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Abstract : The present study is concerned with the peristaltic motion 

of blood through a horizontal channel. The blood is assumed to be 

conducting and non-Newtonian fluid of Rabinowitch type and a 

uniform magnetic field is applied along the transverse direction of the 

flow. The heat transfer in the liquid has also been taken into account. 

Using the assumption of long wavelength and low Reynolds number, 

the problem solved analytically. The effects of various parameters on 

velocity, pressure gradient and some other entities have been 

considered numerically and discussed through graphs. 
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1. INTRODUCTION 
Peristalsis, an innate property of many biological systems is found to occur in the 

movement of urine from the kidney to the bladder, vasomotion of small blood vessels, 

ovum transport in the fallopian tube, movement of chyme in the gastrointestinal tract 

and so on. Not only in physiological processes but it also gets a wide range of 

applications in engineering and industry also. 

Several theoretical and experimental attempts have been made to understand the 

peristaltic motion under different normal and pathological conditions. The first 

theoretical investigation possibly was done by Latham (1966). Later Fung and Yih, 

(1968), Shapiro et al.(1969), Yin and Fung (1969), Gupta and Seshadri (1976), and 

Machireddy and Kattamreddy (2016) have also made significant contributions to 

understand such type of flow for Newtonian fluid. To get information’s regarding the 

flow properties of physiological non-Newtonian fluids, Raju and Devanathan(1972) 

considered power law fluid of peristaltic motion in an axisymmetric tube arising by 

the proliferation of sinusoidal wave on the walls. Kaimal (1978) studied the peristaltic 

motion of arbitrary nature of wave shape for particle-fluid mixture in an 

axisymmetrical tube at low Reynolds number while Misra and Pandey (2002) studied 

the peristaltic transport of blood flowing through small blood vessels in which the 

core layer is Casson fluid while the outer layer is an incompressible Newtonian 

viscous fluid. Vajravelu et al. (2005) presented the peristaltic pumping of an 

incompressible Harschel Bulkley fluid model in a horizontal channel. Pandey and 
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Chaube  (2011) investigated wall properties during the action of peristaltic motion of 

couple stress fluid and concluded that the mean velocity is reduce by raising the 

couple stress parameter but it increases with increasing wall tension. The peristaltic 

motion of Carreau fluids through an inclined channel in presence of a uniform 

transverse magnetic field has been studied by Reddy et al. (2011) by using the 

perturbation method. Akbar and Butt  (2015) considered the heat transfer in  

peristaltic  transport of Herschel-Bulkley fluid through a non-uniform inclined 

channel. 

The study of heat transfer in association with peristalsis gets its importance as it 

plays a significant role in physiology. For instance, the thermodynamic features of 

blood are very useful in oxygenation and hemodialysis. In this connection, the work 

of Radhakrishnamachraya and Murty (1993) may be mentioned in which the heat 

transfer due to peristaltic transport in a channel of varying width has been analyzed 

for perturbed solutions for temperature and heat transfer coefficient. The problem of 

peristaltic pumping and heat transfer through an asymmetric channel was also studied  

bySrinivas and Kothandapani (2008) while Sinha et al. (2015) analysed  the  heat  

transfer of  MHD peristaltic motion through an asymmetric channel with variable 

viscosity. Recently Bhatt et al. (2017) studied peristaltic transport and heat transfer 

through a channel of non-uniform geometry in which the walls were assumed to be 

permeable and concluded that the temperature decreases with an increase in Darcy's 

number. The study of heat and mass transfer in connection with the peristaltic motion 

of  hyperbolic tangent fluid through a channel of varying width in presence of a 

uniform transverse magnetic field was  due to Sarvana et al. (2016). 

Rabinowitsch model is a well-established fluid model of non-Newtonian  

character. For such fluid, the shearing stress and shearing strain are connected by the 

relation : 

  𝜏𝑌𝑋
′ + 𝛾𝜏𝑋𝑌

′ 3
= 𝜇

𝜕𝑈

𝜕𝑌
                                                                             (1) 

where  γ is the coefficient of pseudoplasticityon which the non-Newtonian nature of 

fluid depends, μ is the viscosity of the fluid, U is velocity, X and Y are axial and 

transverse coordinates respectively. This model exhibits dilatant, Newtonian and 

pseudoplastic fluids nature for γ < 0, γ = 0 and γ > 0 respectively. Wada and Hayashi 

(1971) analyzed this model experimentally to justify theoretical results. The 

Rabinowitsh fluid model has been utilized by Singh et al. (2011, 2012) and Singh 

(2013), to investigate the different types of hydrostatic, hydrodynamic and squeeze 

film bearing systems. Singh and Singh (2014) and Akbar and Nadeem (2014), Maraj 

and Nadeem (2015) also studied the Rabinowitsch fluid model for peristaltic motions 

through peristalsis in channels of various curvatures.  

In the present investigation we proceed to analyse the effect of heat transfer for 

peristaltic transport of Rabinowitsch type fluid through a uniform horizontal channel. 

A uniform magnetic field is applied along the transverse direction of the flow. The 

present work seems to be helpful to understand the physiological nature of the fluid of 

pseudoplastic nature. 

2. ANALYSIS 
Let us consider the flow of Rabinowitsch fluid through a horizontal channel of 

uniform thickness. Sinusoidal wave is supposed to proliferate on the wall of the 
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channel and moving with speed c. Taking (X, Y) as a rectangular coordinates in a 

fixed frame, the geometry of peristaltic flow is shown in Fig.1. 

 
                                        Fig 1. Geometry of the peristaltic flow 

The geometry of wall surface is given as 

  𝐻(𝑋, 𝑡 ′) = 𝑎 + 𝑏𝑠𝑖𝑛 (
2𝜋(𝑋−𝑐𝑡′)

𝜆
)                        (2) 

where𝑎 is half channel width, b is the wave amplitude of the wave, 𝑡 ′ is time and𝜆 is 

the wavelength. Basic Equations are given by the following: 

Continuity equation 

  
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0,                                                                                         (3) 

Momentum equation 

  𝜌 (
𝜕𝑈

𝜕𝑡′
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
) = −

𝜕𝑝′

𝜕𝑋
+

𝜕𝜏𝑋𝑋
′

𝜕𝑋
+

𝜕𝜏𝑌𝑋
′

𝜕𝑌
− 𝜎𝐵0

2𝑈,                      (4) 

  𝜌 (
𝜕𝑉

𝜕𝑡′
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
) = −

𝜕𝑝′

𝜕𝑌
+

𝜕𝜏𝑋𝑋
′

𝜕𝑋
+

𝜕𝜏𝑌𝑋
′

𝜕𝑌
 ,                                   (5) 

Energy equation 

 𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡′
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
) = 𝜅 (

𝜕2𝑇

𝜕𝑋2 +
𝜕2𝑇

𝜕𝑌2) + 𝜏𝑋𝑋
𝜕𝑈

𝜕𝑋
+ 𝜏𝑌𝑌

𝜕𝑉

𝜕𝑌
+ 𝜏𝑌𝑋 (

𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
),  

(6) 

where U and V are components of velocity along X and Y directions respectively in a 

fixed frame of reference, 𝐶𝑝is the specific heat at constant pressure, T is temperature, 

κ is thermal conductivity, p is pressure, ρ is density and 𝑡 ′is time, 𝐵0 is the uniform 

transverse magnetic field. 
The transformation between fixed and wave frames is given by 

  𝑢′ = 𝑈 − 𝑐, 𝑣′ = 𝑉, 𝑥 ′ = 𝑋 − 𝑐𝑡 ′, 𝑦 ′ = 𝑌,(7) 

where𝑢′, 𝑣′, 𝑥 ′, 𝑦 ′ are axial velocity, transverse velocity, axial coordinate and 

transverse coordinate respectively in wave frame. 

Introducing the following non-dimensional quantities 

 𝑢 =
𝑢′

𝑐
, 𝑣 =

𝑣′

𝑐𝛿
, 𝑥 =

𝑥′

𝜆
, 𝑦 =

𝑦′

𝑎
, ℎ =

𝐻

𝑎
, 𝛿 =

𝑎

𝜆
, 𝑝 =

𝑝′𝑎2

𝜇𝑐𝜆
, 𝑅𝑒 =

𝜌𝑎𝑐

𝜇
, 𝜃 =

𝑇−𝑇0

𝑇0
,   
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𝑡 =
𝑐𝑡′

𝜆
, 𝑃𝑟 =

𝜇𝑐𝑝

𝐾
, 𝐸𝑐 =

𝑐2

𝑇0𝑐𝑝
, 𝜙 =

𝑏

𝑎
, 𝜏𝑥𝑦 =

𝑎𝜏𝑋𝑌
′

𝑐𝜇
, 𝜏𝑥𝑥 =

𝑎𝜏𝑋𝑋
′

𝑐𝜇
, 𝜏𝑦𝑦 =

𝑎𝜏𝑌𝑌
′

𝑐𝜇
, 

𝛼 =
𝑐2𝜇2

𝑎2 𝛾,  𝑀2 =
𝜎𝐵0

2𝑎2

𝜇
(8) 

and using transformationequations (1) to (6)with the assumption of long wavelength 

and low Reynolds number approximations, we get 

  𝜏𝑦𝑥 + 𝛼𝜏𝑥𝑦
3 =

𝜕𝑢

𝜕𝑦
 ,                                                                               (9) 

  ℎ = 1 + 𝜙cos (2𝜋𝑥) ,                                                                      (10) 

  
1

𝜆

𝜕𝑢

𝜕𝑥
+

𝑐

𝑎

𝜕𝑣

𝜕𝑦
= 0 ,(11) 

  
𝜕𝜏𝑦𝑥

𝜕𝑦
− 𝑀2(𝑢 + 1) =

𝜕𝑝

𝜕𝑥
 ,                                                                   (12) 

  
𝜕𝑝

𝜕𝑦
= 0 ,(13) 

  
𝜕2𝜃

𝜕𝑦2 = −𝐵𝑟 𝜏𝑦𝑥
𝜕𝑢

𝜕𝑦
 ,                                                                            (14) 

where the dimensionless quantities 𝛼, 𝜙, 𝐸𝑐 and 𝐵𝑟 are the parameters of 

pseudoplasticity, amplitude ratio, Eckert number and Prandlt number respectively. 

The boundary conditions for equations (12-14) are as follows : 

𝑢 = −1   𝑎𝑡   𝑦 = ℎ , 
𝜕𝑢

𝜕𝑦
= 0   𝑎𝑡   𝑦 = 0 , 

𝜕𝜃

𝜕𝑦
= 0   𝑎𝑡   𝑦 = 0 , 

𝜃 = 0   𝑎𝑡   𝑦 = ℎ,(15) 

On solving equation  (12) and equation (14) with boundary conditions equation (15) 

we have 

  𝑢 = (
𝑦2−ℎ2

2
) (

𝑑𝑝

𝑑𝑥
+ 𝑀2) + 𝛼 (

𝑑𝑝

𝑑𝑥
+ 𝑀2)

3

(
𝑦4−ℎ4

4
) − 1,(16) 

  𝜃 = 𝐵𝑟 (
𝑑𝑝

𝑑𝑥
+ 𝑀2)

2

[
ℎ4−𝑦4

12
+ 𝛼

ℎ6−𝑦6

30
(

𝑑𝑝

𝑑𝑥
+ 𝑀2)

2

],                     (17) 

where the Brinkman Number (Br) = 𝐸𝑐 . Pr. 

The coefficient of heat transfer (Ω) at the wall is given by 

  𝛺 = −2𝜋𝜙 sin (2𝜋𝑥)𝐵𝑟 (
𝑑𝑝

𝑑𝑥
+ 𝑀2)

2

[
ℎ3

3
+ 𝛼

ℎ5

5
(

𝑑𝑝

𝑑𝑥
+ 𝑀2)

2

]          (18) 

The corresponding stream function  is obtained from the relations 

𝑢 =
𝜕𝜓

𝜕𝑦
,                   𝑣 = −

𝜕𝜓

𝜕𝑥
 . 

Integrating equation (16) and using the condition 𝜓 = 0 𝑎𝑡𝑦 = 0  the stream 

function𝜓 is obtained as 

  𝜓 = (
𝑦3

6
−

𝑦ℎ2

2
) (

𝑑𝑝

𝑑𝑥
+ 𝑀2) + 𝛼 (

𝑑𝑝

𝑑𝑥
+ 𝑀2)

3

(
𝑦5

20
−

𝑦ℎ4

4
) − 𝑦           (19) 

The volume flow rates in fixed frame (𝑄′) and in wave frame (𝑞′) are given by 

  𝑄′ = ∫ 𝑈𝑑𝑌
𝐻

0
        (20) 

  𝑞′ = ∫ 𝑢′𝑑𝑦 ′𝐻

0
                                                                                     (21) 

Using equation (7), it follows from (20) and (21) 

  𝑄′ = 𝑞′ + 𝑐𝐻                                                                                      (22) 
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Also the average flow  𝑄̂ =
1

𝑇
∫ 𝑄′𝑇

0
𝑑𝑡 ′ over the time 𝑇 =

𝜆

𝑐
, is 

  𝑄̂ = 𝑞′ + 𝑐𝑎.                                                                                     (23) 

This can be reduced in dimensionless form as 

  𝑄 = 𝑞 + 1.                                                                                        (24) 

where =
𝑞′

𝑎𝑐
= ∫ 𝑢 𝑑𝑦

ℎ

0
; 𝑄 =

𝑄̂

𝑎𝑐
.(25) 

Using equation (16) in equation (25) we have 

  (
𝑑𝑝

𝑑𝑥
+ 𝑀2) +

3

5
𝛼ℎ2 (

𝑑𝑝

𝑑𝑥
+ 𝑀2)

3

+ 3 (
𝑞+ℎ

ℎ3 ) = 0                               (26) 

In the limiting casewhen 𝛼 → 0, equation (26) reduces to  

  
𝑑𝑝

𝑑𝑥
+ 𝑀2 = −3 (

𝑞+ℎ

ℎ3 ).(27) 

Since the equation (26) is a non-linear equation of first order, it is difficult to find an 

analytic solution for pressure; however, for small values of the 

pseudoplasticityparameter (𝛼 ≪ 1), equation (26) can be perturbed as follows 

  𝑝 = 𝑝0 + 𝛼𝑝1           (28) 

so that  

  
𝑑𝑝

𝑑𝑥
+ 𝑀2 = −3 (

𝑞+ℎ

ℎ3 ) +
81

5
𝛼

(𝑞+ℎ)3

ℎ7 .        (29) 

Using equation (24) in equation (29), we have 

  
𝑑𝑝

𝑑𝑥
+ 𝑀2 = −3 (

𝑄 – 1 + ℎ

ℎ3 ) +
81

5
𝛼

(𝑄 – 1 + ℎ)3

ℎ7 .   (30) 

The pressure rise and friction force are given by 

  ∆𝑝 =  ∫
𝑑𝑝

𝑑𝑥

1

0
dx ,    (31) 

  F = ∫ ℎ (−
𝑑𝑝

𝑑𝑥
)

1

0
dx .     (32) 

 

3. NUMERICAL RESULTS AND DISCUSSIONS 
Let us now analyze the effects of various parameters on pressure gradient, pressure 

rise, frictional force, fluid velocity and fluid temperature. In order to perform 

numerical computations, have been used the following values of the parameters: 

Amplitude ratio : 0 <𝜑< 1 

The parameter of pseudoplasticity :− 0.1 <𝛼< 0.1 

Figures 2 (a-d) explain the behavior of pressure gradient in regard to the 

change of the rate of flow(Q), parameters of pseudoplasticity(𝛼),  amplitude ratio(𝜑) 

and Hartmann number (M), It can be observed that in the wider part of the channel for 

x ∈ [0, 0.2], the pressure gradient is relatively small; where as, in the narrow part of 

the channel for x ∈ [0.2, 0.7], a much higher pressure gradient is required to maintain 

the same flux. 
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  Fig. 2(a): Variation of the pressure gradient with x for  

different values of M when 𝛼 = 0.1, Q = 0.2, 𝜑 = 0.4 

 
Fig. 2(b): Variation of the pressure gradient with x for 

different values of Q when 𝛼 = 0.1, M = 0.4, 𝜑 = 0.4 
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Fig. 2(c): Variation of the pressure gradient with x for  

different values of 𝛼 when 𝑄 = 0.3, M = 0.4, 𝜑 = 0.4 

 

 

 
Fig. 2(d): Variation of the pressure gradient with x for 

different values of 𝜑 when 𝑄 = 0.3, M = 0.4, 𝛼 = 0.1 

 

 

 

 

Figures 3 (a-c) explain the behavior of pressure rise with the change in the rate 

of flow(Q), pseudoplasticity parameter (𝛼),  amplitude ratio(𝜑) and Hartmann number 

(M). The variation of pressure rise against the flow rate is shown in Figure 3(a) for 
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different values of M, 𝛼 = 0.1 and 𝜑 = 0.4. It is noted that the pressure rise is linearly 

connected to flow rate. The variation of pressure rise against the amplitude ratio is 

shown in Figure 3(b) for different values of Q, 𝛼= 0.1 and Hartmann number M=0.5,. 

In this caseon increasing flow rate the pressure rise decreases.Figure 3(c) depicts the 

change in pressure rise against the parameter of pseudoplasticity for different values 

of flow rates, taking 𝜑 = 0.4, M = 0.5.It is observed that on increasing flow rate the 

pressure rise also decreases. 

 

 
      Fig. 3(a): Variation of the pressure rise with flow rate for 

different values of M when 𝛼 = 0.1, 𝜑 = 0.4 
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      Fig. 3(b): Variation of the pressure rise with amplitude  

ratio for different values of Q when 𝛼 = 0.1, M = 0.5, 

 

 
Fig. 3(c): Variation of the pressure rise with parameter of  

Pseudoplasticity(𝛼) for different values of Q when 𝜑 = 0.4,  

M = 0.5, 
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Figures 4(a-b) explain the behavior of frictional force with change in the rate 

of flow (Q), pseudoplasticity(𝛼),  amplitude ratio(𝜑) and Hartmann number (M). Fig. 

4(a) shows the variation of friction force against the flow rate for different values of 

𝜑when 𝛼 = 0.1, 𝑀 = 0.5. It is obvious that the friction force is to increase with 

increase of amplitude ratio. Fig. 4(b) gives the information regarding the change in 

friction force against the amplitude ratio for different values of Qwhen 𝛼 = 0.1, 𝑀 = 

0.5. It is noted that the effect of flow rate on friction force is in contrast to the effect 

of flow rate on pressure rise. 

 

 
Fig. 4(a): Variation of the friction with flow rate for 

different values of 𝜑 when 𝛼 = 0.1, 𝑀 = 0.5 
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  Fig. 4(b) Variation of the friction with amplitude ratio for 

different values of Q when 𝛼 = 0.1, 𝑀 = 0.5 

 

 

Figures 5(a−d) discuss the behavior of temperature with the change in the rate 

of flow (Q), pseudoplasticity parameter (𝛼),  amplitude ratio (𝜑) and Hartmann 

number (M). The variation of temperature with y of the channelfor different values of M 

is shown in Fig. 5(a) for 𝛼= 0.1,𝜑 = 0.4 Q = 0.3, Br = 0.3, x = 0.4.It was observed that 

the temperature decreases with increase of the magnetic fields. The variation of 

temperature with y of the channel different values of Br is shown in Fig. 5(b) for 𝛼= 

0.1,𝜑 = 0.4 Q = 0.3, M = 0.4, x = 0.4. It was noted that the temperature increases 

with increase of Br.The variation of temperature with y of the channelfor different 

values of 𝜑 is shown in Fig. 5(c) for 𝛼 = 0.1,𝐵𝑟 = 0.3, Q = 0.3, M = 0.4, x = 0.4. It 

was seen that the temperature increases with increaseof 𝜑.The variation of 

temperature with y of the channel for different values of 𝑄is shown in Fig. 5(d) for 𝛼 = 

0.1, 𝐵𝑟 = 0.3, 𝜑= 0.4, M = 0.5, x = 0.4.In this case the temperature increases with 

increase of Q. 
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  Fig. 5(a) Variation of temperature with y for different values of M, 

when𝛼 = 0.1, 𝜑 = 0.4, Q = 0.3, Br = 0.3, x = 0.4 

 

 

 
Fig. 5(b) Variation of temperature with y for different values of Br, 

when𝛼 = 0.1, 𝜑 = 0.4, Q = 0.3, M = 0.4, x = 0.4 

 



ANUP KUMAR KARAK & RUMA BAGCHI 

479 
 

 
Fig. 5(c):Variation of temperature with y for different values of𝜑, 

when𝛼 = 0.1, 𝐵𝑟 = 0.3, Q = 0.3, M = 0.4, x = 0.4 

 

 
Fig. 5(d):Variation of temperature with y for different values of𝑄, 

when𝛼 = 0.1, 𝐵𝑟 = 0.3, 𝜑= 0.4, M = 0.5, x = 0.4 

 

Fig. 6(a−b) explain the behavior of heat transfer coefficient (𝛺) along the 

axial direction with change of Hartmann number (M) and Brinkman number (𝐵𝑟).Fig. 

6(a) shows the variation of heat transfer coefficient along the axial direction for 

different value of M, when 𝛼= 0.1, 𝜑 = 0.4, Q = 0.3, Br = 0.4. It is observed that the 

heat transfer coefficient decreases with increase of M.Fig. 6(b) shows the variation of 

heat transfer coefficient along the axial direction for different value of Br, when 𝛼 = 
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0.1, 𝜑 = 0.4, Q = 0.3, M = 0.5. It is noted that the heat transfer coefficient increases 

with increase of Br. 

 

 
Fig. 6 (a): Effect of heat transfercoefficientwith x for  

different values of M, when 𝛼 = 0.1, 𝜑 = 0.4, Q = 0.3, Br = 0.4. 

 

 
Fig.  6 (b): Effect of heat transfercoefficientwith x for  

differentvalues of Br, when 𝛼 = 0.1, 𝜑 = 0.4, Q = 0.3, M = 0.5. 

4. CONCLUDING  REMARKS 
Analyses of the above problem and its solutions give rise to the following 

effects on the peristaltic motion of blood through the channel: 

i) Pressure gradient is relatively small in the wider part of the channel while it is 

higher in the narrow part. 
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ii) Pressure rise within the channel is linearly connected to the flow rate and 

increasing of flow rate reduces the pressure. 

iii) The effect of flow rate on friction force is noticeable for the pressure rise. 
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