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Abstract. Stationary adiabatic and isenthropic filtration of ideal and van
der Waals gases in porous media is considered. The explicit formulae for the

corresponding boundary problems are given and critical phenomena in gas
filtration are studed.

1. Introduction

In this paper we study the gas filtration through a porous medium. The first
valuable results in this area were obtained by Leibenson L.S. ([6]) and Muskat, M.
([7]). They have proposed a generalization of the Navier-Stokes equations for this
case where they substituted the Newton law by the Darcy one.

We consider 3-dimentional stationary gas filtration for the case of ideal and van
der Waals gases. Condition for stationary not only simplifies the mathematical
model but has practical reason because development of such processes take a long
time and also for control of them we use the cascade method.

The case of ideal gases is closed to the Leibenson method but we’ve included
more detail using of the thermodynamical properties of the medium. The case
of van der Waals gases was considered to show critical phenomena in filtration
processes and especially phase transitions.

In both cases we presented the explicit formulae for solutions of the correspond-
ing Dirichlet problem.

2. Basic equations

Stationary gas filtration in homogeneous porous 3 dimensional media is de-
scribed by the following system of differential equations [6, 7]:

• conservation of mass
div (ρU) = 0, (2.1)

• conservation of momentum, or Darcy law

U = −k

µ
∇p, (2.2)
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where ρ is the density of a gas, p – pressure, µ – dynamic viscosity, k – perme-
ability, U – vector field of rate of the filtration, and ∇p – the gradient of pressure.

In addition to these equations, we’ll assume that coefficients k, µ are constants,
the filtration is either adiabatic, i.e.

U (σ) = 0, (2.3)

or isenthalpic, i.e.

U (η) = 0, (2.4)

where σ is a specific entropy, η is a specific enthalpy and by U (f) we’ll denote the
derivative of a function f along vector field U.

It is worth to remark that the last conditions in the cases of sources or sinks lead
us to local constancy entropy or enthalpy around them. Later on we’ll extend this
observation and shall propose some kind of “ergodicity hypothesis”. Namely, we’ll
assume that entropy, or respectively enthalpy, are constant in the entire domain.

3. Filtration of ideal gases

3.1. State equations. The thermodynamic variables (p, ρ, ε, T, σ) , where ε is a
specific inner energy and T is the temperature, should satisfy the state equations,
which, for the case of ideal gases have the form:

• Claperon-Mendeleev equation

p = RρT, (3.1)

and
• the inner energy equation

ε =
n

2
RT, (3.2)

where n – degree of freedom and R is the universal gas constant.

It follows from these equations (see, for example, [2]) that

σ = R ln

(
εn/2

ρ

)
+ const, (3.3)

and

η =
(
1 +

n

2

)
ε. (3.4)

Due to these relations (3.3) adiabatic equation (2.3) takes the form

n+ 2

n

∇p (p)

p
=

∇p (ρ)

ρ
, (3.5)

and enthalpic equation
∇p (p)

p
=

∇p (ρ)

ρ
. (3.6)

We’ll write down both these equations in unified form

λ
∇p (p)

p
=

∇p (ρ)

ρ
, (3.7)

where λ = n
n+2 , for the adiabatic filtration and λ = 1 for the isenthalpic one.
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Remark that this equation shows us that the function

H = pλρ−1

is the first integral for the gradient vector field ∇p.
Going back to the mass conservation equation we get

div (ρU) = 0 =⇒ div (ρ∇p) = 0 =⇒ ρ∆p+∇p (ρ) = 0,

or

∆p+
∇p (ρ)

ρ
= 0,

where ∆ is the Laplace operator.
Finally, by using the unified equation, we get for ideal gases the basic equation

in the form

∆p+ λ
∇p (p)

p
= 0. (3.8)

Straightforward computations show that the following relation is valid.

Lemma 3.1. For any smooth function f (p) one has

∆(f (p)) = f ′ (p)∆ (p) + f ′′ (p)∇p (p) .

Corollary 3.2. Differential equation (3.8) is equivalent to the following

∆(q) = 0, (3.9)

where q = pλ+1.

3.2. The model of source or sink for ideal gases. Consider rotation invariant
solutions of equation (3.8) or (3.9). As we know function q = 1

4πr , where r is
the distance from a source, is the fundamental solution for the Laplace equation:
∆ (q) = −δ0.

Thus, let

p =

(
1

4πr

) 1
1+λ

, (3.10)

be the corresponding pressure function.
Moreover, as we have seen, function H = pλρ−1 is the 1-st integral of the

gradient vector field ∇p.
Therefore, in the case of a source, we have that H = c−1 in a neighborhood of

the source, where c is a constant.
Finally, we get

ρ = cpλ

in a neighborhood of the source, or

ρ = c

(
1

4πr

) λ
1+λ

. (3.11)

Then, for the vector field ρ∇p we get

ρ∇p =
c

λ+ 1
∇q,
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and therefore

div

(
k

µ
ρ∇p

)
= − k c

(λ + 1)µ
δ0, (3.12)

for “source type” solution (3.10).
Summarizing, we get the following description of all thermodynamic variables

in a neighborhood of a source.

Theorem 3.3. In a neighborhood of a source the following functions

p =
( γ

4πr

) 1
1+λ

, ρ = c
( γ

4πr

) λ
1+λ

, T =
1

cR

( γ

4πr

) 1−λ
1+λ

give us a model of source with intensity I, if

γ =
(1 + λ)µ

k c
I.

Proof. It is easy to check that the scaling q → γq, gives us the following transfor-
mation

p → γ
1

1+γ p, ρ → γ
λ

1+λ ,

and
div (ρ∇p) → γdiv (ρ∇p) .

�

3.3. The Dirichlet boundary problem for filtration of ideal gases. Con-
sider an open and connected domain D ⊂ R3 with a smooth boundary ∂D,
equipped with a set A = {ai, i = 1, ..., N} ⊂ D of points, with given intensities Ii.

We are looking for a smooth solution p of system (2.1,2.2) in domain DrA
for an ideal gas, having given intensities at point ai and given values of pressure
and temperature on the boundary:

p|∂D = p0, T |∂D = T0. (3.13)

First of all we define coefficients γi as follows

γi =
(1 + λ)µ

kc
Ii, (3.14)

where assumed that c is a common constant for all sources ai, i.e. the filtration
process is adiabatic or isenthropic in the strong sense: specific entropy and specific
enthalpy are constants in the entire domain D, then on the boundary we have

c =
p1−λ
0

RT0
. (3.15)

Now, define a function q as q (x) = q0 (x) + q1 (x) , where

q0 (x) =
1

4π

N∑
i=1

γi
|x− ai|

,

and q1 (x) is a smooth in domainD harmonic function, having the following bound-
ary values

q1|∂D = p1+λ
0 − q0|∂D . (3.16)

Summarizing we get the following theorem.
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Theorem 3.4. A solution (p, T ) of system differential equations (2.1,2.2) for
strong adiabatic or isenthropic filtration of ideal gases in the domain D, which is
smooth in the domain except of points in A, having at these points given intensities
Ii and having given values p0, T0 on the boundary of D, has the form

p =

(
1

4π

N∑
i=1

γi
|x− ai|

+ q1

) 1
1+λ

, (3.17)

T =
1

cR

(
1

4π

N∑
i=1

γi
|x− ai|

+ q1

) 1−λ
1+λ

,

where q1 is a harmonic function in domain D with boundary values (3.16), and
constants γi, c given by relations (3.15), (3.14).

4. Filtration of van der Waals gases

4.1. State equations. For the case van der Waals gases we have the following
state equations (see, for example, [2]):(

p+ aρ2
) (

ρ−1 − b
)
−RT = 0,

ε− n

2
RT + aρ = 0,

σ −R ln
((

ρ−1 − b
)
(ε+ aρ)

n/2
)

= 0,

where constants a, b are positive, constant a takes in account intermolecular forces
and constant b− molecular volume, as above n is the degree of freedom.

This model describes gas or liquid (depending on the density) in domain where

p > aρ2 (1− 2bρ) , bρ < 1.

In domain where

p < aρ2 (1− 2bρ) , bρ < 1, (4.1)

we have intermediate state or condensation.
The curve

p = aρ2 (1− 2bρ) , bρ < 1,

consist of the states where the phase transition occurs (see, [2] and [4], for more
details).

The following contact transformation

(p, ρ, ε, T, σ) →
(

p

pc
,
ρ

ρc
,
ε

εc
,
T

Tc
,
σ

σc

)
, (4.2)

where

pc =
a

27b2
, ρc =

1

3b
, εc =

a

9b
, Tc =

8a

27bR
, σc =

3R

8
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are the critical values of the thermodynamic variables ([2]), maps the state equa-
tions to the reduced form:

3p− (p+ 8T ) ρ+ 9ρ2 − 3ρ3 = 0, (4.3)

ε− 4n

3
T + 3ρ = 0,

σ − 4n

3
ln (ε+ 3ρ)− 8

3
ln

(
3

ρ
− 1

)
− σ0 = 0.

Assuming that the entropy is a constant we get from equations (4.3) that

p = 3ρ2 − c

(
3

ρ
− 1

)−α

, (4.4)

where

α = 1 +
2

n
, c =

6

n
exp

(
3σ

4

)
.

Theorem 4.1. Basic equations (2.1,2.2) for adiabatic filtration of van der Waals
gases are equivalent to equation

∆(Q (ρ)) = 0,

where

Q (ρ) = 2ρ3 + 3αc

(
3

ρ
− 1

)−α

LerchPhi

(
1− 3

ρ
, 1,−α

)
(4.5)

is the Lerch function (see,[1]).and
The pressure and temperature functions given by (4.4) and

T = 8c

(
3

ρ
− 1

)1−α

. (4.6)

Proof. Vector field ρ∇p is a gradient vector field ∇Q, where Q =
∫
ρ∂p
∂ρdρ, and

p = p (ρ) given by equation (4.4). �

4.2. Inversion of Q. Function Q is defined by (4.5) and we found it by the
requirement

dQ

dρ
= ρ

dp

dρ
,

where p satisfies (4.4).
Therefore, the condition

dQ

dρ
= 0 ⇐⇒ dp

dρ
= 0,

can be written as follows

ρ2−α (3− ρ)
1+α

=
αc

2
.

Let us consider the function

w (ρ) = ρ2−α (3− ρ)
1+α

on the interval [0, 3].
We have w (0) = w (3) = 0 and w ≥ 0 on the interval.
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Moreover, w′ = 0 in this interval at point ρ = 2− α only. Therefore,

max
ρ∈[0,3]

w (ρ) = w (2− α) = (2− α)
2−α

(1 + α)
1+α

,

and Q′ (ρ) ̸= 0 on interval (0, 3) if

c >
2

α
(2− α)

2−α
(1 + α)

1+α
, (4.7)

and has two roots in the opposites case.

Proposition 4.2. The function Q is invertible if the specific entropy constant σ
satisfies inequality (4.7), where

c =
6

n
exp

(
3σ

4

)
.

4.3. Phase transitions. The phase transitions, condensation and gas-liquid ar-
eas could be found from the above theorem an formulae (4.1).

Theorem 4.3. In adiabatic filtration of the van der Waals gases the condensation
area and phase transition given by the following equations:

• condensation area(
3

ρ
− 1

)α+1

ρ3 > 32c, ρ < 3, (4.8)

and
• curve of phase transitions(

3

ρ
− 1

)α+1

ρ3 − 32c = 0, ρ < 3, (4.9)

where Q (ρ) is a harmonic function.

It is easy to check that the function on left hand side of (4.8), similar to the
above discussion, takes it maximum value at the point

ρc = 2− α,

and the corresponding value of constant c equals

cc =
1

32

(
2 +

2

n

)2+2/n(
1− 2

n

)1−2/n

.

Therefore, if c > cc we have now phase transitions, and if c < cc the phase
transitions occur at roots ρ1, ρ2 of equation (4.9), where

ρ1 < 1− 2

n
< ρ2.

Example 4.4. For monatomic gases we have n = 3, and therefore

cc = 0, 296 . . . , ρc = 0, 33..

and
ρ1 = 0, 823..., ρ2 = 2, 987...,

for c = 1/32.
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4.4. The model of source or sink for van der Waals gases. Similar to the
case of ideal gases we have ρ∇p = ∇Q(ρ) , for the case of van der Waals gases.
Therefore, the source at a point x0 of given intensity I and fixed entropy σ has
the form

ρ = Q−1

(
I

4π |x− x0|

)
, (4.10)

T = 8c

(
3

ρ
− 1

)1−α

,

p = 3ρ2 − c

(
3

ρ
− 1

)−α

,

where as above

α = 1 +
2

n
, c =

6

n
exp

(
3σ

4

)
,

and Q given by (4.5).
Remark that Q−1 exists if condition (4.7) holds, in other case we need an

additional separation of roots.
Also conditions (4.8) give us the areas of gas, liquid and condensation phases.

4.5. The Dirichlet boundary problem for filtration of van der Waals
gases. As above, let’s consider an open and connected domain D ⊂ R3 with a
smooth boundary ∂D, equipped with a set A = {ai, i = 1, . . . , N} ⊂ D of points,
with given intensities Ii.

We are looking for a smooth solution p of system (2.1,2.2) in domain DrA for
van der Waals gases, having given intensities at point ai, given entropy constant
c, and given values of pressure and temperature on the boundary:

ρ|∂D = ρ0.

Now, define functions Z0 and Z1 in such a way ,that

Z0 (x) =
1

4π

N∑
i=1

Ii
|x− ai|

,

and Z1 (x) is a smooth in domain D harmonic function, having the following
boundary values

Z1|∂D = Q (ρ0)− Z0|∂D . (4.11)

Then function Q (ρ) = Z0 + Z1 gives us the solution of the Dirichlet boundary
problem.

Theorem 4.5. A solution (ρ, p, T ) of system differential equations (2.1,2.2) for
adiabatic filtration of van der Waals gases in the domain D, which is smooth in
the domain except of points in A, having at these points given intensities Ii and
the entropy constant c and having given value ρ0 on the boundary of D, has the
form

ρ = Q−1

(
1

4π

N∑
i=1

Ii
|x− ai|

+ Z1

)
,
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where Z1 is a harmonic function in domain D with boundary values (4.11). The
corresponding temperature T and pressure p are given by equations (4.6) and (4.4).

Remark 4.6. In order to have well defined function Q−1 the constant c should
satisfy condition (4.7) .
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