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Abstract. When solving a boundary problem numerically, it is necessary to
control the quality of the approximate solution. This control can be achieved
by an adaptive procedure of the mesh to efficiently approximate the numerical
solution of the problem. While in the past an energy measure was generally
used to define the error, at present, it is preferred that the error measure
is in quantities of interest. The error representation in these quantities of
interest involves the solutions of the original problem and an associated ad-
joint problem, which can be combined in different ways, therefore, the error
representation is not unique. In this article we analyze three representations
of the error combined with an error estimator based on local problem solving
using submeshes that discretize each of the elements. An optimal remeshing
criterion for quantities of interest is used to define an adaptive procedure.
An optimal remeshing criterion is used to define a goal-oriented adaptivity
procedure. Numerical experimentation shows the efficiency of the estimator
and the convergence properties of the adaptive procedure.

1. Introduction

It is common to use the finite element method (FEM) to obtain numerical
approximations solution for many mathematical models that arise from engineer-
ing or science problems to be obtained from the finite element method (FEM).
However, mainly due to the complexity of the problems, the numerical solution
must be certified, i.e. it must be endowed by an error bound. This control can be
achieved through an adaptive procedure of the mesh to efficiently approximate the
numerical solution of the problem. While, in the past, this control was achieved by
using an energy norm of error, today, it is preferred that the measurement of error
be based on quantities of interest. The quantities of interest represent physical
quantities of the solution such as averages, flow rates, velocities, or shear stress
at a point. Mathematically, the quantity of interest is characterized by a linear
functional J (u) on the space of functions to which the solution belongs.

The error representation is given by a combination of the solution of the original
(primal) problem and the solution of a problem attached (dual) to the primal
problem. In the dual problem, the linear functional J (u) appears on the right-hand
side of the weak equation and plays the role of an external load. The combination
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of error estimates in energy norm for the primal and dual problems allows us to
estimate error bounds on the quantity of interest [1, 3, 4, 5, 6].

There are two alternatives to estimate the error in the energy norm, which
correspond to two large families of methods. First, the error estimators by post-
processing, originally introduced by Zienkiewicz and Zhu [7] to estimate stresses
in the energy norm. The behavior of smoothing techniques to define error esti-
mates in quantities of interest is analyzed in Calderón and Díez [8], in this case,
displacements were estimated instead of stresses. The second alternative is the
residual type error estimators, introduced by Babuška and Rheinboldt [9]. These
approximate the error by solving local problems, where the source term is given
by the weak residual, see among others [10, 11, 12, 13].

In general, residual estimators approximate the boundary conditions of local
problems by distributing the flow jumps between adjacent elements, achieving a
certain balance for each local problem [14, 10]. However, Díez et al. [15, 16],
manage to avoid the calculation of the flow jump and all its drawbacks. Following
these ideas, this paper generalizes this residual estimator to quantities of interest.

Once the error has been estimated, a fundamental component within an adap-
tive process is given by the remeshing criterion. Therefore, it is necessary to define
and analyze remeshing criteria for the adaptive process in goal-oriented error es-
timation. In this context, each author has followed his own recipe, often based on
heuristic considerations and without any requirement on the design and optimal-
ity of the mesh, or on the representation of the error used [5, 17, 18]. Calderón
and Díez in [19], define and analyze remeshing criteria for quantities of interest
and optimize one of the proposed criteria. On the other hand, in [2], the authors
designed a goal-oriented adaptive algorithm for time-dependent PDEs employing
explicit methods in time.

In this work, we derive three error representation of the quantity of interest and
develop a goal-oriented adaptive process for elliptic boundary value problems fol-
lowing the ideas presented in [2]. Although the elliptic problems considered in this
paper can be seen as a particular case to those studied in [2], here we derive three
representations of the error in the quantity of interest and develop and analyze
an adaptive process for those error representations. Also, to estimate the error,
we developed a residual error estimator by solving local problems, instead of using
reference solutions obtained by solving global problems on meshes with elements
split in half, the efficiency of the residual error estimator on the quantity of in-
terest is analyzed. The meshes generated by the adaptive process are constructed
from an optimal remeshing criterion for quantities of interest.

The outline of this article is the following: section 2 describes the primal and
dual problems and their discretizations, also defines the error equation and derives
three error representation. In section 3 we introduce the residual error estimator
and discuss its implementation. In section 4 we develop the optimal remeshing
criterion that we are going to use in our goal-oriented adaptive process. Section
5 defines the algorithm for the adaptive process. In section 6 we present the
numerical results in 2D space obtained with the goal-oriented adaptive process.
Finally, section 7 summarizes the conclusions and possible extensions of this work.
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2. Problem statement

In this section, we consider the weak formulation of a boundary value problem
in general to obtain the error equation, the error in the quantity of interest, and
dual problem.

2.1. Model problem and primal problem. Let Ω ⊂ Rd, where d ∈ {1, 2, 3},
an open bounded domain. For the weak formulation, we need defined the following
spaces:

V := H1(Ω) =
{
u ∈ L2(Ω) : ∇u ∈ L2(Ω)

}
V0 := H1

0 (Ω) =
{
u ∈ L2(Ω) : ∇u ∈ L2(Ω), u = 0 on ∂Ω

}
.

So we use the following weak formulation for a boundary value problem (with
homogeneous boundary values){

Find u ∈ V such that
B(u, v) = ℓ(v), ∀v ∈ V0,

(2.1)

where B(·, ·) is a continuous coercive bilinear form on V0 and ℓ is a linear form
on V0 that belongs to the dual space V ′, and we use the energy norm. So, by
the Lax-Milgram theorem, the weak formulation (2.1) has a unique solution. We
define the problem (2.1) as primal problem.

2.2. Discrete problem and error equation. In order to approximate the so-
lution of (2.1) we use finite elements for the discretization in Ω. We denote by Ωk,
k = 1, . . . , nelem the elements of the mesh. Related to the discretization of (2.1),
we need defined the followings space:

VH :=
{
u ∈ V : u |Ωk

∈ Pr

(
Ωk

)
,∀k = 1, . . . nelem

}
VH0 := {u ∈ VH such that u = 0 on ∂Ω}

where Pr (·) is the space of all polynomials with degree less than or equal to r on
Ωk with values in R. VH is a finite-dimensional subspace of V generated by the
continuous, piecewise functions defined over each finite element Ωk, and VH0 is the
corresponding discrete subspace of V0. Then, we define the discrete problem of
(2.1) as {

Find u
H
∈ VH such that

B(u
H
, v) = ℓ(v), ∀v ∈ VH0 ⊂ V0,

(2.2)

The error of the primal problem e := u−u
H

, belongs to space V0, and satisfies the
error equation

B(e, v) = ℓ(v)− B(u
H
, v) =: RP(v), ∀v ∈ V0, (2.3)

where RP defines the weak residual associate with the approximate solution u
H

of
the primal problem (2.1). RP is a linear functional in V ′

0 , it depends on the given
date and the finite elements solution uH .
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2.3. Quantity of interest and dual problem. We want to control the quality
of the numerical solution uH by a quantity of interest, which is represented by a
linear functional J : V0 −→ R. The precision of J (uH) can be estimate in terms
of the error J (e) = J (u)− J (u

H
).

At first sight, to obtain J (e), we should calculate e by (2.3) and then obtain
J (e). However, the problem (2.3) is practically impossible to solve computation-
ally, even in its discrete version. Another way to get J (e) without calculating e,
is to try to find z ∈ V0 such that J (e) = RP(z). This is possible if we introduce
the following dual problem{

Find z ∈ V0 such that
B(v, z) = J (v), ∀v ∈ V0.

(2.4)

Since e ∈ V0, in this problem we can replace v by e, then we obtain the following
representation of the error in the quantity of interest.

J (e) = B(e, z) = RP(z). (2.5)

Problems (2.1) and (2.4) have the same difficulty to find the exact solution re-
spectively. Therefore we must define the discrete formulation of the problem (2.4)
as {

Find z
H
∈ VH0 such that

B(v, z) = J (v), ∀v ∈ VH0.
(2.6)

The error of the dual problem ϵ := z− zH , belongs to space V0 and satisfies the
error equation

B(v, ϵ) = J (v)− B(v, zH) =: RD(v), ∀v ∈ V0, (2.7)

where RD defines the weak residual associate with the approximate solution zH .
The different representations of the error in the quantity of interest are induced

by the above mentioned, and they are summarized in the following theorem.

Theorem 2.1. Let u
H
∈ VH0 and z

H
∈ VH0 be the finite elements approximations

of the solutions of the primal and dual problems respectively (the solutions of the
(2.2) and (2.6) problems). Then the representation of the error in the quantity of
interest associate to these solutions J (e), can be represented as:

J (e) = B(e, z − ϕH) (2.8a)
= RP(z − ϕH) (2.8b)
= RD(u− ϕH), (2.8c)

where B(·, ·) is the bilinear form in (2.1), RP and RD are the residuals of the primal
(2.3) and dual problems (2.7) respectably, and ϕH is any function in VH0.

Proof. For any ϕ
H
∈ VH0, by Galerkin orthogonality we have,

B(e, ϕH) = RP(ϕH) = 0. (2.9)

On the other hand, since e ∈ V0, we can replace v in (2.4) by e to obtain

J (e) = B(e, z). (2.10)
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By (2.9) and (2.10), we obtain the first equality: J (e) = B(e, z) − B(e, ϕ
H
) =

B(e, z − ϕH). Since the solution z of the dual problem (2.4) belongs to the space
V0, we can replace v by z in (2.3) to obtain

B(e, z) = RP(z). (2.11)
Now, if we use (2.10) and (2.11) together the Galerkin orthogonality (2.9), we
obtain the second equality (2.8b).

Replacing v by u− ϕ
H

in (2.7), we have
J (u− ϕ

H
)− B(u− ϕ

H
, z

H
) = RD(u− ϕ

H
),

since ϕ
H
∈ VH0. We also have u

H
∈ VH0, therefore J (u

H
) − B(u

H
, z

H
) = 0. By

combining the last two equalities, we obtain
J (e)− B(e, z

H
) = RD(u− ϕ

H
).

And, by the Galerkin orthogonality we obtain the last equation
J (e) = RD(u− ϕ

H
).

�

Note that in (2.8) the error representation holds for any function ϕ
H
∈ VH0, so

different functions ϕ
H

do not modify the global representation of J (e). Neverthe-
less, the local representations of the error are different depending on the choice of
ϕH . A proposal for an optimal choice of ϕH , is given by Diez and Calderón [19].
In particular, in this work, ϕH = zH is chosen for the representations in (2.8a)
and (2.8b), and ϕ

H
= u

H
is chosen for the representation in (2.8c). Then the

representations of the error in (2.8) are rewritten as
J (e) = B(e, ϵ) = RP(ϵ) = RD(e). (2.12)

2.4. Local error representation.
In any adaptive process, a local distribution of error is necessary throghout the

domain Ω. This is generally achieved by restricting the integral operators on each
element Ωk of the mesh. By (2.12) we obtained

J (e) =

nelem∑
k=1

Bk(e, ϵ) =

nelem∑
k=1

RP
k(ϵ) =

nelem∑
k=1

RD
k(e), (2.13)

where nelem is the number of the elements of the mesh, Bk(·, ·), RP
k(·) and RD

k(·) are
the restrictions of the B(·, ·), RP(·) and RD(·) to Ωk, respectively. The energy norm
of the error into each element Ωk is denoted by ∥e∥2k = Bk(e, e). While the error
representations in (2.8) are globally equivalent, the local error representations in
(2.13) are not, i.e. Bk(e, ϵ) ̸= RP

k(ϵ) ̸= RD
k(e). For example, by Green identity, the

primal residual representation of the error for elliptic problem is
nelem∑
k=1

Bk(e, v) =

nelem∑
k=1

{
RP

k(v) +

∫
∂Ωk

n · ∇u
H
vds

}
.

So for any element Ωk

Bk(e, v) = RP
k(v) +

1

2

∑
Γi

∫
Γi

vJ∇uHK · nds, (2.14)
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where J∇u
H
K := ∇uH|Ω1

− ∇uH|Ω2
, and

⋃
i Γi = ∂Ωk. If Γi ⊂ ∂Ω, the integral is

zero. We will use (2.14) in the numerical results in section 6.

3. Error estimation

In the error representations (2.12), primal e and dual ϵ errors are unknown,
since the exact solutions u and z are unknown. Therefore, We have to propose
a computationally accessible strategy to estimate these errors. A practical way
to estimate these errors is through the reference solutions u

h
and z

h
instead of

the exact solutions u and z respectively. Clearly, these reference solutions lead
to the reference errors eref := u

h
− u

H
and ϵref := z

h
− z

H
, which we could use

in the error representations (2.12), but the global calculation of u
h

and z
h

in the
space Vh0 is computationally prohibitive, because the space Vh0 is finer than VH0.
Therefore, the error estimate must be local, i.e., we must estimate the error in
each element of the mesh, using only the information contained in the element or
a small neighborhood around it.
The local estimations of the reference errors eref and ϵref is obtained using the
residual equations (2.3) and (2.7) respectively. These local problems are solved
with homogeneous Dirichlet boundary conditions, which allows to obtain an in-
dependent error estimation for each element. Obviously the error is not zero at
the boundary ∂Ωk of the each element Ωk, however, a strategy to improve the
estimation of the error at the boundary ∂Ωk will be proposed in section 3.2. In
the remainder of this section, results will be presented only with respect to error
e of the primal problem. Analogously, the estimator and the same results can be
obtained for the error ϵ of the dual problem.

Let us start by defining some spaces and functions that we will be using.
Vk = {u ∈ V0 : u has compact support in Ωk}
V ∗ := V1 ⊕ V2 ⊕ · · · ⊕ Vnelem

ek = the projection of e over Vk

e∗ :=
nelem∑
k=1

ek

We can see that the subspaces Vk are orthogonal to each other with respect to
B(·, ·). e∗ is a global approximation of e, in fact e∗ is the projection of e over V .

Lemma 3.1. The projection ek and the global approximation e∗ satisfies the fol-
lowing bounds:

nelem∑
k=1

∥ek∥2 ≤ ∥e∥2. (3.1)

∥ek∥ ≤ ∥e∥k. (3.2)
∥e∗∥2 ≤ ∥e∥2. (3.3)

Proof. Since ek is the projection of e over Vk according to the global form B(·, ·),
the difference e− ek is orthogonal to ek, i.e.

B(e− ek, ek) = 0. (3.4)
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This orthogonality condition is also satisfied if we use the local form Bk(·, ·), i.e.
is orthogonal to ek, i.e.

Bk(e− ek, ek) = 0 (3.5)
As the subspaces Vk are orthogonal to each other with respect to B(·, ·), then by
(3.4) and Bessel’s inequality, we obtained the first bounded:

nelem∑
k=1

∥ek∥2 =

nelem∑
k=1

B(ek, ek) =
nelem∑
k=1

B(ek, e) ≤ B(e, e) = ∥e∥2.

By (3.4) we obtained the following equality:
∥e∥2k = Bk(e, e) = Bk([e− ek] + ek, [e− ek] + ek)

= Bk(ek, ek) + Bk(e− ek, e− ek) = ∥ek∥2k + ∥e− ek∥2k,
from which we obtained the second bound. The third bound follows immediately
from the definition of the e∗ and by (3.1). �

We deduce that any family of subspaces Vk of V0, which are defined on disjoints
subdomains, allows us to obtain local projections ek of the exact error e, whose
norm ∥ek∥ is a lower bound of the local norm of the exact error e (3.2). On the
other hand, e∗ is a global approximation of the exact error e, whose global norm
∥e∗∥ is a lower bound of the global error measure ∥e∥ (3.3). And finally, both the
global approximation e∗ and the local approximation ek, improve as the space V ∗,
which is generated by the subspaces Vk, approaches V0.

The global approximation e∗ is associated a family of subspaces Vk, which is
defined from a partition of Ω into subdomains Ωk. The global approximation e∗

is zero at the points on the boundary of each Ωk that are in the interior of Ω.
Those points are called hidden points of the global approximation because we are
artificially forcing e∗ to be zero at them. For this reason, the estimation e∗ is
called the interior estimate and is perfectly characterized by choosing elementary
submeshes. On the other hand, the space V ∗ cannot be a good approximation of
V0 if many points of the domain Ω remain hidden.

3.1. A local error estimator: interior residuals. Each subspace Vk is de-
fined over an element Ωk. The definition of the local subspaces Vk characterize
the projections ek, and each ek is taken a local approximation of the error, i.e. as
a approximation of the error inside each element Ωk. To systematize the compu-
tations and to have a simple implementation, we defined an reference elementary
submesh over a reference element. The elementary submeshes over each Ωk are
built applying the isoparametric transformation to this reference elementary sub-
mesh, see 1.

By assembly all the elementary submeshes, a refined mesh discretizing the whole
domain Ω is obtained. Te characteristic size of the refined mesh is denoted by h.
This mesh could be used in the computation of a reference solution u

h
, which is

more accurate than u
H

. However, the computation of the reference solution must
be avoided because of the large amount of degrees of freedom involved.
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Now, with respect to the spaces VH0, Vh0, V ∗ and Vh0, we have the following
strict inclusions.

VH0 ⊂ Vh0 and V ∗ ⊂ Vh0.

In effect, the first inclusion is a consequence of the fact that the space Vh0 is ob-
tained by the reference mesh, which is built from the original computational mesh.
And the second inclusion is a consequence of the fact that the space Vh0 include all
the spaces Vk generated by the elementary submeshes, and therefore also contains
its sum V ∗ (V ∗ := V1 ⊕ V2 ⊕ · · · ⊕ Vnelem). This inclusion is strict and cannot
be an equal because Vh0 contains the interpolation functions generating each Vk,
associated with the interior nodes, but also the interpolation functions associated
with the nodes lying.

The reference error eref := u
h
− uH is the error of the solution uH with respect

to the reference solution u
h
, and does not coincide with the error of the reference

solution u−u
h
, which must be smaller than e or eref. In fact, the error e, is the sum

of the reference error eref and the error of the reference solution e = eref+(u−u
h
).

Lemma 3.2. The norms ∥eref∥ and ∥e∗∥ satisfied the following inequalities
∥e∗∥ ≤ ∥eref∥ ≤ ∥e∥ (3.6)

Proof. As u
h
, u

H
∈ Vh0, by Galerkin orthogonality, we obtain that the reference

error is the projection of e = u− u
H

on Vh0. In effect,
B(e− (u

h
− uH), uh

− uH) = B(u− u
h
, u

h
)−B(u− u

h
, uH) = 0.

Therefore, the norm ∥eref∥ is a lower bound of the global measure of the error ∥e∥:
∥eref∥ ≤ ∥e∥. The other inequality is obtained because e∗ is the projection of eref
on V ∗:
B(eref − e∗, e∗) = B(u−uH − e∗ − (u−u

h
, e∗) = B(e− e∗, e∗)−B(u−u

h
, e∗) = 0.

�
With the error estimator we want to approximate the local an global norms of

eref without solving the global problem. In fact, e∗ the projection of eref on V ∗,
is already an initial estimate of eref. The global projection e∗ is obtained by the
local projection ek on each subspace Vk. Each projection ek is computed solving
a local problem, with a few degrees of freedom and a low computational cost.

The norm of ek grows with the size of the associated subspace Vk, i.e. with
the number of degrees of freedom of the elementary submesh. A sequence of ap-
proximations based on gradually refined submeshes provides increasing estimates
of ∥e∗∥, but bounded by ∥eref∥. Therefore, if the submesh is refined, the norm of
the projections, both global and local converge to a value that underestimates the
reference error norm. This underestimation could be relatively far from ∥e∥, and
even from ∥eref∥, due to the fact that we are forcing the approximate function e∗

to take zero values at the hidden points.
In the next section we introduce a new family of projections that retain the

philosophy of the given projection. The new family of projections is based on
a new partition of the domain Ω different from that provided by the elements
Ωk. This time the information contained in the flow jumps is taken into account
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without having to compute these jumps directly. So, we define subspaces whose
functions have supports that cover the edges of the elements Ωk (the hidden nodes
forgotten in the internal estimation).

3.2. Improvement of the estimation. (Enrichment of the estimation.
Overlapped meshing). In this section new terms are added to the estimator so
that the estimate obtained is as close as possible to the exact error, maintaining
in any case the lower bound property.

Since e∗ is the projection of the reference error eref on the space V ∗, the reference
error can be expressed as the sum: eref = e∗ + e⊥ref, where e⊥ref is orthogonal to
e∗ and to the space V ∗. Then, as ∥e∗∥2 = ∥eref∥2 − ∥e⊥ref∥2, the norm ∥e⊥ref∥
is the underestimation of the reference error associated with the global interior
estimation.

The goal of the enrichment of the estimation is to approximate the forgotten
part of the reference error e⊥ref, and add it to the interior estimates. The element
e⊥ref belong to V ⊥, the orthogonal complement of the space V ∗. As we want to
approximate e⊥ref, we must project e or eref on a space include in V ⊥.

Let us consider a new partition of the domain Ω in a family of subdomains
Λm, with m = 1, . . . , nΛelem. In order to understand the the difference between
the two domain partitions, the subdomains that are defined by Λm are called
patches, while Ωk are called elements of the compute mesh. In the same way as
with the elements, each patch Λm is discretized by a patch-submesh generating an
interpolation subspace Wm in V0(Λm). The subspaces Wm are generated following
the same strategy used for the subspaces Vk. Each path-submesh is chosen as part
of the global reference mesh that generates Vh0. Thus, submeshes that discretize
overlapping elements and patches share nodes and elements of the refined global
mesh generating Vh0, which determines the geometry and mesh of the patches.

Since the subdomains Λm have zero measure intersections, the subspaces Wm

are orthogonal to each other. The projections of eref or e on the subspaces Wm are
a new family approximations to eref.

We define W̃m as the part of Wm orthogonal to e∗, i.e. W̃m := Wm∩ span{e∗}⊥.
As W̃m is a restriction of Wm subject to a single linear condition, the dimension of
W̃m is equal to Wm minus one (or equal to the dimension of Wm, if e∗ is orthogonal
to Wm).

Let ηm the projection of the eref on W̃m. Since e∗ and each one of the estimates
ηm are orthogonal, by Bessel’s inequality

∥e∗∥2 +
nΛelem∑
m=1

∥ηm∥2 =

nelem∑
k=1

∥ek∥2 +
nΛelem∑
m=1

∥ηm∥2 ≤ ∥e∥2. (3.7)

As we are obtaining a lower bound of the exact error, it is preferable to impose as
few constraints as possible. If too many restrictions are imposed on the problem,
the estimate will be far from the value ∥e∥. Therefore, only orthogonality is
imposed on the overall interior estimate e∗, which adds the contributions of the
patches to the interior estimate (3.7).
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We have to estimate the local error locally to obtain an approximation to ∥eref∥2k.
Therefore, to the norm of the first estimate ∥ek|2k, we must add the contribution
of all the patches Λm that overlap with the element Ωk. This contribution is the
measure of the restriction Λm in Ωk, which is given by ∥ηm∥2k = B(ηm, ηm). Thus,
an approximation to the local norm of the error ∥eref∥2k can be evaluate by

∥ek∥2k +
∑
m

∥ηm∥2k , (3.8)

where the index m in the summation takes the values such that the patch Λm

overleaps the element Ωk.
In order to compute ∥ηm∥k (the contributions to the element Ωk), we must

identify the elements that belong to both patch-submeshes (discretization of Λm)
and the elementary-submeshes (discretization Ωk). As this can be complex to or-
ganize the computations, a new approach is introduced to facilitate programming.
Instead to compute ∥ηm∥k, we compute an equidistribution of ∥ηm∥2 between all
the elements that overlap with the patch Λm. Therefore, the local quantities in
(3.8), will be approximate by

∥ek∥2k +
∑
m

∥ηm∥2

Mm
, (3.9)

where Mm is the number of the elements that overlap with the patch Λm and
the index m has the same range of variation as in equation (3.8). This approach
may cause loss in the lower bound, particularly when elements with very different
errors are adjacent.

The orthogonality condition to the global interior approximation is a linear
restriction imposed at the same time with the boundary conditions. Of course,
the boundary conditions of the problem on each patch are imposed according to
the same criterion as given for imposing the boundary conditions in the elementary
problems.

The orthogonality condition to the global interior approximation can be imple-
mented in a simple way, if the nodes of the submeshes discretizing the patches and
the elements coincide. Therefore the discretization of the patches is conditioned
by the discretization of the elements. If this condition is applied, orthogonality
becomes a linear restriction on the local problem over each patch. This constraint
can be easily imposed using the Lagrange multiplier technique.

For the estimator definition to be complete, it is necessary to specify which
partition corresponds to the patches and their corresponding discretization. A
possible elemental submesh and associated patches are shown in Figure 1. The
mesh must allow to choose a priori the remaining hidden points in the complete
estimate. For example, these points can be the nodes of the original compute
mesh. With this geometrical definition, the ηm projection includes the effect of
the flow jumps through the side covering the patch Λm.

Instead of obtaining eref by solving a global problem, a first estimate e∗ is
proposed, which consists of solving local problems with a low computational cost.
However, by adding η in the second phase of the estimation, the only remaining
hidden points are at the intersections of the edges of the elements and the patches,
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Figure A

Figure B

Figure C

Figure 1. Reference elementary submesh over a reference ele-
ment Ω̂ (Figure A), a induced elementary submeshes over a reg-
ular mesh (Figure B) and arbitrary meshes (Figure C), a patch-
submeshs (shaded portion of Figure B).

thus reducing the number of hidden points considerably. Thus, the full estimate
e∗ + η ( which seeks to approximate eref ) is zero at the remaining hidden points.

3.3. Implementation of the estimator in the quantity of interest. To
avoid defining a new notation, in the primal problem we will use e∗ = e∗ + η
to define the sum of the estimated error in the interior of each element (interior
estimate) and the enrichment Similarly, the estimated error ϵ∗ is defined for the
dual problem. Therefore, the estimated error, e∗, in the energy norm complies
with the following bounds ∥e∗∥ ≤ ∥eref∥ ≤ ∥e∥. Similarly, when we use e∗ and ϵ∗

in any of the representations of the error in (2.12),
J (e∗) ≈ Si, i = 1, 2, 3, (3.10)

where S1 := B(e, ϵ), S2 := RP(ϵ) y S3 := RD(e), its possible to obtain bounds
for J (e) from [5] and [6]. Therefore, we can intuit that J (e∗) can approximate
J (eref). “appropriately”, i.e., J (eref) ≈ J (e∗).

The control of the accuracy of the numerical solution u
H

will be carried out
by an adaptive process driven by the quantity of interest and not by the energy
norm. In numerical experimentation, the results in energy norm will be used only
to compare the effectiveness of the process.

4. Remeshing criterion

To obtain a solution that satisfies a required accuracy (acceptable solution) using
a mesh with the least number of degrees of freedom (optimal mesh), an adaptive
process is required in addition to the error representation and estimation. To
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make this adaptive process it is necessary to define a remeshing criterion, which
uses the results obtained from the error estimator to obtain an adequate spatial
distribution of the elements leading to an optimal mesh.

Let E be the functional error that we want to control, in goal-oriented adaptivity
E is J (e). E can be decomposed into the elemental contributions

E =

nelem∑
k=1

Ek, with Ek = Bk, Ek = RP
k(ϵ), Ek = RD

k(e).

Each element of this mesh is denoted as Ωk. If the elements in the mesh are
sufficiently regular, the size of the each element is taken as

Hk =
[
Ωk

]1/d
,

where d is the dimension of the space and
[
Ωk

]
is the size element.

The number of elements and their characteristic size in the new mesh are de-
noted by n̂elem and Ĥ, respectively.

The goal is to derive an expression for Ĥk as a function of Ek y Hk, such that
the new mesh meets the accurate requirement with a low computational cost.
Following the the ideas in [19] we obtain

Ĥk =
[ Ê

Ek n̂elem

]1/α
Hk,

where Ê is the error in the new mesh and n̂elem is given by

n̂elem =

[
1

Ê d/α

nelem∑
k=1

(Ek)
d/α

]α/(α−d)

,

where α is the local convergence order. Thus, n̂elem can be evaluated once all the
local errors Ek in the current mesh have been computed since Ê is a predefined
amount.

5. Adaptive error control

In this section we propose an algorithm for error control based on quantities of
interest, which consist of an iterative process that implements all the techniques
developed in the previous sections. This strategy is very general and does not
require information about the type of problem that we are dealing with. Taking
as an example the representation of the error J (e) = RP(ϵ), the algorithm is
described as follows.
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Algorithm 1 Adaptive error control
1: Define the initial mesh and compute: u

H
and z

H
.

2: Compute the dual error ϵ∗ using the residual estimator.
3: Compute the spatial distribution of the error by

S2 :=

nelem∑
k=1

RP(ϵ∗).

4: If J (e) ≈ S2 ≤ TOL (the tolerance is reached), the iterative procedure
finishes. The solution u

H
satisfies the required accuracy. If the tolerance

is not achieved:
(a) Compute each Ĥk to define the new computational mesh.
(b) Create the new mesh.

5: Define the initial mesh as the mesh obtained in step 4.b and go to step
1.

6. Numerical experimentation

In this section we present the numerical results obtained by applying the adap-
tive algorithm proposed above.The behavior and accuracy of the estimates together
with the remeshing criterion are analyzed in elliptic problem over a bounded do-
main Ω ⊂ R2. In these examples, the effectiveness of the estimator is justified in
cases where the problem (primal or dual) has large changes in its derivatives. The
computations of both the primal solution u

H
and the dual solution z

H
are done

using bilinear (p = 1) finite elements (quadrilaterals) on all meshes of the adaptive
process (h-type adaptivity).

The quality of the estimate is measured using the global effectivity index

I eff :=
Si

J (e)
, for i = 1, 2, 3,

when the exact error is available (which is the case of the examples to be analyzed).
Otherwise, the exact error is replaced by the reference error and the Ieff is
replaced by a reference effectivity index Iref . Similarly, when we use energy
norm, the effectiveness index is defined as I eff

ener = ∥e∗∥/∥e∥. The local quality
of the estimates is measured using the local effectivity index. I eff

k = Si,k/Jk(e),
where Si,k and Jk(e) are the contributions of the element Ωk to Si and J (e).

Example 1: We solved the Problem (2.1) for the Poisson equation{
−∆u = 2000(y(1− y) + x(1− x)), in Ω = (0, 1)× (0, 1).

u = 0 on ∂Ω
(6.1)

The exact solution for this problem is u(x, y) = 1000xy(x− 1)(y − 1), see Figure
2 (left). The quantity of interest is defined by the functional

J (u) :=

∫
Ω

u(x)ψ(x− x0)dΩ,
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Figure 2. Example 1. Primal solution u
h

(left) and dual solution
z
h

(right) problems.

with
ψ(x) :=

{
C exp(−ε2/(ε2 − |x|2)) if |x| < ε.
0 if |x| ≥ ε,

(6.2)

x0 = (0.5 , 0.5), ε = 0.1 and C is such that
∫
Ω
ψ(x− x0)dΩ = 1.

The adaptive process starts with a uniform mesh of 25 elements (36 nodes).
With this mesh, the relative error in the quantity of interest is 4% but we want
to obtain a solution with an error of less than 0.01%, i.e, with a tolerance of 10−4.

Applying algorithm 1 with a tolerance of 10−4, a succession or meshes is gener-
ated, the numerical results of which are shown in Table 1. and the global effectivity
indexes. The last column shows the values of the effectivity index of the error es-
timator in the energy norm.

We show in Table 1 the exact relative error J(e)/J(u), the relative estimated
error of the different representations S1, S2, S3, and the global effectivity indexes.
The last column shows the values of the effectivity index of the error estimator in
the energy norm. It is observed that the effectiveness is around the average of 80%,
in addition to the fact that ∥e∗∥ ≤ ∥e∥, as it was already justified theoretically.

Table 1 shows that to obtain a solution with a tolerance of 10−4, the adaptive
procedure driven by the error representations B(·, ·), RP(·) y RD(·), requires meshes
of 1677, 3424 and 2043 elements respectively. While in uniform meshes, to obtain
the solution with the same tolerance, a mesh of 6241 elements is needed. This
indicates that with the adaptive procedure the required solution is obtained with
a lower computational cost. On the other hand, if the adaptive procedure were
driven by the energy norm error estimator, i.e., if ∥e∥ ≤ TOL, then to achieve a
tolerance of TOL = 10−3, meshes with more than 35 thousand elements are needed.
This fact shows the effectiveness of the adaptive procedure when quantities of
interest are used.

The global effectivity indexes in Table 1 show acceptable behaviors for the adap-
tive procedure, however, they present some type of noise or perturbation, which is
not present in the effectivity indexes given in the energy norm (last column of the
Table 1). To justify this phenomenon, we will use as an example mesh 3 obtained
with the primal representation of the error RP(e∗). Figure 3 shows the effectivity
indexes for the elements that lie inside the circle where the function ψ(x) ̸= 0,
see equation (6.2), and the elements that lie on the circumference that defines
the circle. In most of the elements that are on the circumference, the estimator
presents an erratic or very poor effectiveness, bringing as a consequence that the
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Table 1. Example 1: number of mesh obtained by adaptivity
process with TOL = 10−4, nodes of the mesh, elements of the
mesh, exact relative error of the quantity of interest, estimated
relative error of the representations S1, S2 and S3, global effec-
tivity indexes of the error estimator, effectiveness index in energy
norm.

mesh nodes nelem J (e)/J (u) S1/J (u) I eff I eff
ener

1 36 25 0.41566× 10−1 0.40811× 10−1 0.982 0.898
2 451 417 0.93986× 10−3 0.80186× 10−3 0.853 0.813
3 1677 1630 0.68098× 10−4 0.67497× 10−4 0.991 0.826
4 3405 3360 0.13791× 10−3 0.10137× 10−3 0.735 0.811
5 6991 6932 0.23020× 10−4 0.45793× 10−4 1.989 0.831
6 7202 7147 0.50594× 10−4 0.70827× 10−4 1.400 0.809

mesh nodes nelem J (e)/J (u) S2/J (u) I eff I eff
ener

1 36 25 0.41566× 10−1 0.36236× 10−1 0.872 0.898
2 630 584 0.86034× 10−3 0.84065× 10−3 0.977 0.880
3 1621 1581 0.19842× 10−3 0.16801× 10−3 0.847 0.828
4 3424 3379 0.61742× 10−4 0.65388× 10−4 1.059 0.797
5 6938 6886 0.13927× 10−5 0.28707× 10−4 4.320 0.812

mesh nodes nelem J (e)/J (u) S3/J (u) I eff I eff
ener

1 36 25 0.41566× 10−1 0.33673× 10−1 0.810 0.898
2 223 204 0.30608× 10−2 0.19315× 10−2 0.631 0.794
3 2043 1979 0.42929× 10−4 0.10918× 10−3 2.543 0.828
4 3298 3246 0.84181× 10−4 0.86068× 10−4 1.022 0.818
5 6627 6573 0.47942× 10−4 0.76695× 10−4 1.560 0.809
6 6820 6761 0.43673× 10−4 0.37876× 10−4 0.867 0.847

0.4

0.45

0.5

0.55

0.6

0.4

0.45

0.5

0.55

0.6

0

2

4

6

8

10

Figure 3. Example 1. Local effectivity indexes of mesh 3 for
RP(e∗) (left). 547 elements lie inside the circle and 74 elements
lie on circle (right).
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global effectiveness index presents oscillating values, when in reality the meshes
have changed very little. This behavior is due to the discontinuity presented by
the local problems and the number of the points Gauss quadrature within the
nonzero region when the integral is calculated. On the other hand, some elements
that remain on the inner boundary of the circle also show low effectiveness, see
Figure 3 (left), This is because the patch of elements used to define the enrichment
of the estimator η is not completely contained in the circle.

It is important to note that the error representation J (e) = B(e, ϵ), requires
to estimate the error in the primal and dual problems, resulting in disadvantage
with the other two representations given in (2.12), which require only to estimate
the error in one of the two problems. On the other hand, if the estimated errors
are given by e∗ = e− η1 and ϵ∗ = ϵ− η2, with η1, η2 ∈ VH0, then

J (e) = B(e, ϵ) = B(e∗, ϵ∗) + B(η1, η2).

Obviously, the term B(η1, η2) is not necessarily small and could deteriorate the
quality of the estimate, for more details, see [8]. This fact can cause the oscillatory
behavior of the relative error of B(·, ·) shown in Figure 4.
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e
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ti
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e
 e
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r

Tolerancia

Nodes

Figure 4. Example 1. Relative error using the adaptivity pro-
cess for the three error representations Si/J (u), i = 1 . . . 3, and
the relative error ||e∗||/||u|| using uniform meshes (without the
adaptivity process). TOL = 10−3 (left) and TOL = 10−4 (right).

On the other hand, we show in Figure 4 the estimated relative errors for two
tolerances: 10−3 y 10−4. In order to show the efficiency of the adaptive process, a
small modification was made in step 4 of Algorithm 1. Once the desired tolerance
was reached, the algorithm was allowed to continue two or three more iterations,
observing that the new meshes presented slight modifications in the number of
elements and nodes. That is, the succession of meshes converges.

Example 2: We solved the Problem (2.1) for the Poisson equation

−∆u = f(x, y), in Ω = (0, 1)× (0, 1). (6.3)
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with the following Dirichlet boundary conditions

u(x, 0) = x

(
0.6 + e

−10.5
(
3+16(x− 1

2 )
2
)2
)
, x ∈ [0, 1]

u(1, y) = 0.6 + e
−10.5

(
3+16(y− 1

2 )
2
)2

, y ∈ [0, 1]

u(x, 1) = x

(
0.6 + e

−10.5
(
3+16(x− 1

2 )
2
)2
)
, x ∈ [0, 1]

u(0, y) = 0, y ∈ [0, 1]

(6.4)

The exact solution is u(x, y) = x(0.6 + e−10.5(1−16(x− 1
2 )

2−16(y− 1
2 )

2)2), see Figure
5 (left). The source term f is obtained by substituting u in (6.3). A quantity
of interest is defined to control the solution at the points where the derivatives
have strong variations, i.e. on the circle, (x− 1

2 )
2 + (y − 1

2 )
2 = 1

16 . Thus, J (u) :=∫
Ω
u(x)ψ(x− x0)dΩ, where ψ(x− x0) is defined in (6.2), x0 = (0.5 , 0.5), ε = 0.3

and C is such that
∫
Ω
ψ(x− x0)dΩ = 1.

Figure 5. Example 2. Primal solution u
h

(left) and dual solution
z
h

(right) problems.

The adaptive procedure is initiated on a uniform mesh of 25 elements (36 nodes)
with a relative error in the quantity of interest of about 15%. (J (eref)/J (u

h
) ≈

15%) and, we want to obtain two solutions with errors lower than 0.1% and 0.01%,
and the conclusions that can be derived from the results obtained are the same as
those obtained in example 1. For the two tolerances, the Figure 6 shows the graph
of the relative error of the solution obtained on meshes generated by the adaptive
procedure oriented by the three representations of the error, it also shows the
relative error of the solution obtained on uniform meshes (without the adaptive
process). In the Figure 6, we can see that the adaptive process defines meshes
with much smaller degrees of freedom than in the uniform meshes, in which the
numerical solution is obtained with the prescribed tolerance. This confirms the
efficiency of the adaptive process for finding optimal meshes for solving problems
with quantities of interest. The numerical results for the solution with tolerance
10−4 are shown in Table 2. The results show that the effectivity indexes for the
energy norm have an effectiveness percentage above 80%. However, the indexes of
effectiveness in the quantity of interest have significant losses in their effectiveness,
but this does not affect the effectiveness of the adaptive process.

The meshes generated by adaptive procedure from an initial mesh of 36 nodes
are shown in Figure 7. They show the expected qualitative behavior due to the
gradient changes of the primal problem solution.
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Figure 6. Example 2. Relative error using the adaptivity pro-
cess for the three error representations Si/J (u), i = 1 . . . 3, and
the relative error ||e∗||/||u|| using uniform meshes (without the
adaptivity process). TOL = 10−3 (left) and TOL = 10−4 (right).

Table 2. Example 2: number of mesh obtained by adaptivity
process with TOL = 10−4, nodes of the mesh, elements of the
mesh, exact relative error of the quantity of interest, estimated
relative error of the representations S1, S2 and S3, global effec-
tivity indexes of the error estimator, effectiveness index in energy
norm.

mesh nodes nelem J (e)/J (u) S1/J (u) I eff I eff
ener

1 36 25 0.14415× 10+0 0.46504× 10−1 0.323 0.920
2 447 420 0.63467× 10−2 0.23080× 10−2 0.364 0.772
3 6075 6064 0.40330× 10−3 0.76848× 10−4 0.191 0.803

mesh nodes nelem J (e)/J (u) S2/J (u) I eff I eff
ener

1 36 25 0.14415× 10+0 0.83325× 10−2 0.058 0.920
2 802 751 0.55860× 10−2 0.29973× 10−2 0.537 0.789
3 8265 8246 0.19689× 10−4 0.22136× 10−5 0.112 0.817

mesh nodes nelem J (e)/J (u) S3/J (u) I eff I eff
ener

1 36 25 0.14415× 10+0 0.91904× 10−1 0.638 0.920
2 700 662 0.60684× 10−2 0.26516× 10−2 0.437 0.792
3 8009 7998 0.35895× 10−4 0.88750× 10−5 0.247 0.805

Because of the effectiveness that the energy-norm estimator achieves, it will be
appropriate to analyze the quantity of interest using bounds for the error made,
as is done in [5] y [6]. In addition, a comparative analysis in terms of effectiveness
and computational cost with other estimators (residual and postprocessing) should
be performed. Mainly, with residual estimators using bubble functions, see [10]) ,
and post-processing or smoothing estimators such as those given in [8].
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700 nodes802 nodes

8009 nodes8265 nodes6075 nodes

447 nodes

Figure 7. Example 2: Meshes generated by adaptive procedure
starting from an initial uniform mesh of 36 nodes.
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