Submitted: 30th August 2021

Revised: 29th September 2021

PERFECT G-ECCENTRIC DOMINATION IN FUZZY GRAPHS

S. MUTHUPANDIYAN AND A. MOHAMED ISMAYIL

Abstract: A dominating set $D \subseteq V$ of a fuzzy graph $G(\sigma, \mu)$ is said to be a g-eccentric dominating set if for every vertex $v \in V - D$, there exists at least one g-eccentric vertex u of v in D. Adominating set $D \subseteq V(G)$ of a fuzzy graph $G(\sigma, \mu)$ is said to be a perfect g-eccentric dominating set, if for each vertex $v \in V - D$, there exists exactly one g-eccentric vertex u of v in D. The minimum cardinality among all the perfect g-eccentric dominating set is called perfect g-eccentric domination number. In this article, perfect g-eccentric dominating set and its number are introduced. Perfect g-eccentric domination number for some standard fuzzy graphs are obtained. Theorem related to perfect g-eccentric domination number for some standard fuzzy graphs are stated and proved. Bounds on perfect g-eccentric domination number for some standard fuzzy graphs are obtained.

Keywords: Fuzzy graph, g-Eccentric dominating set, Perfect g-eccentric dominating set, Perfect geccentric domination number.

AMS Subject Classification 2020: 05C05, 05C12, 05C72.

1. Introduction

L. A. Zadeh[12] introduced the concept of fuzzy sets in 1965. Rosenfeld [8] developed the concept of Fuzzy Graphs(FG) in 1975. E. J. Cockayne and S. T. Hedetniemi[2] introduced the theory of domination in graph in 1977. Paul M. Weichsel [11] introduced the perfect domination in graphs in 1994. A. Somasundaram and S. Somasundaram [9] were introduced the concept of domination in FG independently in 1998. Bhuttani and A. Rosenfeld [1] introduced the concept of geodesies distance in FG in 2003. Janakiraman at et. [5], initiated the eccentric domination in graph in 2010. Linda.J.P and Sunitha M.S [6] introduced on the g-eccentric nodes and related concepts

in FG in 2012. A. Mohamed Ismayil and S. Muthupandiyan[4] introduced the complementary nil g-eccentric domination in fuzzy graphs in the year 2020.

In this article, the perfect g-eccentric point set, perfect g-eccentric dominating set and their number in FG are introduced. Also obtained the bounds on the perfect g-eccentric domination number for some standard FG as well as some theorems related to perfect g-eccentric domination in FG are stated and proved.

The terms graph and fuzzy graph theoretic terminologies can refer Harary[3] and Rosenfeld and L.A. Zadeh[8, 12] respectively. In this paper, G is a connected fuzzy graph unless otherwise stated.

2. Basic Definitions

In this section the following definitions willhelp the readers comprehend the core concepts.

Definition 2.1.[4, 10] A FG $G = (\sigma, \mu)$ is characterized with two functions σ on V and μ on $E \subseteq V \times V$, where $\sigma: V \to [0,1]$ and $\mu: E \to [0,1]$ such that $\mu(x,y) \leq \sigma(x) \land \sigma(y), \forall x, y \in V$. We indicate the crisp grpah $G^* = (\sigma^*, \mu^*)$ of the fuzzy graph $G = (\sigma, \mu)$ where $\sigma^* = \{x \in V: \sigma(x) > 0\}$ and $\mu^* = \{(x, y) \in E : \mu(x, y) > 0\}$. The order and size of a FG G are defined by $p = \sum_{u \in V} \sigma(u)$ and $q = \sum_{u v \in E} \mu(u, v)$ respectively.

Definition 2.2. [1,4, 10]Let *G* be a FG. A path *P* of length *n* is a sequence of distinct nodes $u_0, u_1, ..., u_n$ such that $\mu(u_{i-1}, u_i) > 0, i = 1, 2, ..., n$ and strength of the path *P* is $(P) = \min\{\mu(u_{i-1}, u_i), i = 1, 2, ..., n\}$. The strength of connectedness between nodes *u* and *v* is defined as the maximum strengths of all paths between *u* and *v* and is denoted by $CONN_G(u, v)$. Anu - v path P is called a Strong path if it contains only strong arcs. An u - v path is called strongest u - v path if its strength is equals $CONN_G(u, v)$. An arc is strong iff its weight is equal to the strength of connectedness of its end nodes. i.e., $\mu(u, v) \ge CONN_{G-(u,v)}(u, v)$. If an arc (u, v) is strong, then *u* dominates *v* or *v*dominates *u*.

Definition 2.3.[1, 4]A strong path *P* from *u* to *v* is called geodesics if there is no shorter strong path from *u* to *v* and a length of a u - v geodesic is the geodesic distance(gdistance) from *u* to *v* denoted by $d_g(u, v)$. The geodesic eccentricity(geodesic eccentricity) $e_g(u)$ of a node *u* in a connected FG *G* is given by $e_g(u) =$

 $\max\{d_g(u, v, v \in V\}$. The g-eccentric set of a vertex u is defined and denoted by $E_g(u) = \{v: v \in d_g(u, v) = e_g(u)\}$. The minimum g-eccentricity among the vertices of G is called g-radius and denoted by $r_g(G) = \min\{e_g(u), u \in V\}$. The maximum g-eccentricity among the vertices of G is called g-diameter and denoted by $d_g(G) = \max\{e_g(u), u \in V\}$. A vertex v is said to be a g-central node if $e_g(v) = r_g(G)$. Also, a vertex v in G is said to be a g-peripheral node if $e_g(v) = d_g(G)$. A FG G is said to be self centered if $r_g(G) = d_g(G)$.

Definition 2.4.[7, 11]A subset *D* of *V* is called a dominating set of a FG *G* if for every $v \in V - D$ there exists $u \in D$ such that *u*dominates *v*. A dominating set *D* of *V* of a FG *G* is called a perfect dominating set if for every $v \in V - D$, there exists exactly one vertex $u \in D$ such that *u* dominates *v*.

Definition 2.5.[4] A subset $S \subseteq V$ in a FG *G* is said to be a g-eccentric point set(gEP-set) if for every $v \in V - S$, there exists at least one g-eccentric point *u* of *v* in *S*.

Definition 2.6.[4] A dominating set *D* of *V* of a FG *G* is called a g-eccentric dominating set(gED-set) of *G* if for every $v \in V - D$ there exists at least a g-eccentric vertex $u \in D$ of v.

3. Perfect g-Eccentric Point set in Fuzzy Graphs

In this section, the perfect g-eccentric point set, perfect g-eccentric point number and some observations are given in a FG with applicable examples.

Definition 3.1. A set $S \subseteq V$ in a FGG on $G^*(V, E)$ is said to be a perfect g-eccentric point set(PgEP-set) if for every $x \in V - S$, there exists exactly one g-eccentric point y of x in S. The perfect g-eccentric point set S of G is a minimal perfect g-eccentric point set if there is no proper subset S' of S is a perfect g-eccentric point set of G. The minimum cardinality of a minimal perfect g eccentric point set of G is called the perfect geccentric number and is denoted by $e_{pg}(G)$ and simply denoted by e_{pg} . The maximum cardinality of a minimal perfect g-eccentric point set is called upper perfect g-eccentric number and is denoted by $E_{pg}(G)$ and simply denoted by E_{pg} .

PERFECT G-ECCENTRIC DOMINATION IN FUZZY GRAPHS

Note 3.1. The minimum PgEP-set is denoted by e_{pg} – set.

Example 3.1.

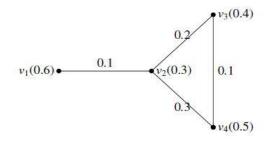


Figure 1: Fuzzy Graph $G(\sigma, \mu)$

In the FG *G* given in figure 1, the g-eccentricity of v_1, v_2, v_3 and v_4 are $e_g(v_1) = 2$, $e_g(v_2) = 1$ and $e_g(v_3) = 2$, $e_g(v_4) = 2$ respectively and the g-eccentric point set of v_1, v_2, v_3 and v_4 are $E_g(v_1) = \{v_3, v_4\}, E_g(v_2) = \{v_1, v_3, v_4\}, E_g(v_3) = \{v_1, v_4\}$ and $E_g(v_4) = \{v_1, v_3\}$ respectively. The e_{pg} -sets are $S_1 = \{v_3\}$ and $S_2 = \{v_1\}$. Hence, $e_{pg}(G) = 0.4$ and $E_{pg}(G) = 0.6$.

Observation 3.1.

- 1 If S is a PgEP-set, then $S' \supset S$ is also a PgEP-set.
- 2 If S is a minimal PgEP- set, then $S' \subset S$ is not a PgEP-set.
- 3 In a fuzzy tree, every PgEP-set contains at least one pendent vertex.
- 4 For any FG $G, e_{pg}(G) \leq E_{pg}(G)$.
- 5 For any $\operatorname{FG} G, e_q(G) \leq e_{pq}(G)$.
- 6 The complement of a e_{pg} set need not be a PgEP-set.

Example 3.2.

Figure 2: Path Fuzzy Graph P_{σ} , $|\sigma^*| = 4$

The path FG given in figure 2, the e_{pg} -set is $S = \{v_1, v_4\}$. The complement of $SV - S = \{v_2, v_3\}$ is not a PgEP-set.

Preposition 3.1. Let K_{σ} be any complete *FG*. Then $e_{pg}(K_{\sigma}) = \sigma_0$, $|\sigma^*| = n$, where $\sigma_0 = \min\{\sigma(u), u \in V\}$.

Proof. Let K_{σ} be any complete FG. Then $\mu(u, v) = \sigma(u) \land \sigma(v), \forall u, v \in V$. Therefore, each vertex has exactly (n - 1) g-eccentric points. Hence, every singleton set is a minimum pgep-set. Therefore, $e_{pg}(K_{\sigma}) = \min\{\sigma(u), u \in V\}$. = σ_0 .

Preposition 3.2. Let K_{σ_1,σ_2} be a complete bipartite FG, where $|\sigma_1^*| = m$ and $|\sigma_2^*| = n$. Then $e_{pg}(K_{\sigma_1,\sigma_2}) = \sigma_{10} + \sigma_{20}$, where $\sigma_{10} = \min_{u \in V_1} \sigma(u)$ and $\sigma_{20} = \min_{v \in V_2} \sigma(v)$.

Proof. Let K_{σ_1,σ_2} be a complete bipartite FG, where $|\sigma_1^*| = m$ and $|\sigma_2^*| = n$. For σ_1 , the g-eccentric set of each vertices are $E_g(u_1) = \{u_2, u_3, \cdots, u_m\}, E_g(u_2) = \{u_1, u_3, \cdots, u_m\}, \cdots, E_g(u_n) = \{u_2, u_3, \cdots, u_(m-1)\}$ and similarly, for the vertex set σ_2 the g-eccentric set of each vertices are $E_g(v_1) = \{v_2, v_3, \cdots, v_n\}, E_g(v_2) = \{v_2, v_3, \cdots, v_n\}, \cdots, E_g(v_n) = \{v_2, v_3, \cdots, v_{(n-1)}\}$. Therefore, the e_{pg} -set is = (u, v), let $\sigma_{10} = \min\{\sigma(u), u \in V_1\}$ and $\sigma_{20} = \min\{\sigma(v), v \in V_2\}$. Hence, $e_{pg}(K_{\sigma_1,\sigma_2}) = \sigma_{10} + \sigma_{20}$

Preposition 3.3. Let S_{σ} be a star *FG*. Then $e_{p\sigma}(S_{\sigma}) \leq 1$, $|\sigma^*| = n, n \geq 3$.

Proof. Let S_{σ} be any star FG. Let $c \in V$ be g-central vertex of a star FG. Then, all vertices in $V - \{c\}$ are the g-peripheral vertices. Now, all the g-peripheral vertices is the g-eccentric point of g-central vertex and a vertex in $V - \{c\}$ has a g-eccentric points as all other g-peripheral vertices except g-central vertex c. Therefore, the PgEP-set is = $\min\{\sigma(u), u \in V - \{c\}\}$. Hence, $e_{pg}S_{\sigma} \leq 1$.

Preposition 3.4. Let P_{σ} be any path *FG*. Then $e_{pq}(P_{\sigma}) = \sigma_0, |\sigma^*| = 2,3$.

Proof. Let P_{σ} , $|\sigma^*| = n$ be any path FG.

Case(i) If n = 2

One of the vertex in a path FG is a perfect g-eccentric point of other and Therefore,

$$e_{pg}(P_{\sigma}) = \min_{u \in V} \sigma(u)$$
$$= \sigma_0$$

Case(ii)If n = 3

Every g-peripheral vertex is a g-eccentric point of other g-peripheral vertex and a gcentral vertex has a g-eccentric point of every g-peripheral vertex. Therefore, every singleton minimum g-peripheral vertex is a perfect g-eccentric point set of P_{σ} . Therefore, $e_{pg}(P_{\sigma}) = \sigma_0$.

Preposition 3.5. Let P_{σ} be any path *FG*.

$$e_{pg}(P_{\sigma}) \leq \begin{cases} 2, & \text{if } |\sigma^*| = n, n \ge 4, n \text{ is even} \\ 3, & \text{if } |\sigma^*| = n, n \ge 5, n \text{ is odd} \end{cases}$$

Proof. Let P_{σ} , $|\sigma^*| = n$ be any path fuzzy graph

Case(i) If n is even, $n \ge 4$:

Let the g-eccentric set of vertices are $E_g(u_1) = E_g(u_2) = \dots = E_g\left(u_{\frac{n}{2}}\right) = \{u_n\}$ and $E_g\left(u_{\frac{n}{2}+1}\right) = E_g\left(u_{\frac{n}{2}+2}\right) = \dots = E_g(u_n) = \{u_1\}$. Then the PgEP-set is $=\{u_1, u_n\}$. Since, every vertex of V - S has exactly one g-eccentric point in S. Hence, $e_{pg}(P_{\sigma}) \leq 2$

Case(ii): If n is odd, $n \ge 5$:

Now,
$$E_g(u_1) = E_g(u_2) = \dots = E_g\left(u_{\frac{n+1}{2}} - 1\right) = \{u_n\}, E_g\left(u_{\frac{n+1}{2}}\right) = \{u_1, u_n\}$$
 and $E_g\left(u_{\frac{n+1}{2}} + 1\right) = \dots = E_g(u_n) = \{u_1\}$. Then, the PgEP-set is $S = \left\{u_1, u_{\frac{n+1}{2}}, u_n\right\}$. Since, every vertex of $V - S$ has exactly one g-eccentric point in S . Hence, $e_{pg}(P_\sigma) \le 3$

4 Perfect g-Eccentric Domination in Fuzzy Graphs

In this section, the perfect g-eccentric dominating set and its numbers are defined in a FG. The relations between domination numbers, g-eccentric number, g-eccentric domination number and perfect g-eccentric domination number are obtained. The perfect g-eccentric domination numbers of some well known FG are foundFG and theorems related to perfect g-eccentric domination numbers are given and demonstrated.

Definition 4.1. A dominating set $D \subseteq V(G)$ is said to be a perfect g-eccentric dominating set(PgED-set) in a FG *G* if for every $v \in V - D$, there exists exactly one g-

eccentric point $u \in D$ of v. A perfect g-eccentric dominating set is a minimal perfect geccentric dominating set if no proper sub set $D' \subset D$ is a perfect g eccentric dominating set. The minimum cardinality taken over all minimal perfect g-eccentric dominating set is called perfect g-eccentric domination number and is denoted by $\gamma_{pged}(G)$. The maximum cardinality taken over all minimal perfect g-eccentric dominating set is called upper perfect g-eccentric domination number and is denoted by $\Gamma_{pged}(G)$.

Note 4.1. The minimumPgED-set of a *FG* is denoted by γ_{pged} -set.

Example 4.1.

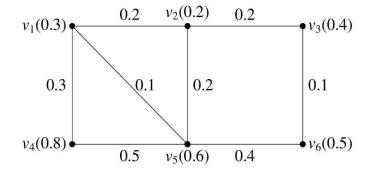


Figure 3: Fuzzy Graph $G(\sigma, \mu)$

The FG given in figure 3, we observe that,

- 1 The set $D_1 = \{v_2, v_5\}$ is γ -set and $\gamma(G) = 0.8$.
- 2 The set $D_2 = \{v_1, v_3, v_6\}$ is γ_{ged} -set and $\gamma_{\text{ged}}(G) = 1.2$.
- 3 The set $D_3 = \{v_1, v_3, v_5, v_6\}$ and $D_4 = \{v_2, v_3, v_4, v_6\}$ are minimal PgED-sets. Hence, $\gamma_{pged}(G) = 1.8$ and $\Gamma_{pged}(G) = 1.9$.

Observation 4.1.

- 1 If *D* is a PgED-set, then $D' \supset D$ is also PgED-set.
- 2 If *D* is a minimal PgED-set, then $D' \subset D$ is not a PgED-set.
- 3 For any FG $G, \gamma(G) \leq \gamma_{ged}(G) \leq \gamma_{pged}(G) \leq \Gamma_{pged}(G)$.

- 4 If a connected FG *G* has more than one pendent vertex then the PgED-set contains at least two pendent vertex.
- 5 Every PgED-set is a gED-set but the converse need not be true.
- 6 The complement of a γ_{pged} -set need not be PgED-set.

Example 4.2.

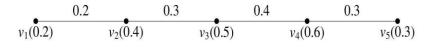


Figure 4: Path Fuzzy Graph P_{σ} , $|\sigma^*| = 5$

Let us consider the figure 4 given in example 4.2, We observe that

- 1 The set $D = \{v_1, v_3, v_5\}$ is gED-set and PgED-set. Also, the set $D_1 = \{v_1, v_2, v_5\}$ is a gED-set but not a PgED-set.
- 2 Let the set $D = \{v_1, v_3, v_5\}$ is a PgED-set but the complement of D is $V D = \{v_2, v_4\}$ not a PgED-set.

Observation 4.2. Let *D* be dominating set in a *FGG* and *S* be a e_{pg} -set of *G*. Then clearly $D \cup S$ is γ_{pged} -set of *G*.

Observation 4.3. For any connected FGG.

(i)
$$\gamma(G) \le \gamma_{ged}(G) \le \gamma_{pged}(G)$$

(ii) $\gamma_{pged}(G) \leq \Gamma_{pged}(G)$.

(iii) If diam_{*g*}(*G*) = rad_{*g*}(*G*), then $\gamma_{pged}(G) = \gamma(G)$.

Theorem 4.1. For any connected FGG, $\gamma_{pged}(G) \leq \gamma(G) + e_{pg}(G)$.

Proof. By the observation 4.2, every γ_{pged} -set is a union of dominating set and perfect g-eccentric point set. Hence, $\gamma_{pged}(G) \leq \gamma(G) + e_{pg}(G)$.

Result 4.1. If $G(\sigma, \mu)$ is a disconnected *FG*, then $\gamma_{pged}(G) = \gamma(G)$. Since, vertices from different components are *g*-eccentric to each other.

Note 4.2. $\gamma_{pged}(G) = p$ if and only if $G(\sigma, \mu) = \bar{K}_{\sigma}$.

Theorem 4.2. For any complete FGK_{σ} , $\gamma_{\text{pged}}(K_{\sigma}) = \sigma_0$, where $\sigma_0 = \min_{u \in V} \sigma(u)$.

Proof. If $G = K_{\sigma}$ be a complete FG, then $\operatorname{rad}_{g}(G) = \operatorname{diam}_{g}(G) = \sigma_{0}$. Hence any vertex $u \in V(G)$ dominates all other vertices and also perfect g-eccentric point of other vertices. Hence, $\gamma_{pged}(K_n) = \sigma_{0}$.

Observation 4.4. For any FGG, $\sigma_0 \leq \gamma_{pged}(G) \leq p$, where $\sigma_0 = \min_{u \in V} \sigma(u)$ and p is the order of FGG.

Theorem 4.3. For a complete bipartite FG, $\gamma_{\text{pged}}(K_{\sigma_1,\sigma_2}) = \sigma_{10} + \sigma_{20}$, where $\sigma_{10} = \min_{u \in V_1} \sigma(u)$ and $\sigma_{20} = \min_{v \in V_2} \sigma(v)$.

Proof.If $(K_{\sigma_1,\sigma_2}), \sigma = \sigma_1 \cup \sigma_2$, be any complete bipartite FG, where $|\sigma_1^*| = m$ and $|\sigma_2^*| = n$ then each point u of V_1 is adjacent to every point v of V_2 and vice versa. By theorem 4.1 $D = \{u, v\}, u = \min_{u \in V_1} \sigma(u)$ and $v = \min_{v \in V_2} \sigma(v)$ is a PgEP-set and also D is a minimum dominating set of K_{σ_1,σ_2} . Hence, $\gamma_{pged}(K_{\sigma_1,\sigma_2}) = \sigma_{10} + \sigma_{20}$.

Corollary 4.3.1. For a star FG, $\gamma_{pged}(K_{\sigma_1,\sigma_2}) = \sigma_{10} + \sigma_{20}$, $|\sigma_1^*| = 1$ and $|\sigma_2^*| \ge 1$.

Theorem 4.4. Let D_1 and D_2 be two disjoint PgED-sets of a *FGG*. Then $|D_1| = |D_2|$

Proof. Let *G* be a FG. Let D_1 and D_2 be any two disjoint PgED-sets. For every vertex *x* in D_1 there is unique vertex v(x) in D_2 which is adjacent to *x* and exactly a g-eccentric vertex to *x*. Also, for every vertex *y* in D_2 there is unique vertex u(y) in D_1 which is adjacent to *y* and exactly a g-eccentric vertex to *y*. $\therefore |D_1| = |D_2|$.

Corollary 4.4.1. Let G be any FG and if D_1 and D_2 be any two PgED-sets such that $|D_1| = |D_2|$ then $D_1 \cap D_2 = \emptyset$.

Corollary 4.4.2. Let *G* be a *FG* with *n* vertices. If there is a PgED-set *D* with |D| < n/2 or $|D| \ge n/2$ then V - D is not a PgED-set.

Theorem 4.5. Let *D* be a (minimal) γ_{pged} set of connected *FGG*. Then V - D is a gEDset of *G*

Proof. Let *D* be a minimal PgED- set of connected FG *G*. Suppose V - D is not a gEDset. Then there exists a vertex $v \in D$ such that v (is not dominated by any vertex) has no g-eccentric vertex in V - D. Since G is connected, v is strong neighbor of atleast one vertex in $D - \{v\}$. Then $D - \{v\}$ is a gED-set, which is contradicts to the minimality of D. Thus every vertex in D is strong neighbor of atleast one vertex in V - D. Hence V - D is a gED-set.

Result 4.2. Every γ_{pged} -set of a FG *G* is a minimal PgED-set but the converse need not be true.

Theorem 4.6Let *G* be a FG and let *D* be a PgED-set. Then *D* is a minimal PgED-set if and only if for each vertex $u \in D$, satisfies one of the following condition:

1. $N_s(u) \cap D = \phi \text{or} E_g(u) \cap D = \phi$.

2. There exists some $v \in V - D$ such that (i) $N_s(v) \cap D = \{u\}$ or (ii) $E_g(v) \cap D = \{u\}$ or (iii) $E_g(v) \cap D \neq \phi$.

Proof: Suppose that *D* is a minimal PgED-set of a FG*G*. Then for every $u \in D$, $D - \{u\}$ is not a PgED- set. Then (i) there exists some vertex $v \in V - D \cup \{u\}$ which is not dominated by any vertex in $D - \{u\}$ or (ii) there exists $v \in V - D \cup \{u\}$ such that v has no g-eccentric point in $D - \{u\}$ or (iii) there exists $v \in V - D \cup \{u\}$ such that v has at least two g-eccentric point in $D - \{u\}$.

Case (1) If = u, then (i) u has no strong neighbor in $D - \{u\}$. Hence $N_s(u) \cap D = \phi$ or (ii) *u*has no g-eccentric point in $D - \{u\}$. Hence $E_g(u) \cap D = \phi$ or (iii) *u*has at least two g-eccentric point in $-\{u\}$. Hence $\mathbb{I}_{\mathbb{I}}(\mathbb{I}) \cap \mathbb{I} \neq \mathbb{I}$

Case (2) $\mathbb{I} \neq \mathbb{I}$, then (i) If \mathbb{I} is not dominated by $\mathbb{I} - \{\mathbb{I}\}$ but is dominated by \mathbb{I} , then \mathbb{I} is adjacent to only \mathbb{I} in \mathbb{I} , that is $\mathbb{I}_{\mathbb{I}}(\mathbb{I}) \cap \mathbb{I} = \{\mathbb{I}\}$. (ii) Suppose \mathbb{I} has no g-eccentric point in $\mathbb{I} - \{\mathbb{I}\}$ but \mathbb{I} has a g-eccentric point in \mathbb{I} that is $\mathbb{I}_{\mathbb{I}}(\mathbb{I}) \cap \mathbb{I} = \{\mathbb{I}\}$. (iii) Suppose \mathbb{I} has at least two g-eccentric point in $\mathbb{I} - \{\mathbb{I}\}$ but \mathbb{I} has at least two g-eccentric point in $\mathbb{I} - \{\mathbb{I}\}$ but \mathbb{I} has at least two g-eccentric point in \mathbb{I} that is $\mathbb{I}_{\mathbb{I}}(\mathbb{I}) \cap \mathbb{I} = \mathbb{I}$.

Conversely, suppose that \mathbb{I} is a PgED-set and for each $\mathbb{I} \in \mathbb{I}$ one of the conditions holds.

Assume that \mathbb{I} is not a minimal PgED-set, then there exists a vertex $\mathbb{I} \in \mathbb{I}$ such that $\mathbb{I} - {\mathbb{I}}$ is a PgED-set. Therefore, \mathbb{I} is strong neighbor to at least one vertex \mathbb{I} in $\mathbb{I} - {\mathbb{I}}$ or \mathbb{I} has a g-eccentric point in $\mathbb{I} - {\mathbb{I}}$. Hence, condition (1) does not hold.

Also, if $\mathbb{I} - \{\mathbb{I}\}$ is a PgED-set, then every element \mathbb{I} in $\mathbb{I} - \mathbb{I}$ is strong neighbor to exactly one vertex in $\mathbb{I} - \{\mathbb{I}\}$ or \mathbb{I} has exactly one g-eccentric point in $\mathbb{I} - \{\mathbb{I}\}$ or $\mathbb{I}_{\mathbb{I}}(\mathbb{I}) \cap \mathbb{I} \neq \mathbb{I}$.

S. MUTHUPANDIYAN AND A. MOHAMED ISMAYIL

Therefore, condition (2) does not hold. This is a contradiction to our assumption that for each $\mathbb{I} \in \mathbb{I}$, satisfies one of the condition. Hence, \mathbb{I} is a minimal PgED-set.

6. Conclusion

The perfect g-eccentric point set, perfect g-eccentric dominating set, its number and bounds for this numbers in fuzzy graphs are discussed in this paper.g-Eccentric perfect dominating set and perfect g-eccentric perfect dominating set in fuzzy graphs may be discuss in future.

References

[1] Kiran R Bhutani and Azriel Rosenfeld. Geodesies in fuzzy graphs. Electronic Notes in Discrete Mathematics, 15:49-52, 2003.

[2] Ernest J Cockayne and Stephen T Hedetniemi. Towards a theory of domination in graphs. Networks, 7(3):247-261, 1977.

[3] F. Harary. Graph Theory. Addition - Wesley Publishing Company Reading, Mass, 1992.

[4] A. Mohamed Ismayil and S. Muthupandiyan. Complementary nil g-eccentric domination in fuzzy graphs. Advances in Mathematics: Scientific Journal, 9(4):1719-1728, 2020.

[5] TN Janakiraman, M Bhanumathi, and S Muthammai. Eccentric domination in graphs. International Journal of Engineering Science, Advanced Computing and Bio-Technology, 1(2):1-16, 2010.

[6] JP Linda and MS Sunitha. On g-eccentric nodes g-boundary nodes and g-interior nodes of a fuzzy graph. Int Jr Math SciAppl, 2:697-707, 2012.

[7] SV Rashmi, Subramaniyan Arumugam, Kiran R. Bhutani and Peter Gartland, Perfect Secure domination in Graphs, Categories and General Algebraic Structures with Applications, 7(Special Issue on the occasion of Banaschewski's 90th Birthday (II)):125-140, 2017.

[8] Azriel Rosenfeld. Fuzzy graphs. In Fuzzy sets and their applications to cognitive and decision processes, pages 77-95. Elsevier, 1975.

[9] A Somasundaram and S Somasundaram. Domination in fuzzy graphs-i. Pattern Recognition Letters, 19(9):787-791, 1998.

[10] MS Sunitha and Sunil Mathew. Fuzzy graph theory: a survey. Annals of Pure and Applied mathematics, 4(1):92-110, 2013.

[11] Paul M. Weichsel, Dominating sets in n-cubes, *Journal of Graph Theory*, 18(5): 479-488, 1994.

[12] L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, 1965.

^{1st} S. MUTHUPANDIYAN AND ^{2nd} A. MOHAMED ISMAYIL

¹ Research Scholar, PG & Research Department of Mathematics, Jamal Mohamed College (Affiliated toBharathidasan University), Tiruchirappalli-620020, Tamilnadu, INDIA

² Associate Professor, PG & Research Department of Mathematics, Jamal Mohamed College (Affiliated toBharathidasan University), Tiruchirapppalli-620020, Tamilnadu, INDIA.

"Corresponding Author E-Mail Address:muthupandiyanmaths@gmail.com