
valid. Now from formula (3.19), we see that U−(x) = 0 and, according to the
uniqueness theorem, U−(x) ≡ 0, x ∈ Dρ. It is clear that U−(x) extends smoothly
to Dρ∪S0. Then U+(x) also extends smoothly as a function of the class C1(Dρ)∪S0

(see [24], lemma 1.1). Further, note that from formula (3.20) and inequalities
(3.18) it follows that U−(x) = 0 for x1 > max{y1 : y ∈ Dρ}. Then, according
to the uniqueness theorem (since solution of elliptic systems is analytical [29])
U−(x) ≡ 0, x ∈ R3

+\Dρ. Now from (3.24) we obtain the statement theorems.
The theorem is proved. ¤
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