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NONLINEAR GENERALIZED FRACTIONAL MIXED
INTEGRODIFFERENTIAL EQUATION WITH NONLOCAL
CONDITION

H. L. TIDKE, R. P. MAHAJAN, AND V. V. KHARAT

ABSTRACT. The aim of this paper is to study a nonlocal Cauchy problem
for nonlinear generalized mixed fractional integrodifferential equations with
Katugampola derivative. Some new existence results of solutions for the
given equations are obtained by using the fixed point theorems. Examples
are presented to demonstrate the usefulness of our main results.

1. Introduction

The differential equations of fractional order are generalizations of classical
differential equations of integer order. The history of fractional calculus dates
back to the 17th century. So many mathematicians define the most used fractional
derivatives, Riemann-Liouville in 1832, Hadamard in 1891 and Caputo in 1997
[15, 21]. Fractional calculus plays a very important role in several fields such as
physics, chemical technology, economics, biology; see [6, 7, 8, 11, 12, 18, 20] and
the basic theory of fractional calculus can be found in [1, 2, 5, 16, 19] references
therein.

In 2011, Katugampola introduced a derivative that is a generalization of the
Riemann-Liouville fractional operators and the fractional integral of Hadamard in
a single form [13, 14]. The integrals are special cases when a parameter is defined
at various values; when p — 0, the Riemann-Liouville operators are obtained;
when p — 1, the Hadamard operators are obtained.

Further, in [3], the authors studied the fractional differential equations with
Stieltjes and fractional integral boundary conditions using the generalized deriva-
tives of the form

PDy(t) = f(EY(t)), t€10,T],

_ T o Ca- sPi=104(5)
s=0. [ yane = £ [ T

where, » D — generalized fractional derivative and H —continuous function.
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In [4], the authors discussed Caputo-type fractional differential equations with
Katugampola type generalized fractional integral boundary conditions of the form

PeDory(t) = f<t,y(t)>, t€10,T],

y(T) =" oI5, y(m:) + k. dy(0) =0 n; € (0,T),

j=1

where ?.Dg} denotes the Caputo fractional derivative and f is a continuous func-
tion.

Recently, the authors in [10] discussed the existence and stability of solution of
the initial value problem (IVP):

(D3 x)(t) = f(t,z(t)), t € J = (a,T], (1.1)
(eI 7z)(a) = e,y = a4+ B(1 — a),c2 €R, (1.2)

for generalized Katugampola fractional differential equation by using Schauder
fixed point theorem and the equivalence between IVP (1.1)-(1.2) and the integral
equation

In [9], using Krasnoselskii’s fixed point theorem, Schauder fixed point theorem and
Schaefer fixed point theorem, authors discussed the existence of solution of IVP
with nonlocal initial condition:

(eD&Px)(t) = f(t,x(t)), t € T := (a,T), (1.4)
(I z)(a+) = anx(éj),a <y=a+p(l-a), &€ (a,T], (1.5)

where QDgf is the generalized Katugampola fractional derivative of order o €
(0,1) and type 8 € [0,1] and 9[;_7_“’ is the generalized Katugampola fractional
integral with o > 0. Authors also proved the equivalence between (1.4)-(1.5) and
the integral equation

j=1

fr et (tg) F(s.(s))ds, (1.6)

where
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NONLINEAR GENERALIZED FRACTIONAL MIXED EQUATIONS

The above results motivate us and therefore, in this paper, we obtain the exis-
tence of solution of the following nonlinear generalized fractional integrodifferential
equation (NGFIDE) of order o (0 < « < 1) and type § € [0, 1]:

(D3P ) (1) = £ (100, / (e, s)a(s)ds, / ' Kts)a(s)ds),  (L8)

(L 2)(t) =D mja(),a <y =a+B(1—a), (1.9)

j=1

for t, & € J := (a,T], where QDg‘f is the generalized Katugampola fractional
derivative of order o € (0,1) and type 8 € [0,1] and 9[;;” is the generalized
Katugampola fractional integral with ¢ > 0. The functions f : JXRXxR xR — R,
h, k:J xJ — R are continuous, and &; are pre—fixed points satisfy 0 < a < & <
o< &n <Tandn;, j=1,2,...,m are real numbers.

First, we establish an equivalent mixed-type nonlinear Volterra Fredholm inte-
gral equation

K te — g8 y=1 m & o é’g_sa@ a-l
0= (T50) X[ 1(% )

j=

X f(s,x(s), /aS h(s,7)z(7)dr, /aT k:(s,T)x(T)dT) ds

a 0
X f(s,x(s), /alt h(s,T)x(T)d, /aT k:(s,T)x(T)dT)ds, (1.10)

where

o -1\
& “g> , (1.11)

for NGFIDE (1.8)-(1.9) in the weighted space of continuous functions C_, ,[a, T
presented in the next section. We use the Krasnoselskii’s fixed point theorem and
Schauder fixed point theorem to prove the existence results for NGFIDE (1.8)-
(1.9).

The rest of the paper is organized as follows. In Section 2, some definitions,
notations and basic results are given. We prove the equivalent integral equation
in Section 2 and the existence results proved in Section 3. Illustrative examples
are given in the last section.

2. Preliminaries

Here we introduce some definitions and present preliminary results needed in
our proofs later.
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Let the Euler gamma and beta functions be defined, respectively, by

] 1
INa) = / z*te dr, B(a,B) = / (1—2)* 12?1z, a >0, g>0.
0 0

It is well known that B(«, 5) = T'(a)T'(8)/T'(a + B) for a > 0, 8 > 0, see [15].
Throughout the paper, we consider [a,T], 0 < a < T < oo being a finite interval
on RT and o > 0.

Definition 2.1 ([15]). The space X?(a,T), ¢ € R, p > 1 consists of those real
valued Lebesgue measurable functions g on (a,T") for which [|g|| x» < co, where

t

b /p
dt
l9llxz = (/ g ()" > ;o p=1 and |g|xe = esssup|ty(t)|
a a<t<T

In particular, when ¢ = 1/p, we see that X7, (a,T) = Lp(a, T).
Definition 2.2 ([17]). We denote by C[a,T] a space of continuous functions g on
(a, T) with the norm

lgllc = e lg(t)]

The weighted space C, ,[a,T], 0 < < 1 of functions g on (a,T] is defined as

ol T] = {g (6, T] > R: <tg - ag>wg(t) € C’[a,T]} (2.1)

0
(tggag)vg(t)

Definition 2.3 ([17]). Let 6, = (t¢7'd/dt), 0 < v < 1. Denote C3 la, T] the
Banach space of functions g which are continuously differentinble, with d,, on [a, T
upto order (n— 1) and have the derivative d, g on (a, T such that 6,9 € C, ,la,T]

with the norm

lole,., = | (£ SN0

and Co ,[a,T] = Cla, T

= Imax

)
c t€lat]

C3, la, T = {5g€CaT —0,1,...,n—1,5ggEC'%Q[a,T]}, neN

with the norm
n—1 n
lglicy, . =>_l165gllc+ 150l , - lalley, =D max|o59(t)].
k=0 k=0

In particular, for n = 0 we have ng[a, T) = Cy ,la,T).

Definition 2.4 ([13]). Let a > 0 and f € XP(a,T), where X? is as in Definition
2.1. The left-sided Katugampola fractional integral ¢I¢, of order « is defined as

ero, f(t) = /: o1 (tg _Q Sg)a_l IJ:((Z))dS t>a. (2.2)
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Definition 2.5 ([14]). Let o € RT\N and n = [a] + 1, where [a] is the integer
part of a. The left-sided Katugampola fractional derivative Dy, is defined as

DGy f(t) = oy (“Ig7 " f(s)) (B)

() o () e e

Definition 2.6 ([17]). The left-sided generalized Katugampola fractional deriva-
tive QDZ‘f of order 0 < a < 1 and type 0 < 8 < 1 is defined as

(eDaf) (0 = (22708, 2177008 @, (2.4)

for the functions for which the right-hand side expression exists.

Lemma 2.7 ([9]). Suppose that o >0, 8> 0, p>1 and o,c € R such that 0 > c.
Then for f € XP(a,T), the semigroup property of Katugampola integral is valid.
This is
I F(8) = C IO (). (2.5)
Lemma 2.8 ([14]). Suppose that « >0, 0 <~y <1 and f € C, pla,T]. Then for
allt € (a,T],
°D2, 12, £(t) = F(1). (2.6)

Lemma 2.9 ([14]). Suppose that a >0, 0 <~ <1, f € C ola,T] and °I.;*f €
Cl la,T]. Then

e[y oD f(t) = f(t) — E’Ia;—(“a)(a) (tQ;aQ) o (2.7)

Lemma 2.10 ([9]). Suppose °I$, and °Dg, are defined as in Definitions 2.4 and
2.5, respectively. Then

te —qe\ 7! (o) te —qe\ >t !
ore = <0 0, t 2.8
a+< 0 ) 1—1(0_+1) 0 , > ,O'> ) >a? ( )

0 _ g@ a—1
9D3+< . ) =0,0<a<l (2.9)

Remark 2.11. For 0 < a < 1, 0 < g <1, the generalized Katugampola fractional
derivative QDO"IB can be written in terms of Katugampola fractional derivative as

epef = epf=g el v —effi=Yepy -y — a4 (1 - a).

Lemma 2.12 ([14]). Let > 0,0< v <1 and f € Ci_ pla,b]. If a >, then
oro — 1 orJc —
( Ia+f) (a) = g;l_lgl.;,. ( Ia+f) (t)=0

To discuss the existence of a solution of NGFIDE (1.8)-(1.9), we need the fol-
lowing spaces:

8 la,T) = { €Cr la,T] @Da+gecl_w[a,T]}, 0<y<1 (2.10)
and
Cl ., ola, TI ={g € Cr_ [a,T] : °D g € C1_5 [0, T]}, 0 <y <1 (211)
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Since 2D g = Qlfil_a)9D3+g, it is obvious that C

1 a T el la, T).

1=v0
Lemma 2.13 ([9]). Leta >0, 8>0andy=a+F—af. Ifge C’IL%Q[CL,T],
then .

211Dy, g(t) = oI5, 2D g() = *D Vg t).

To prove the equivalence between NGFIDE (1.8)-(1.9) with Volterra Fredholm
integral equation (1.10), we note the following lemmas.

Lemma 2.14 ([14]). Let0 < a<1,0< <1, y=a+p—aB. If f : (a,T]xR —
R is a function such that f(-,z(-)) € Ci_y,la,T) for any x(-) € Ci_4,la,T),
then x(-) € C]_, ,la,T] satisfies IVP (1.1)-(1.2) if and only if x(-) satisfies the
nonlinear Volterra Fredholm integral equation. (1.3)

Lemma 2.15 ([9]). Let0<a<1,0< <1,y =a+f8—-ap. If f: (a,TIXxR = R
is a function such that f(-,z(-)) € Ci—yola,T] for any z(-) € Ci_4 ,la,T], then
x € C)_ ,la,T| satisfies IVP (1.4)-(1.5) if and only if x satisfies the nonlinear
Volterra Fredholm integral equation. (1.6)

The following lemma deals with equivalence of mixed-type integral equation (1.10)
and the given NGFIDE (1.8)-(1.9).

Lemma 2.16. Let 0 < a <1, 0< B <1and vy =a+ B — af. Suppose that
F i (a,b] xRxRxR — R is a function such that F(-,y(-), z(-),w(-)) € Ci—~,ola,b]
for any y() € C1—, ola,b]. Function y(-) € C{_, [a,b] is a solution of NGFIDE
(1.8)=(1.9) if and only if y(-) is a solution of the mized-type nonlinear Volterra
Fredholm integral equation (1.10)

Proof. Necessity Part: By appling Lemma 2.14 and Lemma 2.15, a solution of
NGFIDE (1.8)-(1.9) can be expressed as

_ L y(at) (2 —at\"T
)= =5 (55
to(te—se a-1 F (s,y(s),f: H(s,7)y(r)dT, f: K(s,r)y(7’)d7’>
[ (557) ) N
(2.12)
Hnce on setting ¢t = §; in (2.12), we obtain
y(&5)
_enlylat) (€ -at\T
I'() 0
& i 5]9 _ g a-l ¢ (s,y(s),f; H(s,7)y(r)dr, f;K(s,T)y(T)m') .
+/a ’ 0 (o) s
(2.13)

and by multiplying both sides of (2.13) by 7;, we get
n;y(&5)
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—1
_ QI;+7y(a—|—)n. f;‘) _a\”
INCI I 0

; o _ o =L F(s,y(s), [ H(s,7)y(r)dr, st,'r T)dT
W/ESN(@) (005 i H O Py ar [ K s, ryutrir)

0 I'(a)
(2.14)|

Using the given initial condition of NGFIDE (1.8)-(1.9), we have

( Ia—i— y) (a+)

= any(fj)

s b
xf(s,y(s),/ H(S,T)y(T)dT,/ K(S,T)y(T)dT> ds (2.15)

a—1
orl— L'(7) - J £ — s°
CI ) = £y K Y [ (fg )

b
f(s,y(s),/ H(s,T)y(T)dT,/ K(S,T)y(T)dT) ds (2.16)

where K is as in (1.11). Substituting (2.16) into (2.12), we obtain the integral
equation (1.10).

Sufficient Part: Applying QI;;A’ on both sides of the integral equation (1.10),
we get

a—1
_ K [t —at\"T & G (& -5
I My(t) = F(a)g[;ﬁ( 0 ) Z’U/ s 0
—~ "/,

Jj=
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s b
xf(s,y(s),/ H(S,T)y(T)dT,/ K(S,T)y(T)dT) ds
s b
+ LIS F (3»?/(5)»/ H(S,T)y(T)dT,/ K(S,T)y(T)dT> ds,

using Lemmas 2.7 and 2.10, we have

('Y m §g—89 a—1
Qlf'y J
o= 1 (457)

x F Say(S),/ H(s,T)y dT/ K(s,T)y dT)dS

—&—Qllﬁla ty /Hts ds/Kts ds (2.17)

Since 1 —vy < 1— B(1 — ), Lemma 2.12 and limit ¢t — a+ gives

a—1
m é.g*Sg
Qll'y 7 J
" (@) g / ( 0

><]-" / H(s,7)y(r)dr, /abK(s,T)y(T)dT)ds (2.18)

Setting t = ¢; in (1.10), we have

_ o\ a1
y (&) = cmoz) 55’;@9) Zm/ se1 (55;3 )
xf(s,y /HST dT/KST )d

\./

,1

Further, we have

> iy (&)
j=1
_ a—1
K < 5 — s°
it [ (55)
s b 0—&‘9 =1
f(s,y(s),/ H(S,T)y(T)dT,/ K(s,7)y d7-> dszm (f )
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m 1 & gl g0 o=t
+wp [ (9)

j=1
< / H(s,m)y(r)dr, /ab K(s,7)y(7)d7> ds

& ot (539 _ 8@)(11 F (s,y(s),f: H(s,T)y(r)dr, f;K(S,T)y(T)dT)

“3ou z (@) "
_ & 5 —a® I
X 1+ICZ?7]- <>
i=1 ¢
— M* - . o g1 539_80 o
() Z”/ ( . )
b
><]-'<5,y / H(s,T) T)dT,/ K(s,7)y(7)d7> ds (2.19)

Equations (2.18) and (2.19), imply that
L Mylat) =Y niy (&)
j=1

Operating ¢D] to both sides of (1.10), from Lemmas 2.10 and 2.14, it follows
that

t
@D;y(t):eDfiI*“)f(t,y(t),/ H(t,s)y ds/ K(t,s)y ds) (2.20)

sincey € C7__ ,[a,b], from the definition of C{_ ,
then ¢DYM N F — 5,1 PO F ey a,bl.
For F € C1_, ,la,b], obviously ’-’Ii;ﬁ(lfa)]: € C1—4,0la,b], then 9];16(170‘)}" €
C’f",%g[a, b]. This means F and inlﬁ(l_a)]—' satisfy the conditions of Lemma 2.9.
Lastly, applying QIi_ﬂ(l_a) to both sides of (2.20), Lemma 2.9 helps us to obtain

[a,b], we have D),y € C1_ ,a, D

QDa+y( F(t,y(t) /Hts ds/Kts ds)

e

By Lemma 2.12, it is easy to observe that 911 Al a)]-"( ) = 0. Hence, it reduces

to
b
QD:ffy( t Lyt / H(t,s)y s)ds,/ K(t,s)y(s)ds).

Hence, the sufficiency is proved. This completes the proof of the lemma. O
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3. Existence of solutions

In this section, we state and prove the main results concerning the existence of
a solution of NGFIDE (1.8)-(1.9) with help of using Krasnoselskii’s fixed point
theorem and Schauder fixed point theorem.
The first result proved by Krasnoselskii’s fixed point theorem.
Theorem 3.1. Suppose that:

(H1) F:(a,b] x RxR xR — R is a function such that F(-,y(),z(-),w(-) €

Cf(lﬂr ;‘) [a,b] for any y € Ci_ o[a,b] and there exists a positive constant

L > 0 such that for ally,z,w,y,z,w € R,
(Hs3) The constant
T(y)L(L+ (Hp + Kp)(b — a))
I'(y+a)

a+y—1
_ & £2 —q b@ — ag
x | K] E nj ( :
i=1 e

where K is as in (1.11), H, = sup{|H(t,s)| :a < s <t < b} and K}, =
sup{|K(t,s)] 1 a < s <t <b}.

Then problem (1.8)-(1.9) has at least one solution in C7__

6 —

[a,b] C CT"7 la,b].

179

Proof. In view of Lemma 2.16, it is sufficient to prove the existence of a solu-
tion for mixed-type integral equation (1.10). Then we define an operator N :
Ci_y0la,b] = Ci_, pla,b] by

=gy (55) S ()

J—1

(s,y /Hm dT/KST )ds
[ ()

X ]-' s,y(s),/aS H(s,7)y(r)dr, /ab H(S,T)y(T)dT)dS. (3.1)

It is clear form assumption that the operator N is well defined. Set F(s) =
F(s,0,0,0) and

I'(y) S & - T b —a\"\ =
7=t +a) |Z771< ) +< 0 ) [Flley .-

Consider

B, = {y € C140la,0] 2 lylle,_, , < r}, where r > ——, 6 < 1.

K,.l

X
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NONLINEAR GENERALIZED FRACTIONAL MIXED EQUATIONS

Now, we write the operator N/ as combination of two operators P and Q on B, as
follows:

J

s b
f(s,y(s),/ H(S,T)y(T)dT,/ K(s,r)y(r)dr)ds. (3.2)

and

s b
X F(s,y(s),/ H(s,T)y(T)dT,/ K(s,T)y(T)dT)ds. (3.3)

The proof is divided into three steps:
Step 1. For any y,y € B, we prove Py + Qy € B,. For operator P, multiplying
both sides of (3.2) by ((t¢ —a?) /0)" 7, we have

e (U5) rlci / <§5;39>a—1

Then
0 _go\'7
o (“2)
| 9] ¢ _ ge a—1
< @;”ﬂ’/& SQ—1<£J ; )
X |]-'(s,y(s),/ H(s,7)y dT/ K(s,7)y(r)dr)|ds
LS [ e
< (Q)Z"J/ ( )"

b
|7 (s,y(s) /HST T)dT,/ K(s,7)y(r)dr) — F(s,0,0,0)|
+]f $,0,0,0)|)ds

Kl <~ [ 1,8 =5 a
STy 2| s )
1 Ja 0

s b
< (L) + 1y [yt + 8, [ r)ldn) + [Fs) s

5] sg 1(59

1 s — q¥ _1
Sty

IN
BE
gk

s
@\
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s — q?

(=)L (4 ) - )yl + () )

Y

ﬁ - . “ ngl 6;_)_59 a—1,82 —a? -1
= ()Z”J/a ( ) )

0 0
[L(1+ (Hy + Hy) (b= a))llyllc,—,, + IFllc, ]

X
Kl <& €9 —a® a1
)Zm’( ’ ; )

j=1
x B(a,y) x [L(1+ (Hy + Kp) (b= a)llylle, , , + [Flles ]
which implies
—  m at+y—1
T(7)[K| & —a
Pylle,_, , L =————~ i —
Pyl F(a+7);m ;
X (LU + (Hy + Kp) (b= a)llylley ., + 1 Fller,,] - (3:4)

For operator Q,

(=) e

%
1

[ () (5

0 0
s b
xf(s,y(s),/ H(s,T)y(T)dT,/ K(S,T)y(T)dT) ds, (3.5)

using the same fact that we used in the case of operator P again, we obtain

‘(Qw o (= )

%

o [ () (52
F ( o), [ sy, [ K T)y(T)dT>
(") e ()
< [E0U+ (Hy + Ko)(b— a))ly(s)| + [F(s))ds
Bl (M) o+ o+ K0 - e, + 17,

) 0
This gives

T'(7) <b9 — a9>a
<
12l < s (7

X ds
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x [L(+ (Hy + K3) (0= a)lly(s)ller,., + IF6)llen,.,] -
(3.6)
From equations (3.4) and (3.6) for every y,y € B, we obtain
||7Dy + Q?HCHf«,,g S prHleﬂ{,g + ||Q9H0177.Q S HT + w S r

which implies that Py + Qy € B,.
Step 2. Now we prove that operator P is a contraction mapping.
Let y,y € B,., for operator P we have,

(Py)®) - (Po)(B) (= ;“QW\
KL [ (g
<t ( . )

<AF ), [ 16wt [ K )
- Foato) [ i, [ K,
< %im a T o1 (59 ; 59>a1 L1+ (Hy + K3) (b — a)lly(s) — (s)|ds
< Er h+ Ko)0 - 0 RIBl.) i <€QQ >+ Iy =l
which is

||Py_Py||C177,g
m 0 a® a+vy—1
L1+ (Hy + K3)(b— a)]|[KID(y Z (6 ) T

IN

T(a+7)

<Olly =yl ,-

Hence, by assumption (Hs), the operator P is a contraction mapping.

Step 3. The operator Q is compact and continuous.

Since F € Ci_, la,b], by the definition of Ci_, ,[a,b], it is obvious that Q is
continuous. By Step 1, we have

I'(v) (bg - a‘-’)“
<
1vles . < e (7
X [£0+ (Hy + K)o~ a)lylle, ., + IFle, ).

which means Q is uniformly bounded on B;.
To prove the compactness of Q, for any 0 < a < t; < t2 < b we have

(Qy) (t1) — (Qu) (t2)]
7 t1 o1 9 — a-l F(s,y(s f H(s,1)y(r, f; K(s,7)y(r)dr)
= |/a S < ) ds

I(a)
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/atz ot <t@-gse>“ L F(s,y(s), [ H(s, Tr(é;,ij(s,T)y(T)dT)

<]:||C1W|/tlsg1 17 =52\ (52 —a®\” s
B F(a> a 0 0
1 _1
/tzsel (M)a (s@a@>” |
a % 0

< H}-HCl,%QF(’y) <t§ - a9>“+7_1 <t§ _ ag)(x-l-'y—l
o +7) 0 P

The term present on right-hand side of inequality (3.7) tends to zero as to — t;
either a +v < 1 or a + 7 > 1. Therefore, Q is equicontinuous. Hence, recalling
Arzela-Ascoli theorem, the operator Q is compact on B,..

In view of Krasnoselskii’s fixed point theorem, NGFIDE (1.8)-(1.9) has at least
one solution y € C1_, ,[a,b]. One can easily show that this solution is actually in

ds|

(3.7)

Cl_ -, g[a, b] by repeating the process from the proof of Lemma 2.16. This complete
the proof. |

Finally, we will discuss the existence result by using Schauder fixed point theorem.
For this, we need the following hypothesis:
(H3) F :(a,b] x Rx R xR — R is a function such that F(-,y(-), z(-),w(:)) €

Clﬁ(l,y ;)[a b] for any y,z,w € Ci_, ,la,b], and for all y,z,w € R there

exist £ > 0 and M > 0 such that
IF(t,y, 2z, w) < Lyl + |2] + [w]) + M.
Theorem 3.2. Suppose that (Hz) and (Hs) hold. Then NGFIDE (1.8)-(1.9) has
at least one solution in C{__ [a,b] C Cf;’i&[a, b).

Proof. Let B, = {y € C1—~la,b] : [yllc,_,, < e} with e > Q/(1—0) for 6 < 1,

where
_ MK in' & —a a+ M (bQ—aﬁ’)aﬁl.
Ia+1) = / 0 INa+1) 0

Consider the operator N' on B. defined in (3.1). We conclude the theorem by
considering the following three steps:

Step 1. First we prove that N (B.) C B.. By hypotheses (Hs) and (H3), for any
y € C1_4[a,b] and [|y|lc,_, , we have

o (75 ) >

o
L1+ (Hy + Ky) - yotr-t
<[ bF(a—lb-W ; '
L[1+ (Hy + Kp)(b— a)]T(7) b
O (=) Mol
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M - £ —af ’ M be — g2\ *
+F(a+1);nj< 0 >+F(a+1)( 0 ) '

INylle,_,, <Oe+Q<e,

This is

which gives N (B.) C B..

We shall prove that A is completely continuous.
Step 2. N is continuous. Let {y,} be a sequence such that y, — y in B.. Then
for each ¢ € (a,b], we have

() ) =~ o) (22)

1%

KL~ (9 e (S22)
< (@) an/a s ( 0 >
X | F(s,yn(s / H(s,T)yn (T dT/ K(s,7)yn(7)dr)

—F(s,y(s),/a H(s, )y dT/ K(s,7)y(7)dr)|ds

te—a2\'" 1 t e —ge\ !
() ()
0 (a) Jq 0

‘]:(syn /Hsryn dT/KSTyn()dT)

_nw@/mM nar, [ Ko uryin)as

F“H—a ( Iim <§Q_ Q>a+ﬂy 1+<b";a9)°‘)
< || F (-, ynl: /Hsr)yn dT/KST)yn()dT)

/HST dT/KST dT)||C1
’YQ
this implies
HNyn*Nyllcl N
|Z St (e

1%

’Y+04

><||.7-' y Yn (- /HST)yn dT/ KST)yn()dT>
/HST dT/KST dT)||C1 =
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Thus, N is a continuous operator.

Step 3. Finally, we prove that N (B;) is relatively compact.

Since N (B:) C B, it follows that A (B.) is uniformly bounded. By following
the procedure as we did in Step 3 in Theorem 3.1 , one can easily prove N is
equicontinuous on B..

As a <~ < 1 and noting (3.7), for any 0 < a < t; < t2 < b one has

[(Ny) (1) = (Ny)(t2)]

7l Ir) o
- oHr’y Zm !
t? —a® 7_1 2 —ge\ "1
. (( I ) _ ( 2 ) L 1(Qu) (1) — (Qy)(t2)]
0 0
Pl oI §h, =i Bt
= Tty =" &~ a0) (&2 —a?)
1Fler D) 8 — a2 aprmt 48— a2 iy
i — (= — 0,
L(y+a) 1 0 ) ( 0 ) |

as tog — t1. Thus, Q is equicontinuous.

Hence, N (B.) is an equicontinuous set and therefore N (B.) is relatively compact.
As a consequence of Steps 1 to 3 together with Arzela-Ascoli theorem, we can
conclude that N/ : B. — B. is completely continuous. By applying Schauder fixed
point theorem, we complete the proof. O

4. Example
In this section, we will show the applications of our main results with two examples.

Example 4.1. Consider the nonlocal problem

(D5 )y(t) = F(t,y(t), (Hy) (1), (Ky)(t), t € (1,2], (4.1)
(e y) (14) = 2y (g) y=a+B(1-a). (4.2)
Denoting o = %, 8= % gives v = %. Let o= % > 0 and set
F (e, o). () ) = (= 1)_1/16 v (% 1)15/16 siny()
+ i”Hy(t) + lle(t%
where (Hy)(t f1 3+t =iz y(s)ds, and (Ky)(t f1 (4+t)2 1+§}()6)d5.

We can see that

1/2 1/
(“*) (1, 000 06 0)

V16 s\
+ 1 T siny(t)

2

/2 -1
()
2 2
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1 /472 — 1\ /3 1 /472 1\ /8
+4( i > (Hy)(t)+4( T ) (Ky)(t) € C[1,2] (4.3)

2

Le. ]:(t7 Y, (Hy>(t)7 (’Cy)(t)) € C’1/8,1/2[17 2]
Moreover,

[F(ty, (Hy) (@), (Ky)(8)) = F(t, 9, (Hy) (@), (Hy) (@)
< %(Iy =gl + [(Hy) (1) = (Hy) (1) + [(Ky)(t) — (Ky)(D)]).

_1 - 1 - 1
So, we have L = 7, Hy = i and ,Kb = 55~
Some elementary computations gives us

1/2
IK| = ‘(F(0.875) - 2(®1

—~1/8\ —1
) ) ’%0.9521<1

T
2
and
) L0.875) 1+ L(2-1)+£(2-1))
4T(1.625)
1/2
()" 1y pam gy
x (09521 x 22— )"+ <1>
2 2
= 0.0837 x 2.2260
~0.1864 < 1.

All the assumptions of Theorem 3.1 are satisfied with || ~ 0.9521 and 6 ~ 0.1864.
Therefore, problem (4.1)-(4.2) has at least one solution in C /g1 /2[1, 2].

Example 4.2. Consider the nonlocal problem

(?De ) (1) = F(ty(0), (Hy) (1), (Ky)(1)), t € (1,2], (4.4)
1— 8 4
(“Lay"y)(14) = 3y(?> + 29(5) (4.5)
Denote o = 3, B=2and p=3>0.S0ov=2and (& =5) < (&=1). Set
F(t,y(t), (Hy)(t), (Ky)(t)) = sin (3ly(t)]) + 3Hy(t) + +5Ky(1), t € (1,2],

where

and

It is easy to see that F(t,y(t), (Hy)(t), (Ky)(t)) € Ci/s,1/2[1,2] and

Pt Hy(®)] < 5 (] + [Hy(0) + [Ky(1)).

So,wehaveﬁz%,MZO,Hb:%ﬁande:i.
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and

Moreover,
1/2 1/2
K| = ‘(F(0.875) - (3((3) , _ 1)_1/8+2(<§) ; _ 1)_1/8))_1‘

~0.1973 < 1
) I'0.875)i(1+ %(2—-1)+ %(2—1))

- 30(1.375)

1/2 1/2
X (0.1973 X 3(@);1)3/8 + 2(%1)3/8)
= 0.1502 x 1.5699
~ 0.2358 < 1.

With the values of |K| and 6, problem (4.4)-(4.5) satisfies all the conditions of
Theorem 3.2. Thus, problem (4.4)-(4.5) has at least one solution in C /s 1/2[1,2].
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