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Abstract. Alternative solutions for control problems are the motivation for

many types of problems. Alternate solution for reduced order observer based
CNF controller is proposed in this work. Two numerical problems are con-

sidered and reliable simulation results are outcomes of the proposed con-

troller. Novelty of the work is adaptive updating of nonlinear function in
control law, scaled exponential function and improvement in results because

of this change. Twofold improvements are proposed in the existing modified

enhanced CNF controller which comprises a linear control and a nonlinear
control law. First one is the adaptively updated nonlinear function in control

law. Second is inclusion of scaled exponential function in control law. These

modifications reduce RMS errors while tracking a sinusoidal target reference
with multiple frequencies in a faster way without large overshoots. Simula-

tion results are presented with comparison between modified enhanced CNF
and modified enhanced adaptive CNF controller.

1. Introduction

Many of the system are linear systems with actuators as an important part. Ac-
tuator does appear in terms of pneumatic, electric, hydraulic or micro-actuators
using latest technology such as micro-actuators. Actuator saturation is an impor-
tant virtue of safety aspect. Actuation saturation can be viewed in application
contexts such as those used in aeroplanes, control valves, power control devices.
Composite nonlinear feedback control is a proven technique for such systems. Sys-
tem control with reliable results is always expected including performance pa-
rameters such as settling time, overshoot and error variables. System tracking
responses, however, can be very challenging in sinusoidal desired signals as system
components may have their own characteristics like hysteresis, inertia, interaction.
Motivation of this work is that many systems can be modelled by linear systems
with actuator saturation. In this work an alternative reliable approach in modified
enhanced composite nonlinear feedback (CNF) controller is proposed. Novelty of
the work is in adaptively updating nonlinear control law component. Availability
of such alternate adaptive functions motivates researchers to explore more control
opportunities and to investigate further such functions’ advantages. Given a lin-
ear system under actuator constraints there exists an adaptive nonlinear function
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with which semi-global asymptotic tracking can be achieved for a desired refer-
ence tracking. Novelty of the work is adaptive updating of nonlinear function in
control law, scaled exponential function and improvement in results because of
this change. Twofold improvements are proposed in existing modified enhanced
CNF controller which comprises a linear control and a nonlinear control law. First
one is adaptively updated nonlinear function in control law. Second is inclusion of
scaled exponential function in control law. These modifications reduce RMS errors
while tracking a sinusoidal target reference with multiple frequencies in a faster
way without large overshoots. Simulation results are presented with comparison
between modified enhanced CNF and modified enhanced adaptive CNF controller.
Alternate approach presented here definitely open a new area for further set of sys-
tem solutions. Literature in this regard is [1] through [7]. References from [1] to
[6] appear intermittently. In [7], observer gain is chosen using Riccati equation.
Further authors in [7] proposed topology-induced containment controller and it is
extended to the output feedback scenario.

This work is organized as follows. Section 2 explains controller design. Con-
troller design in context to state feedback and reduced order measurement feedback
cases are in detail discussed here. This also includes Lyapunov stability analysis
with state feedback. Section 3 is about what modification is brought in exist-
ing control law in terms of scaled functions. Section 4 talks about illustrative
example 1. Section 5 is about XY-table servo system example (i.e., illustrative
example 2). Last Section 6 concludes the work.

2. Controller design

This section describes system considered, the auxiliary system, reference gen-
erator and integrator augmentation followed by state feedback and reduced order
measurement feedback which is fruitful in the form of proposed controller. Con-
sider a linear system:

ẋ = Ax+Bsat(u) + Ew, x(0) = x0

y = C1x
h = C2x

 (2.1)

sat(u) = sgn(u)min {umax, |u|} (2.2)

where x ∈ Rn, u ∈ R, y ∈ Rp, h ∈ R,w ∈ R represent state, control input,
measurement output, controlled output and disturbance input to system.

A,B,E,C1, C2 are constant matrices of appropriate dimensions. Designs of
the proposed controller have two major parts. This includes reference generator
and proposed adaptive CNF controller. Controller design is like [1], [2] as far
as linear control law design is considered. So, the steps are reconsidered from
those two references for smooth flow of design. Objective is to design a reduced
order observer based adaptive CNF controller to track a desired signal as fast as
possible and without large overshoot. The auxiliary system described below from
[2] generates a reference signal that is to be tracked:

Σaux :

{
ẋe = Axe +Bue, xe(0) = xe0

r = C2xe
(2.3)
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where xe ∈ Rn, ue ∈ R and r are the state, input and output of the auxiliary
system. Then linear control law is:

ue = Fexe + rs (2.4)

where Fe is the feedback gain matrix and rs is an external signal source. Combining
2.3 and 2.4 the reference generator becomes:

ΣREF :

ẋe = (A+BF )xe +Brs, xe(0) = xe0

ue = Fexe + rs
r = C2xe

 (2.5)

Then an integrator is augmented into given system which takes care of disturbances
and steady state error [1]

ẋi := e := h− r = C2x− r (2.6)

The integrator augmented with system then takes the form:
˙̄x = Āx̄+ B̄sat(u) + B̄rr + Ēw

ȳ = C̄1x̄
h = C̄2x̄

(2.7)

where

x̄ =

(
xi

x

)
, x̄0 =

(
0
x0

)
, ȳ =

(
xi

y

)
(2.8)

Ā =

[
0 C2

0 A

]
, B̄ =

[
0
B

]
, Br =

[
−1
0

]
(2.9)

and

Ē =

[
0
E

]
, C̄1 =

[
1 0
0 C1

]
, C2 =

[
0 C2

]
(2.10)

In the proposed controller, the adaptive law associated with nonlinear function.
Design of controller is carried in two cases: state feedback and reduced order
measurement feedback case.

2.1. State feedback case. For the augmented system given by 2.7, the reference
generator when all the state variables are measurable is given by:

˙̄xe = Āx̄e + B̄ue + B̄rr
ue =

[
0 Fe

]
x̄e + rs

r = C2x̄e

(2.11)

with x̃e

[
0 xe

]T
, x̃e0

[
0 xe0

]T
After defining x̃ = x̄− x̄e one gets

˙̃x = Āx̄+ B̄ {sat (u)− ue}+ Ēw (2.12)

The steps involved in proposed controller design are:
Step 1) Constructing linear law

uL = Fx̃+ ue (2.13)

Step 2) Then the nonlinear feedback portion of the proposed controller uN is:

uN = ρB̄TPx̃ (2.14)
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where ρ is updated adaptively from

ρ̇ = k1 ∥x̃∥ ρ+
(
ρ4
)
× x̃TPB̄B̄TPx̃, k1 > 0

ρ(0) = ρ0

}
(2.15)

This nonlinear function yields better tracking performance.
Step 3) Combination of linear and nonlinear law:

u = uL + uN = Fx̃+ ueB̄
TPx̃ (2.16)

Theorem 2.1. Consider the system in 2.1 with all the states measurable and
bounded disturbance w. Then there exists a smooth nonlinear function ρ updated
adaptively from 2.15 for a given initial condition ρ(0) = ρ0 , and the modified
enhanced adaptive CNF control law comprising of 2.16, will take the output h to
track a general reference r along with the system error x̃ → 0 as time t → ∞.

Proof. Following the steps detailed in [2], the closed loop system comprising of the
augmented plant in 2.7 and the modified enhanced adaptive CNF control law in

2.16 is given by ˙̃x =
(
Ā+ B̄F

)
x̃ + B̄v + Ēw where v := sat (u) − Fx̃ − ue and

u = Fx̃+ ue + ρB̄TPx̃.
Note: cδ is the largest positive scalar [3] such that the error x̃ ∈ X (F, cδ),{

x̄ : x̄TPx̄ ≤ cδ
}
, |Fx̃+ ue| ≤ umax

Based on the maximum/minimum limit of u , the correlated v takes the form
depending on the saturation regions as:

a) ρB̄TPx̃ < v < 0 (Negative saturation region of u)
b) ρB̄TPx̃ = v (Linear region of u) and
c) 0 < v < ρB̄TPx̃ (Positive saturation region of u).
To make the stability analysis easier further, for all these cases, v is expressed

as v = qρB̄TPx̃ [2] for q ∈ [0, 1].Then

˙̃x =
(
Ā+ B̄F + qρB̄B̄TP

)
x̃+ Ēw (2.17)

□

2.2. Stability. Let the Lyapunov function be

V = x̃TPx̃+ ρ−2 (2.18)

V̇ = ˙̃x
T
Px̃+ x̃TP ˙̃x− 2ρ−3ρ̇ (2.19)

=
[
x̃T

(
Ā+ B̄F + qρB̄B̄TP

)T
+

(
Ēw

)T ]
+

x̃TP
[(
Ā+ B̄F + qρB̄B̄TP

)
x̃+

(
Ēw

)]
+

−2ρ−3
[
k1 ∥m̃∥ ρ+

(
ρ4
)
× x̄TPB̄B̄TPx̃

] (2.20)

With substitution of F = −R−1B̄TP

V̇ =
[
x̃T

(
Ā+ B̄

(
−R−1B̄TP

)
+ qρB̄B̄TP

)T
+
(
Ēw

)T ]
Px̃

+x̃TP
[(
Ā+ B̄

(
−R−1B̄TP

)
+ qρB̄B̄TP

)
x̃+

(
Ēw

)]
−2ρ−3

[
k1 ∥m̃∥ ρ+

(
ρ4
)
× x̃TPB̄B̄TPx̃

] (2.21)
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= x̃T
(
Ā+ B̄

(
−R−1B̄P

))T
Px̃+ x̃T

(
qρB̄B̄TP

)T
Px̃+

(
Ēw

)
Px̃

+x̃P
(
Ā+ B̄

(
−R−1B̄P

))
x̃+ x̃TP

(
qρB̄B̄TP

)
x̃+ x̃TPĒw

−2ρ−3 × ρk1 ∥x̃∥ − 2ρ−3 × ρ4x̃TPB̄B̄TPx̃

(2.22)

= x̃T −
(
ĀT + PĀ− PB̄R−1B̄TP

)
x̃− x̃TPB̄R−1B̄TPx̃+

2qρx̃TPB̄B̄TPx̃+ 2x̃TPĒw − 2ρ−3 × ρk1 ∥x̃∥
−2ρ−3 × ρ4x̃TPB̄B̄TPx̃

(2.23)

≤ x̃TQx̃− x̃TPB̄R−1B̄TPx̃+ 2qρx̃TPB̄B̄TPx̃+

2x̃TPĒw − 2ρ−3 × ρk1 ∥x̃∥ − 2ρ−3 × ρ4x̃TPB̄B̄TPx̃
(2.24)

Next with following
PB̄B̄TP = N (2.25)

and
PB̄R−1B̄TP = Z (2.26)

and taking terms x̄T x̄ common from the two terms involving N and Z and letting

Q+ Z = T (2.27)

V̇ ≤ −x̄TT x̃T + 2qρx̄TNx̃+ 2x̄TPĒw

−2ρ−2k1 ∥x̃∥ − 2ρx̃TNx̃
(2.28)

Let P = STS ⇒ STSP−1 = I Multiplying first term of V̇ with

STSP−1P−1STS = I

and substitution of STS = P in second term of V̇ , one gets

V̇ ≤ −x̄TST []SP−1TP−1STSx̃+ 2x̃TSTSĒw+

2qρx̄TNx̃− 2ρ−2k1 ∥x̃∥ − 2ρx̃TNx̃
(2.29)

with |w| ≤ τw.

Hence the second term in V̇ i.e., 2x̃TSTSĒw becomes 2τw ∥Sx̃∥
∥∥∥SẼT

∥∥∥ . Fur-

ther writing the term

V̇ ≤ −λmin

(
STSP−1TP−1ST

)
Sx̃+ 2τw ∥Sx̃∥

∥∥∥SẼT
∥∥∥+

2qρx̄TNx̃− 2ρ−2k1 ∥x̃∥ − 2ρx̃TNx̃
(2.30)

Now ∥Sx̃∥ =

√
(Sx̃)

T
(Sx̃) =

√
x̃STSx̃ =

√
x̃P x̃ = (x̃P x̃)

1
2 ; similarly,

∥∥SĒT
∥∥ =(

ĒP ĒT
) 1

2 .

This implies that 2τw ∥Sx̃∥
∥∥∥SẼT

∥∥∥ = 2τw (x̃P x̃)
1
2
(
ĒP ĒT

) 1
2 .

Also, in first bracketed term substitute STS = P&PP−1 = I ⇒ SP−1TP−1ST =
TP−1 = P−1T

V̇ ≤ −λmin

(
STSP−1TP−1ST

)
Sx̃+ 2τw (x̃P x̃)

1
2
(
ĒP ĒT

) 1
2 +

2qρx̄TNx̃− 2ρ−2k1 ∥x̃∥ − 2ρx̃TNx̃
(2.31)

V̇ is now partitioned as V̇1 and V̇2
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Let

V̇1 ≤ −λmin

(
STSP−1TP−1ST

)
Sx̃+ 2τw (x̃P x̃)

1
2
(
ĒP ĒT

) 1
2

V̇2 ≤ 2qρx̄TNx̃− 2ρ−2k1 ∥x̃∥ − 2ρx̃TNx̃

}
(2.32)

Taking λmin

(
P−1T

) (
x̃T x̃

) 1
2 common from V̇1 one gets

V̇1 ≤ −λmin

(
P−1T

) (
x̃T x̃

) 1
2

[(
x̃T x̃

) 1
2 − 2τwλmax

(
PT−1

) (
ĒP ĒT

) 1
2

]
(2.33)

V̇1 ≤ −λmin

(
P−1T

) (
x̃T x̃

) 1
2

[(
x̃T x̃

) 1
2 − γ

]
(2.34)

where

γ = 2τwλmax

(
PT−1

) (
ĒP ĒT

) 1
2 (2.35)

It then follows that if
(
x̃TPx̃

) 1
2 > γ then

V̇1 ≤ 0 (2.36)

As the V̇2 involves terms associated with ρ, after taking 2ρx̃TNx̃ common from
first and third term, one gets

V̇2 ≤ 2ρx̃TNx̃ (q − 1)− 2ρ−2k1 ∥x̃∥ (2.37)

Now two cases are considered here; if ρ is positive or negative:
A) If ρ is positive
i) for q = 1

V̇2 ≤ 0− 2ρ−2k1 ∥x̃∥ < 0 (2.38)

ii) for 0 ≤ q < 1 the term (q − 1) becomes negative, hence

V̇2 ≤ −2ρx̃TNx̃− 2ρ−2k1 ∥x̃∥ < 0 (2.39)

B) If ρ is negative
i) for q = 1

V̇2 ≤ −2ρ−2k1 ∥x̃∥ (2.40)

It then follows that V̇2 < 0 provided condition in 2.40 is satisfied.
ii) for 0 ≤ q < 1

V̇2 ≤ +2ρx̃TNx̃− 2ρ−2k1 ∥x̃∥ (2.41)

V̇2 ≤ −2ρλmin (N) ∥x̃∥2 − 2ρ−2k1 ∥x̃∥ (2.42)

It then follows that

2ρ−2k1 ∥x̃∥ > 2ρλmin (N) ∥x̃∥2 (2.43)

∥x̃∥ <
k1

ρ3λmin (N)
(2.44)

This proves V̇ < 0 that subjected to fulfillment of 2.40. Hence the closed loop
system in 2.13 is guaranteed to be semi-globally asymptotically stable.
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2.3. Reduced order measurement feedback case. Noting that C1 in the
measurement output of the given system in 2.1 is in the form: C1 =

[
IP 0

]
, the

system from 2.7 is partitioned as:

ẋi

ẋ1

ẋ2

 =

0 C21 C22

0 A11 A12

0 A21 A22

xi

x1

x2

+

 0
B1

B2

 sat (u) +

−1
0
0

 r +

 0
E1

E2

w

y =

[
1 0 0
0 IP 0

]
h =

[
0 C21 C21

]xi

x1

x2


(2.45)

with

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C21 C22

]
, E =

[
E1

E2

]
and xi

x1

x2

 = x̄,

xi (0)
x1 (0)
x2 (0)

 =

 0
x10

x20

 = x̄0, ȳ =

(
xi

y

)
=

(
xi

x1

)
.

Objective is to design the reduced order observer based modified enhanced adap-
tive CNF control law where the variable x2 is to be estimated. Reduced order
observer takes the standard form [4]:

ẋc = (A22 +KRA12)xc + (B2 +KRB1) sat (u)

+ [A21 +KRA11 − (A22 +KRA12)KR] y
(2.46)

with xc = x̂c + KRy, where KR is observer gain, x̂c is estimated state variable.
Reduced order observer based modified enhanced adaptive CNF controller takes
the form:

u =
(
F + ρB̄P

) xi

x1

xc −KRy

− x̄e

+ ue (2.47)

where x̄e =
(
0 xe1 xe2

)T
with the nonlinear gain ρ is adaptively updated using:

ρ̇ = k1 ∥m̃∥ ρ+
(
ρ4
)
× m̃TPB̄BTPm̃

m̃ =

 xi

x1

xc −KRy

− x̄e

 , k1 > 0

ρ (0) = ρ0

 (2.48)

Theorem 2.2. For a given system in 2.1, there exists a scalar nonlinear gain ρ
updated from adaptive law as in 2.48, the reduced order observer based modified
enhanced adaptive CNF law given by 2.47 will drive the system-controlled output
to track the desired signal semi-globally asymptotically provided [2]:

1)∀x̄ ∈ X (F, cRδ) :=

{
x̄ : x̄T

[
P 0
0 QR

]
x̄ ≤ cRδ , δ ∈ (0, 1) and cRδ > γ2R.

2)Initial conditions: ∈ X (F, cR,δ)

3) |ue| ≤ δumax
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The proof goes on the similar lines of [2] and [3]. Further as m̃ → 0 ⇒ x → xe

in a finite time and controlled output h → r.

3. Modification of the existing control law

To improve the response of the closed loop system, i.e., to make it faster, the
linear control law is scaled by a smooth function (α−e−at) where α, a are positive
constants. Similarly, the nonlinear law is scaled by a function e−bt where b is a
small positive constant. So, the control law in 2.47 becomes

u =
(
F ×K11 + ρB̄PK22

) xi

x1

xc −Kry

− x̄e

+ ue (3.1)

where K11 = α− e−at, K22 = e−bt
Remark: The nonlinear function adaptive law makes this modified enhanced

adaptive CNF controller robust. The initial value of ρ i.e., ρ(0) can be chosen to
be positive, negative or zero. In the literature on enhanced CNF controller, ρ is
a nonlinear gain function with ρ < 0 [[1], [5]]. Hence the proposed adaptive CNF
controller is robust.

The steps for the design of proposed adaptive CNF controller are summarised:
Augment integrator with plant as given in 2.7. Based on the desired signal r, gain
matrix F, Fe and external signal generator rs , design auxiliary reference generator
in 2.3 and then form the reference generator in 2.5. Implement nonlinear adaptive
law from 2.48 with the selection of reduced order observer gain KR that locates
the poles of A22+KRA12 suitably in the left-half plane. Choose constants related
with exponential scaling functions α, a, b and implement the control law in 3.1.

Exponential scaling functions can be helpful in many situations. These func-
tions can reduce control effort. For example, a vertical slope is difficult for a
vehicle to climb; however, with a longer exponential road, the same travel is made
easy. Another example is vertigo. While climbing down the steps of a staircase is
problematic for vertigo patient. If these steps are climbed down with a reduced
slope, this reduces dizziness definitely.

Two simulation examples are presented to validate the performance of the mod-
ified enhanced adaptive CNF control law. These are from [2]. First example is
associated with tracking a multi-sinusoidal reference signal and the second example
represents model of a practical high speed XY-table.

4. Illustrative Example 1

ẋ =

[
0 1

−10 5

]
x+

[
0
100

]
sat (u) +

[
0
100

]
w

y = x1

umax = 2
w = −0.1

 (4.1)
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Figure 1. Comparison of output signal with multi-sinusoidal de-
sired signal

Let

Q = diag
{
1.5500 0.2500 0.0001

}
and R = 5.7500

P =

2.1539 0.2447 0.0124
0.2447 0.3231 0.0166
0.0124 0.0165 0.0012

 , F = −
[
0.5189 0.6578 0.1752

]
With desired r = 1+0.3 sin

(
2πt+ π

4

)
+0.1 sin(6πt) and the feedback gain matrix

Fe =
[
0.0000 −0.2948 −0.0500

]
the reference generator is formed as

Σaux :



ẋe =

[
0 1

−w1
2 0

]
+

[
0
100

]
rs

xe (0) =

(
1.2121
3.2178

)
r =

[
1 0

]
xe

w1 = 2π

(4.2)

rs (t) =
1

100

[
a0w1

2 + a2
(
w2

1 − w2
2

)
sin (w2t)

]
(4.3)

with a0 = 1, a2 = 0.1, w2 = 6π . The nonlinear function adaptive law in 2.48 then
becomes

ρ̇ = 0.0001 ∥x̃r∥ ρ+
(
ρ4
)
x̃T
r PB̄

(
B̄TPx̃r

)
(4.4)

Further with a = 4.500, b = 0.0001 and

K11 = 1.2500− e−at,K22 = e−bt (4.5)

and Fn = B̄TP =
[
1.2371 1.6574 0.1224

]
the control law in (1.53) becomes

v =
(
K11 × F +K22 × ρ×

[
0.6344 1.3347 0.1159

])
× x̃r + ue (4.6)
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Figure 2. Error convergence of adaptive RCNF is faster and
converges quickly

Figure 3. Control effort (Adaptive RCNF)

MATLAB simulation responses of example 1 are shown in figures 1-4. From
figure 1, it is clear that, right from the first lower half cycle of , adaptive Reduced
order modified enhanced CNF (adaptive RCNF) controller causes the output to
start tracking and rapidly follows changing peaks, thus minimizing overshoots
and undershoots. Figure 2 show that tracking error(difference of desired (r) and
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Figure 4. Control effort (Generalised RCNF)

Table 1. Comparing errors to check performance of controller

Example 1 RMS error
GRCNF 0.1753
RACNF 0.1687

Example 2
RMS error
X axis (m)

RMS error
Y axis (m)

GRCNF 0.0127 0.0023
RACNF 0.0117 0.0008

controlled output (h)) converges towards zero a little faster in response to proposed
controller. Error parameter is a standard performance evaluation parameter [6].
Further the error quickly settles near zero in 0.5 s, whereas it takes about 3 s for
the same with adaptive RCNF and generalized RCNF controller respectively. The
settling time can be considered in terms of the tracking error when it reaches zero.
At this zero-error, the output equals desired output. So, the error reaches zero in
0.2367 s for proposed controller, whereas it takes 0.2525 s for generalized RCNF.
Figure 3 and figure 4 shows controller outputs for adaptive and generalized RCNF.
From Table 1, rms errors are compared. It is clear that proposed controller has
improved performance in terms of this rms error criterion. The settling times are
given in Table 2. Finally, from Table 3 the peak overshoot is also compared. So,
in overall comparisons, proposed controller has improved performance in reducing
rms errors, improving settling time and minimizing peak overshoot.
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Table 2. Comparing settling times

Example 1 Example 1-Settling time (s)
GRCNF 0.2525
RACNF 0.2367

Example 2
X axis

Settling time (s)
Y axis

Settling time (s)
GRCNF 0.4000 0.5500
RACNF 0.2541 0.5000

Table 3. Comparing peak overshoots

Example 1 Example 1-Peak overshoot (m)
GRCNF -0.0470
RACNF -0.0450

Example 2
X axis

Peak overshoot (m)
Y axis

Peak overshoot (m)
GRCNF 7.5x10-3 -14x10-3

RACNF 11x10-3 -6x10-3

5. Illustrative Example 2

Now a problem of XY table trajectory tracking is considered. The X axis and
Y axis models are taken from [2] as it is related with 2D trajectory design related.
The maximum travel was 0.25 m in both directions. Here the associated control
inputs represent electric current to the brush type dc servo-motor. The output
displacement is in meters with system equations:

Σx :

ẋx =

[
0 1
0 −2.825

]
xx +

[
0

8.034

]
sat(ux)

hx =
[
1 0

]
xx

(5.1)

Σy :

ẋy =

[
0 1
0 −3.226

]
xx +

[
0

6.774

]
sat(uy)

hy =
[
1 0

]
xy

(5.2)

Σrx :


ẋex =

[
0 1

−w1
2 0

]
xex

xex(0)

(
a1 sin(ϕ)

a1w1 cos(ϕ)

)
rx =

[
1 0

]
xex

(5.3)

with ϕ a parameter used to create initial condition and desired signals

rx(t) = 0.1 cos(0.4πt) and ry(t) = 0.1 sin(0.4πt) (5.4)
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5.1. Controller for X axis. Note that integrator ẋix = hx − rx is augmented
in 4.5. Following are various matrices used

Qx = diag
{
0.2000 40.0000 0.0600

}
,

Rx = 0.0700 and

Px =

2.8443 0.2247 0.0061
0.2247 3.1866 0.0866
0.0061 0.0866 0.0050


The state feedback gain matrix for X axis is

Fx = −
[
1.6903 24.0906 2.2899

]
Next another feedback gain matrix (equivalent to Fe) is

Fex = −
[
0.0448 0.2966 0.3516

]
The nonlinear function adaptive law for X axis becomes

ρ̇x = 0.0001× ∥x̃xr∥ ρx +
(
ρx

4
)
× x̃T

xrPxB̄xB̄
T
x Pxx̃xr (5.5)

with

x̃xr =

 xix

hx

xcx+12.175hx

−
(

0
xex

) and ρx(0) = −1.5000

With the constants ax = 11.4400, bx = 0.0001

K11x = γ1
(
1− γ2e

−axt
)
, γ1 = 0.8000,K22x = e−bxt (5.6)

Let the term equivalent to B̄P in 4.4 be represented by

Fnx = B̄xPx =
[
0.0490 0.6959 0.0399

]
vx =

(
K11x × Fx +K22x × ρy ×

[
0.0490 0.6959 0.0399

])
× (x̃xr) + uex

(5.7)

5.2. Controller for Y axis.

Σry :


ẋey =

[
0 1

−w1
2 0

]
xey

xey(0) =
(

0
a1w1

)
ry

[
1 0

]
xey

(5.8)

uey =
[

−w1
2

6.7740 0.4762
]
xey (5.9)

Qy = diag
{
0.3000 56.0000 0.0800

}
, Ry = 0.5000 and

Py =

4.1383 0.5429 0.0286
0.5429 7.4526 0.3930
0.0286 0.3930 0.0339


Fy = −

[
0.7746 10.7201 1.4084

]
and Fey = −

[
0.0531 0.2331 0.4762

]
ρ̇y = 0.0001× ∥x̃yr∥ ρy +

(
ρy

4
)
× x̃T

yrPyB̄yB̄
T
y Pyx̃yr

(5.10)
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(a) X axis Tracking

(b) Y axis Tracking

Figure 5. Comparison of generalized RCNF and Adaptive
RCNF controller responses to 2-D desired signals

with

x̃yr =

 xiy

hy

xcy+11.774hy

−
(

0
xey

) and ρy(0) = −0.1000

vy =
(
Fy + ρy ×

[
0.1936 2.6626 0.2297

])
× (x̃yr) + uey

(5.11)

Remark: The control effort in both the simulation examples are bounded and
there is no switching in the control effort. Major difficulties of the work include-
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(a) X axis Tracking Errors

(b) Y axis Tracking Errors

Figure 6. X axis and Y axis tracking errors clearly shows the
adaptive RCNF fast settling time responses

tuning of the control that will result in reduction in control effort, selection of state
feedback gain matrix as they are specially concerned with frequency response of
the system, disturbance value selection (it may be positive or it may be negative
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(a) X axis Tracking Errors

(b) Y axis Tracking Errors

Figure 7. X axis and Y axis tracking errors clearly shows the
adaptive RCNF fast settling time responses

or combination), selection of tracking input desired signal. Figures 5-1.9 are re-
lated to example 2. In figure 5, adaptive RCNF X axis output leads after about
0.25 s and gets tuned to the sinusoidal desired signal. Y axis output also quickly
responds in a similar manner. The tracking error convergence in figure 1.6 again
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Figure 8. Circle formed by adaptive RCNF controller

Figure 9. Circle formed by generalized RCNF controller

proves the faster response of the proposed controller (legend ERGenRCNFXaxis
means tracking error for Generalized RCNF for X axis and legend ERAdapRCN-
FXaxis means tracking error for Adaptive RCNF for X axis; in legend: Y means
Y axis). Figure 1.7 shows the control efforts associated to X and Y axis. Figure
1.8 and 1.9 compares circles drawn by adaptive RCNF controller and generalized
CNF controller respectively. The circle drawn by the proposed controller has com-
parable response. The settling time for X axis response comes as 0.2541 s and
0.4000 s, whereas for Y axis response, the settling time is 0.5000 s and 0.55 s for
adaptive RCNF and generalized CNF controller respectively. RMS errors which
are compared in 1 are calculated with ‘rms’ function from MATLAB. In example
2, the rms error with proposed controller is slightly less for X axis and considerably
less than generalized CNF for Y axis responses. Peak overshoots are slightly more
however well within the acceptable limits. Hence in example 2 also the proposed
controller has performed well in tracking of desired signals to a much more scalable
(or can be called as ‘reliable’) level in all three aspects.

465



18 ABHIJIT KULKARNI AND SHUBHI PURWAR

6. Conclusions

Alternative solutions to research problems are doors to novel work areas. In that
direction a reduced order observer based modified enhanced adaptive RCNF con-
troller technique is presented for general target references tracking. The proposed
controller comprises of an adaptive nonlinear function along with an exponentially
scaled control law. Under the application of this control law, the closed loop sys-
tem remains semi-globally asymptotically stable. The simulation results of the
proposed law are compared with generalized enhanced CNF control law for a set
of two numerical examples. From the simulation results it is proven that proposed
controller has performed effectively well in terms of improvement in settling time
and reduction in rms error without large overshoot. The improvements in results
show that there is scope of identification of set of problems in which a larger set of
impartments are definitely possible. Hence this opens new opportunities for fur-
ther research. Future scope involves making controller robust against variations
in disturbances w.
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