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Abstract. In this paper, we address the problem of existence and unique-
ness of a global classical solution to a multidimensional stochastic Burgers
equation without gradient-type assumptions on the force or the initial condi-
tion. The equation is first transformed to a random PDE, and then solved via
the associated forward-backward SDE. Additionally, we obtain a new a priori
gradient estimate valid for a large class of second-order quasilinear parabolic
PDEs which becomes an important tool in our approach. Also, we study the
stochastic Burgers equation in the vanishing viscosity limit.

1. Introduction

In this article, we obtain the existence and uniqueness of a global classical
solution to the multidimensional stochastic Burgers equation

y(t, x) = h(x) +
∫ t

0

[
ν∆y(s, x)− (y,∇)y(s, x) + f(s, x, y)

]
ds + η(t, x) (1.1)

on [0, T ]×Rn, where h is a random initial data, f is a deterministic function rep-
resenting force, and η(t, x) is a noise smooth in x and rough in time. In particular,
η(t, x) can be a stochastic integral

∫ t

0
g(s, x)dBs, assumed to be defined for each

x, but this choice does not affect our analysis. Importantly, we do not assume that
any of the functions f , η, or h are of gradient form.

In the past two decades many works have been dedicated to the problem of
Burgers turbulence (see, e.g., [1, 3, 4, 6, 8, 11, 13, 22, 23]), that is, the study of
solutions to a Burgers equation with a random initial condition or force. In the
extensive survey on Burgers turbulence [2], Bec and Khanin refer the multidimen-
sional extension of a stochastic Burgers equation in the non-potential case as an
important open question. The authors illustrate that when the forcing and the
initial data are potential (i.e., represented as gradients of other functions), the po-
tential character of the velocity field is conserved by the dynamics, so the situation
carry many similarities with the one-dimensional case [2]. Further, the authors in
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[2] explicitly pose the question of what happens when the potentiality assumption
of the flow is dropped.

Our main motivation in studying the multidimensional viscous Burgers equation
with smooth random forces is its application to the theory of hydrodynamical
turbulence [2, 8, 24]. As such, equations of form (1.1) are frequently used as a
model of randomly driven Navier-Stokes equations without pressure [7, 31].

In this work, we propose a method of obtaining a global classical solution to
stochastic Burgers equation (1.1) based on a fixed point argument of the associated
forward-backward SDE (FBSDE) and a gradient estimate. First, we transform
(1.1) to a random PDE, and then introduce a sequence of stopping times making
the noise globally bounded. This allows us to apply FBSDE techniques similar to
the case of deterministic PDEs [15, 30], and also, to make use of our own result
on a gradient estimate for PDEs by means of FBSDEs.

The interest in Burgers turbulence is motivated by its applications in cosmology
[33], fluid dynamics [12], superconductors [5], etc. It is known that the Burgers
equation arises as an asymptotic form of various nonlinear dissipative systems [2].
That is why a one-dimensional stochastic Burgers equation has been intensely
studied over the last two decades in a variety of contexts and based on different
techniques. The literature is vast, so we refer the reader to the series of works
[6, 13, 14, 20], and references therein. The stochastic multidimensional potential
case, i.e., when the force and the initial data are of the gradient form, has also been
studied by some authors [1, 8, 10, 11, 25]. Since the potential Burgers equation
can be reduced to a one-dimensional parabolic equation by a number of known
approaches (see, e.g., [8, 10, 11]), the analysis is significantly simplified. We remark
that in the present article, we consider the non-potential case for both, the random
force and the initial condition, which does not allow us to apply any of the above
techniques.

Further, we would like to mention article [9], where the authors prove the ex-
istence and uniqueness of a global strong solution to a non-potential multidimen-
sional stochastic Burgers equation in the Lp-space with the number p bigger than
the dimension of the equation. Although the stochastic Burgers equation in [9]
has the form similar to (1.1), the approach of the aforementioned work completely
differs from ours. Besides, from the hydrodynamical turbulence point of view, Lp-
solutions do not appear suitable since they do not convey the meaning of the
solution to (1.1) as the velocity of a fluid at a given point x in the space [29].
Also, our noise term is not assumed to take any specific form, unlike [9]. In fact,
the choice of the forcing term η(t, x) in physics literature is frequently made on
the basis of the covariance of the form cov(η̇i(t, x), η̇j(t′, x′)) = δ(t− t′)ϕij(x−x′)
(see, e.g., [7, 31]). However, the above relation is not satisfied by the stochastic-
integral-type noise. Remark that in [9], the choice of the noise term as a stochastic
integral plays a crucial role in the analysis. Another advantage of our method is
the use of the associated FBSDE, which may allow the results of paper [17] on a
forward-backward stochastic algorithm for PDEs to be applied to tackle equation
(1.1) numerically.

Furthermore, we mention that in the deterministic case, the global existence
and uniqueness of a classical solution to the multidimensional Burgers equation is
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known due to the results of Ladyzhenskaya et al [28], and follows as a particular
case of a more general theory for systems of quasilinear parabolic PDEs. How-
ever, the results of [28] are not applicable to equation (1.1) since the noise is not
differentiable in time.

As a byproduct of our approach, we obtain an a priori gradient estimate valid for
a large class of quasilinear second order parabolic PDEs. Our bound is obtained
exclusively by using the associated FBSDE. Previously, a gradient estimate by
means of FBSDE techniques was obtained in [16]. However, the result of [16]
cannot be applied to the present case. Indeed, in our work, the gradient estimate
is used in the process of construction of the solution by glueing the solutions on
short-time intervals, i.e., we deal with solutions defined on subintervals of [0, T ]
but not on the entire interval. In this situation, the results of [16] do not guarantee
that the gradient bound will be uniform over the length of the subinterval, while
our result does guarantee that. Thus, our gradient estimate appears completely
suitable for solving some class of PDEs by means of FBSDEs. Additionally, our
approach to obtaining this bound is significantly simpler and shorter than in [16],
although it is valid for a smaller class of PDEs.

Also, we remark that the classical book on quasilinear parabolic PDEs by La-
dyzhenskaya et al [28] only provides an a priori gradient estimate for an initial-
boundary value problem on a bounded domain.

Finally, we study the vanishing viscosity limit of equation (1.1). We investigate
this problem only locally. Namely, we prove that on a small random time interval,
there exists a unique classical solution to the inviscid stochastic Burgers equation
and the solutions to viscous stochastic Burgers equations with the same force terms
and the initial data converge to the inviscid solution uniformly in space and time.
Note that even on a short time interval, many authors investigated the vanishing
viscosity limit in hydrodynamics problems. As such, Ebin and Marsden [18] proved
the convergence of local Sobolev-space-valued solutions of the Navier-Stokes equa-
tion to local solutions of the Euler equation. Golovkin [21] and Ladyzhenskaya [27]
obtained the aforementioned convergence uniformly in space and time. Further,
Ton [32] studied the local vanishing viscosity limit of a multidimensional determin-
istic Burgers equation in an L2-space. Furthermore, Brzeźniak et al [9] proved that
viscous solutions to a potential stochastic Burgers equation converge locally to an
inviscid viscosity solution. It is known that even if the initial data and the force
are smooth, a one-dimensional inviscid Burgers equation develops discontinuities
(shocks) at a finite time, and, therefore, fails to have a global classical solution.
Thus, one cannot expect a global uniform approximation of inviscid solutions by
viscous. Finally, we remark that the inviscid multidimensional stochastic Burgers
equations is also studied by means of the associated stochastic forward-backward
system.

The organization of our paper is as follows. Section 2 is dedicated to the problem
of existence and regularity of the solution to equation (1.1). In detail, in subsection
2.1 we discuss different forms of the noise that fit to our assumptions. Subsection
2.2 deals with the local existence, smoothness, and regularity of solutions to (1.1).
Remark, that papers [15] and [30] seemingly deal with techniques similar to those in
subsection 2.2. However, in [30], the FBSDEs under consideration are decoupled
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(unlike ours), while the assumptions of [15] (e.g., B.A2, Appendix B) are not
satisfied by our FBSDE coefficients which fail to be Lipschitz together with their
first and second order derivatives. Thus, we are not able to directly apply the
existing results in this topic and have to perform the arguments under different
assumptions. Further, subsection 2.3 deals with an a priori gradient estimate for
some class of quasilinear parabolic PDEs. The estimate is uniform over subintervals
of a given time interval. The authors are not aware if gradient estimates with the
aforementioned property exist in the literature. In subsection 2.4, we obtain the
main result of this work, which is existence and smoothness of solution to equation
(1.1). Finally, section 3 is dedicated to the vanishing viscosity limit.

2. Existence and uniqueness of solution to equation (1.1)

In this section, we show that under assumptions (A1)–(A3) below, equation
(1.1) possesses a unique global solution y(t, x) which is C2-smooth in x and con-
tinuous in t.

2.1. Assumptions and choice of the noise. Let (Ω,F ,Ft,P) be a filtered
probability space satisfying the usual conditions.

Assume the following:
(A1) f(t, x, y) is an Rn-valued deterministic function of class C0,2

b ([0, T ]×R2n).
(A2) η(t, x) is an Rn-valued stochastic process which is Ft-adapted for each x;

moreover, a.s., η(t, x) is of class C0,4
b ([0, T ]× Rn) and η(0, x) = 0.

(A3) For each x ∈ Rn, h(x) is an F0-measurable random variable, which, more-
over, is of class C2

b(Rn) a.s.
Below, we give a few examples of the noise process η(t, x) satisfying (A2).
Example 1. η(t, x) =

∫ t

0
g(s, x)dBs =

∑d
i=1 gi(s, x)dBi

s, where Bi
t are indepen-

dent real-valued Ft-Brownian motions, and the stochastic integral is defined for
each x ∈ Rn. Let us show that η(t, x) verifies (A2) for some integrands g(t, x).
Namely, we assume:

(i) For each x ∈ Rn, g(t, x) is a progressively measurable stochastic process
with values in Rd×n which takes the form g(t, x) = g̃(t, φ(x)) for some Rl-
valued random function φ(x) such that for each x it is a random variable
independent of Bt, t ∈ [0, T ].

(ii) For each t ∈ [0, T ], g̃(t, · ) is of class C4+α
b (Rl) a.s., α ∈ (0, 1); φ is of

class C4
b(Rn) a.s., and, furthermore, E

∫ T

0
‖g̃(t, · )‖p

C4+α
b (Rl)

dt < ∞ for some

p > 2 + θ + (4 + θ2)
1
2 , where θ = 1

2 α−1(n + 1).

Remark 2.1. Recall that the space Ck+α
b (Rm), α ∈ (0, 1), k ∈ N, is defined as the

(Banach) space of functions ζ(x) possessing the finite norm

‖ζ‖Ck+α
b (Rm) = ‖ζ‖Ck

b (Rm) + [∇k
xζ]xα,

where the Hölder constant [ϑ]xα is defined as

[ϑ]xα = sup
x,x′∈Rm,

0<|x−x′|<1

|ϑ(x)− ϑ(x′)|
|x− x′|α .
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Remark 2.2. Assumptions (i) and (ii) are satisfied, in particular, when the func-
tions g(t, · ) have a common compact support D ⊂ Rn. Then, take g̃(t, x) = g(t, x)
and φ(x) = xξ(x), where ξ(x) is a C∞-cutting function for D, i.e., ξ(x) = 1 if
x ∈ D, ξ(x) = 0 if x is outside of Dδ, a small δ-neighborhood of D, and, more-
over, 0 6 ξ(x) 6 1. Furthermore, assume that g(t, x) satisfies the regularity and
integrability assumptions from (i) and (ii).

Lemma 2.3. Under assumptions (i) and (ii), there is a version of the stochastic
integral

∫ t

0
g(s, x)dBs which belongs to the space C0,4

b ([0, T ]× Rn).

For the proof of Lemma 2.3, we need the next lemma.

Lemma 2.4. Assume that for each x ∈ Rn, ζ(t, x) is a progressively measurable
Rd×n-valued stochastic process such that for each t ∈ [0, T ], ζ(t, x) belongs to class
C1+α(Rn) and E

∫ T

0
‖ζ(s, · )‖p

C1+α(Rn)ds < ∞ for a number p as in (ii). Then, the

stochastic integral
∫ t

0
ζ(s, x)dBs possesses a C0,1([0, T ]× Rn)-modification.

Proof. Let, for any function ϑ(x), ∆k
εϑ(x) = ε−1

(
ϑ(x+εek)−ϑ(x)

)
. It is immediate

to verify that

E
∣∣∣∆k

ε

∫ t

0

ζ(s, x)dBs −∆k
ε′

∫ t′

0

ζ(s, x′)dBs

∣∣∣
p

6 γ(p, T )E
∫ T

0

‖ζ(s, · )‖p
C1+α(Rn)ds

(|ε− ε′|αp + |x− x′|αp + |t− t′| p
2−1

)

for some constant γ(p, T ). The statement of the lemma holds by the choice of p
(as in (ii)) and Kolmogorov’s continuity theorem. ¤

Proof of Lemma 2.3. Lemma 2.4 implies that the stochastic integral
∫ t

0
g̃(s, z)ds

possesses a C0,4-modification. This immediately implies that
∫ t

0
g̃(s, φ(x))ds pos-

sesses a C0,4
b -modification, i.e., its derivatives in x are bounded. ¤

Example 2. Assume g(t, · ) takes values in L(H,Hk(Rn)), where H is a Hilbert
space and Hk(Rn) is a Sobolev space with sufficiently large k. Further, let Bt be
an H-valued cylindrical Brownian motion. Then, η(t, · ) =

∫ t

0
g(s, · )dBs can be

understood as an Hk(Rn)-valued stochastic integral. This implies that η(t, x) is
in C0,4

b ([0, T ],Rn) by Kolmogorov’s continuity theorem and Sobolev’s imbedding
Hk(Rn) ↪→ C4

b(Rn).
Example 3. Let Ẇ i(t, x), i = 1, . . . , n, be independent space-time white

noises, and let Ẇ i
ε(t, x) be a regularization in x of Ẇ i(t, x), that is, Ẇ i

ε(t, x) =
(Ẇ i(t, · ) ∗ ρε)(x), where ρε is a standard mollifier supported on the ball of ra-
dius ε. Alternatively, one can write W i

ε(t, x) = (W i(t, · ) ∗ ∂n
x1...xn

ρε)(x), where
W i(t, x) is an (n + 1)-parameter Brownian sheet. The filtration Ft can be taken
as follows σ{W i(s, x), 0 6 s 6 t, i = 1, . . . , n, x ∈ Rn} ∨ σ{h(x), x ∈ Rn} ∨ N ,
where N is the collection of P-null sets. Remark that cov (Ẇ i

ε(t, x), Ẇ j
ε (t′, x′)) =

δ(t−t′)ϕij(x−x′), where ϕij(y) = δij

∫
Rn ρε(z)ρε(z+y)dz. Since we are interested

in noises of class C0,4
b (Rn), define η̇i(t, x) as Ẇ i

ε(t, x)ξ(x), where ξ(x), x ∈ Rn, is
a C∞-cutting function for a bounded domain D ⊂ Rn (see Remark 2.2).
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Remark 2.5. Everywhere below, the set full P-measure, where η(t, x) and h(x)
belong to classes C0,4

b ([0, T ]× Rn) and C2
b(Rn), respectively, and η(0, x) = 0, will

be denoted by Ω0.

2.2. Local existence for stochastic Burgers-type equations. We start with
the following lemma whose proof is straightforward.

Lemma 2.6. The substitution

ŷ(t, x) = y(t, x)− η(t, x) (2.1)

transforms (1.1) to the following Burgers-type equation with random coefficients:{
∂tŷ(t, x) = ν∆ŷ(t, z)− (η(t, x) + ŷ, ∂x)ŷ(t, x) + F (t, x, ŷ),
ŷ(0, x) = h(x),

(2.2)

where

F (t, x, ŷ) = f(t, x, ŷ + η(t, x)) + ν∆η(t, x)− (ŷ + η, ∂x)η(t, x). (2.3)

Everywhere below throughout this subsection, we assume that η, F , and h
possess deterministic bounds in the spaces C0,2

b ([0, T ] × Rn), C0,2
b ([0, T ] × R2n),

and C2
b(Rn), respectively. Moreover, the force term F is not assumed to necessarily

take form (2.3).
In Theorem 2.8 below, we prove the existence and uniqueness of a local Ft-

adapted C1,2
b -solution to (2.2). First, by doing the time change ȳ(t, x) = ŷ(T−t, x),

we transform (2.2) to the backward equation

ȳ(t, x) = h(x) +
∫ T

t

[
ν∆ȳ(s, x)− (η̄(t, x) + ȳ,∇)ȳ(s, x) + F̄ (s, x, y)

]
ds (2.4)

with F̄ (t, x, y) = F (T − t, x, y) and η̄(t, x) = η(T − t, x).
The following lemma will be useful.

Lemma 2.7. Let Wt be a one-dimensional Brownian motion and B be a σ-algebra
independent of the (augmented) natural filtration FW

t of Wt. Assume that Φt is
FW

t ∨ B-adapted and E
∫ t

0
|Φs|2ds < ∞, t > 0. Then, E

[ ∫ t

0
ΦsdWs|B

]
= 0 a.s.

Proof. Let 0 = s1 < . . . < sn = t be a partition. Note that for a simple FW
t ∨ B-

adapted integrand Φ =
∑

i Φi I[si,si+1), it holds that

E
[ ∫ t

0

ΦsdWs| B
]

= E
[∑

i

Φi(Wsi+1 −Wsi
)| B

]

=
∑

i

E
[
Φi E

[
(Wsi+1 −Wsi)|FW

si
∨ B]| B

]
= 0.

Further, we note that if a sequence {Φ(n)
t } of simple FW

t ∨ B-adapted integrands
is such that E

∫ t

0
(Φ(n)

s − Φs)2ds → 0, then by the conditional Jensen’s inequality
and Itô’s isometry, E

(
E

[ ∫ t

0

(
Φ(n)

s − Φs

)
dWs| B

])2 → 0. ¤
Everywhere below, the symbol Eτ will denote the conditional expectation with

respect to FT−τ .
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Theorem 2.8. Let, the functions η̄(t, x), F̄ (t, x, y), h(x) satisfy the assumptions:

1) F̄ (t, x, y) and η̄(t, x) are FT−t-adapted for each x, y ∈ Rn.
2) η̄(t, x) and h(x) a.s. belong to spaces C0,2

b ([0, T ]×Rn) and C2
b(Rn), respec-

tively, and possess a deterministic bound K with respect to the norms of
the spaces.

3) F̄ (t, x, y) is of class C0,2([0, T ] × R2n) and satisfies the estimate
|F̄ (t, x, y)|+ |∇(x,y)F̄ (t, x, y)|+ |∇2

(x,y)F̄ (t, x, y)| 6 K(1 + |y|) a.s.

Then, there exists a constant γK , depending only on K, such that on [T − γK , T ],
there exists an FT−t-adapted C1,2

b -solution ȳ(t, x) to equation (2.4).

Proof. In what follows, γi, µi, i = 1, 2, . . ., are positive deterministic constants
that may depend only on p and K; in particular, they do not depend on ν. We
will track the dependence of some constants on ν because it is important for the
next section. Furthermore, the constants γ̃K , γ̇K , γ̂K , γ̄K , γK are positive and
deterministic, that depend only on K; they determine the length of the interval.
Without loss of generality, these γK-type constants are assumed to be smaller than
1.

We prove the existence of an FT−t-adapted C1,2
b -solution to (2.4) by means of

the associated FBSDEs (see [15], [30]):
{

Xτ,x
t = x− ∫ t

τ

(
η̄(s,Xτ,x

s ) + Y τ,x
s )

)
ds +

√
2ν(Wt −Wτ )

Y τ,x
t = h(Xτ,x

T ) +
∫ T

t
F̄ (s,Xτ,x

s , Y τ,x
s ) ds− ∫ T

t
Zτ,x

s dWs,
(2.5)

where Wt is an n-dimensional Brownian motion independent of the filtration FT−t,
and the upper index τ, x means that the process Xτ,x

t starts at x at time τ > 0.
For each τ ∈ (0, T ), define the filtration

(Gτ
t )τ6t6T = σ{Ws −Wτ , s ∈ [τ, t]} ∨ FT−τ . (2.6)

In what follows, when it does not lead to misunderstanding, we will often skip the
upper index τ, x in (Xτ,x

t , Y τ,x
t , Zτ,x

t ) and similar processes to simplify notation.
Step1. Boundedness of Eτ |Y τ,x

t |p and modified FBSDE. Consider the backward
SDE in (2.5). From the assumptions of the theorem and Itô’s formula, it follows
that Eτ |Y τ,x

t |p is bounded, a.s., for any solution Y τ,x
t to this BSDE and for any

Gτ
t -adapted process Xτ,x

t . Indeed, since
(|g|p)′h = p|g|p−2(g, h);
(|g|p)′′h1h2 = p(p− 2)|g|p−4(g, h1)(g, h2) + p|g|p−2(h1, h2)

for p > 2, then, a.s.,

Eτ |Yt|p + p(p− 2)
∫ T

t

Eτ

[|Ys|p−4
n∑

i=1

|(Zi
s, Ys)|2

]
ds + p

∫ T

t

Eτ

[|Ys|p−2|Zs|2
]
ds

= Eτ |h(XT )|p + 2p

∫ T

t

Eτ

[|Ys|p−2(F̄ (s,Xs, Ys), Ys)
]
ds. (2.7)
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Since |F̄ (t, x, y)| 6 K(1 + |y|), then Young’s inequality and Gronwall’s lemma
imply that for every (τ, x),

Eτ |Yt|p 6 γ1 and |Y τ,x
τ | 6 (γ1)

1
p a.s. (2.8)

Moreover, γ1 is the same for all (τ, x) ∈ [0, T ]× Rn.
Now let δ = (γ1)

1
p for some fixed p, and let ζδ(y) = ξδ(y)y, where ξδ(y) is a

C∞-cutting function for the ball Bδ of radius δ centered at the origin (see Remark
2.2). We modify F̄ by introducing ζδ(y) instead of y as follows:

F̄δ(t, x, y) = F̄ (t, x, ζδ(y)). (2.9)

Together with Assumption 3), this implies that |F̄δ| is uniformly bounded by K(1+
δ). Further, consider the modified FBSDE{

Xτ,x
t = x− ∫ t

τ

(
η̄(s,Xτ,x

t ) + Y τ,x
s )

)
ds +

√
2ν(Wt −Wτ )

Y τ,x
t = h(Xτ,x

T ) +
∫ T

t
F̄δ(s,Xτ,x

s , Y τ,x
s ) ds− ∫ T

t
Zτ,x

s dWs.
(2.10)

According to the results of [15] (Theorem A.1), there exists a constant γ̃K , depend-
ing only on K (remark that δ also depends only on K), such that whenever T−τ 6
γ̃K , system (2.10) possesses a unique Gτ

t -adapted solution (Xτ,x
t , Y τ,x

t , Zτ,x
t ) on

[τ, T ] such that Xτ,x
t and Y τ,x

t have continuous paths a.s.
Step 2. Continuity of the map (τ, x) 7→ Y τ,x

τ and solution to the original FB-
SDE. First, we prove that the map [T − γ̇K , T ] × Rn → C([T − γ̇K , T ]), (τ, x) 7→
(Xτ,x, Y τ,x) has an a.s. continuous version for some constant 0 < γ̇K < γ̃K .
This continuity will be required, in particular, for the proof of differentiability of
(Xτ,x

t , Y τ,x
t ) with respect to x. Extend Xτ,x

s to [T − γ̃K , τ ] by x, and Y τ,x
s by Y τ,x

τ .
By Corollary A.6 from [15], there exists a constant γ̇K < γ̃K such that for any
x, x′ ∈ Rn, τ, τ ′ ∈ [T − γ̇K , T ],

E sup
t∈[T−γ̇K ,T ]

|Xτ,x
t −Xτ ′,x′

t |p + E sup
t∈[T−γ̇K ,T ]

|Y τ,x
t − Y τ ′,x′

t |p

6 γ2

(|x− x′|p + (1 + |x|p)|τ − τ ′| p
2
)
, (2.11)

where p > 2. Pick p > n. Then, by Kolmogorov’s continuity criterion in Banach
spaces (see, e.g., [26]), there exists a continuous modification of the map [T −
γ̇K , T ] × Rn → C([T − γ̇K , T ]), (τ, x) 7→ (Xτ,x, Y τ,x). In particular, the map
(τ, x) 7→ Y τ,x

τ is continuous a.s. This and (2.8) imply that supτ,x |Y τ,x
τ | < δ a.s.

Further, according to Corollary A.4 of [15] and by the continuity in (τ, x) ob-
tained above, a.s.,

Y τ,x
t = Y

τ,Xτ,x
t

τ for each τ ∈ (T − γ̃K , T ], t ∈ [τ, T ], x ∈ Rn. (2.12)

Therefore, (Xτ,x
t , Y τ,x

t , Zτ,x
t ) is also a solution to original FBSDE (2.5) on [τ, T ].

Step 3. Differentiability of the FBSDEs solution in x. Boundedness of
Eτ |∂Xτ,x

t |p and Eτ |∂Y τ,x
t |p. Now we proceed with the proof of differentiability. In

Steps 3 and 4, we will write F̄ instead of F̄δ (defined by (2.9)) to simplify notation,
and thus assuming (without loss of generality) that F̄ is bounded together with
its spatial derivatives up to the second order.

For any function α(x), define ∆k
εα(x) = ε−1

(
α(x + εek) − α(x)

)
, k =

1, . . . , n, where {ek}n
k=1 is the orthonormal basis in Rn. In particular, ∆k

εXt =
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ε−1(Xτ,x+εek
t − Xτ,x

s ), k = 1, . . . , n, and ∆k
εYt, ∆k

εZt are defined similarly. Fur-
ther, for a function Φ (which can be any of the functions F̄ , h, η̄, or their gradi-
ents with respect to the spatial variables), we define ∇2Φ(t, u, v) = ∂uΦ(t, u, v),
∇3Φ(t, u, v) = ∂vΦ(t, u, v). Furthermore, we define

∇ε,k
2 Φt =

∫ 1

0
∇2Φ(t,Xt + λε∆k

εXt, Yt)dλ,

∇ε,k
3 Φt =

∫ 1

0
∇3Φ(t,Xt, Yt + λε∆k

εYt)dλ,
(2.13)

and note that

∇ε,k
2 Φt =

∫ 1

0

∇2Φ(t, (1− λ)Xτ,x
t + λXτ,x+εek

t , Yt)dλ, (2.14)

and similar for ∇ε,k
3 Φt. In case of just one spatial variable (like in h or η), we write

∇ instead of ∇2 and ∇ε,k instead of ∇ε,k
2 . Note that

∆k
εΦt = ∇ε,k

2 Φt∆k
εXt +∇ε,k

3 Φt∆k
εYt. (2.15)

It is immediate to verify that the triple (∆k
εXt, ∆k

εYt, ∆k
εZt) solves the FBSDE

(2.16)
{

∆k
εXt = ek −

∫ t

τ

(
∆k

εYs +∇ε,kη̄s∆k
εXs

)
ds,

∆k
εYt = ∇ε,khT ∆k

εXT +
∫ T

t

(∇ε,k
2 F̄s∆k

εXs +∇ε,k
3 F̄s∆k

εYs

)
ds− ∫ T

t
∆k

εZsdWs

on the same time interval [τ, T ], where we proved the existence and uniqueness
of solution to (2.5). Additionally, we define (∆k

0Xt, ∆k
0Yt, ∆k

0Zt) as the unique
solution to FBSDE (2.16) whose coefficients are taken at ε = 0. Remark that
setting ε = 0 in (2.14), we obtain ∇2Φ(t,Xt, Yt) on the right-hand side. The
existence and uniqueness of the triple (∆k

0Xt,∆k
0Yt, ∆k

0Zt) follows from Theorem
A.1 in [15].

Let us show that for p > 2, a.s.,

max
{
Eτ |∆k

εXt|p; Eτ |∆k
εYt|p

}
6 γ3 for all ε > 0, t ∈ [τ, T ]. (2.17)

Itô’s formula and the BSDE in (2.16) imply

Eτ |∆k
εYt|p + p(p− 2)

∫ T

t

Eτ

[|∆k
εYs|p−4

n∑

j=1

|(∆k
εZj

s , ∆k
εYs)|2

]
ds

+ p

∫ T

t

Eτ

[|∆k
εYs|p−2|∆k

εZs|2
]
ds = Eτ

[|∇ε,khT ∆k
εXT |p

]

+ 2p

∫ T

t

Eτ

[|∆k
εYs|p−2(∇ε,k

2 F̄s∆k
εXs +∇ε,k

3 F̄s∆k
εYs, ∆k

εYs)
]
ds.

From here, by the forward SDE in (2.16) and Young’s inequality, it follows that a.s.
Eτ |∆k

εYt|p 6 γ4

(
1 +

∫ T

τ
Eτ |∆k

εYt|p ds
)

for all t ∈ [τ, T ] and ε > 0, which, together
with the forward SDE in (2.16), implies (2.17).

Now let ζX(t) = ∆k
εXt − ∆k

ε′Xt. Similarly, we define ζY (t) and ζZ(t). The
FBSDE for the triple (ζX(t), ζY (t), ζZ(t)) takes the form





ζX(t) =
∫ t

τ

(
ζY (s) +∇ε,kη̄s ζX(s) + ξX

s

)
ds,

ζY (t) = ∇ε,khT ζX(T ) + ςT +
∫ T

t

(∇ε,k
2 F̄s ζX(s)

+∇ε,k
3 F̄s ζY (s) + ξY

s

)
ds− ∫ T

t
ζZ(s)dWs,

(2.18)
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where ξX
s = (∇ε,kη̄s −∇ε′,kη̄s)∆k

ε′Xs, ξY
s = (∇ε,k

2 F̄s −∇ε′,k
2 F̄s)∆k

ε′Xs + (∇ε,k
3 F̄s −

∇ε′,k
3 F̄s)∆k

ε′Ys, and ςT = (∇ε,khT −∇ε′,khT )∆k
ε′XT . Note that ∇ε,kη̄s and ∇ε,khT

are bounded by K, and ∇ε,k
i F̄s, i = 2, 3, are bounded by K(1 + δ), which fol-

lows from (2.13). Then, by standard arguments (which include an application
of Itô’s formula to |ζY |2, elevating the both parts to the power p

2 , and mak-

ing use of the estimate E
∣∣ ∫ T

t
(ζY (s), ζZ(s)dWs)

∣∣ p
2 6 γ5(T − τ)

p
4E sup[τ,T ] |ζY |p +

εE
( ∫ T

t
|ζZ(s)|2ds

) p
2 ), there exists a constant γ̌k < γ̇K such that on the interval

[τ, T ] whose length is smaller than γ̌K , for p > 2,

E sup
[τ,T ]

|ζX(t)|p + E sup
[τ,T ]

|ζY (t)|p + E
( ∫ T

t

|ζZ(s)|2ds
) p

2

6 γ6

(
E |ςT |p + E

∫ T

τ

[|ξX
s |p + |ξY

s |p]ds
)

6 γ7 |ε− ε′|p. (2.19)

The last inequality holds by the definition of ςT , ξX
s , ξY

s , and by virtue of (2.14)
and (2.11). Combining (2.19) with Corollary A.6 from [15], we obtain that there
exists a positive constant γ̂K < γ̌K such that for all x, x′ ∈ Rn, τ, τ ′ ∈ [T − γ̂K , T ],
and t ∈ [τ, T ],

E sup
t∈[τ,T ]

|∆k
εXτ,x

t −∆k
ε′X

τ ′,x′
t |p + E sup

t∈[τ,T ]

|∆k
εY τ,x

t −∆k
ε′Y

τ ′,x′
t |p

6 γ8(|ε− ε′|p + |x− x′|p + |τ − τ ′| p
2 ). (2.20)

By Kolmogorov’s continuity criterium, there exists a continuous version of the map
[0, +∞)× [T − γ̂K , T ]× [T − γ̂K , T ]×Rn → R2n, (ε, τ, t, x) 7→ (∆k

εXτ,x
t ,∆k

εY τ,x
t ).

This means that the map [T − γ̂K , T ] × [T − γ̂K , T ] × Rn → R2n, (τ, t, x) 7→
(Xτ,t,x

t , Y τ,t,x
t ) is differentiable in xk, and the derivative is continuous in (τ, t, x)

a.s. In particular, there exists an a.s. continuous derivative ∂kY τ,x
τ , and, by (2.17),

a.s.,

|∂kY τ,x
τ | < (

γ3

) 1
p for all (τ, x) ∈ [T − γ̂K , T ]× Rn, (2.21)

where ∂k = ∂xk
. This holds for all k ∈ {1, . . . , n}. Moreover, γ3 does not depend

on ν.
Step 4. Second order differentiability of the FBSDE solution in x. Boundedness

of Eτ |∂2
ikY τ,x

t |2. Below, we use the symbol ∂k for ∂xk
and ∂2

ik for ∂2
xixk

. As in Step
3, we write F instead of Fδ to simplify notation.

Remark that (2.19) implies the differentiability in x of Zτ,x
t with respect to

the norm (E
∫ T

τ
|ϕ(s)|2ds)

1
2 . Further, the FBSDE for (∂kXt, ∂kYt, ∂kZt) takes the

form:

(2.22)
{

∂kXt = ek +
∫ t

τ

(
∂kYs +∇η̄s∂kXs

)
ds

∂kYt = ∇h(XT )∂kXT +
∫ T

t

(∇2F̄s∂kXs +∇3F̄s∂kYs

)
ds− ∫ T

t
∂kZs dWs,

where ∇η̄s = ∇η̄(s,Xs), ∇hT = ∇h(XT ), ∇iF̄s = ∇iF̄ (s, Xs, Ys), i = 2, 3.
As in the previous step, define ∆i

ε∂kXt = ε−1(∂kXτ,x+εei

t − ∂kXτ,x
s ), i =

1, . . . , n, and, similarly, ∆i
ε∂kYt, ∆i

ε∂kZt. Applying the operation ∆i
ε to FBSDE

(2.22), using formula (2.15), and noticing that for any functions α1(x) and α2(x),
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∆i
ε

[
α1(x)α2(x)

]
= α1(x)∆i

εα2(x)+∆i
εα1(x)α2(x+ εei), we obtain the FBSDE for

the triple (∆i
ε∂kXt, ∆i

ε∂kYt, ∆i
ε∂kZt)




∆i
ε∂kXt = − ∫ t

τ

(
∆i

ε∂kYs +∇η̄s ∆i
ε∂kXs + ϑX

s,ε

)
ds,

∆i
ε∂kYt = ∇hT ∆i

ε∂kXT + ηT,ε +
∫ T

t

(∇2F̄s∆i
ε∂kXs

+∇3F̄s∆i
ε∂kYs + ϑY

s,ε

)
ds− ∫ T

t
∆i

ε∂kZs dWs,

(2.23)

where
ϑX

s,ε = ∇ε,i∇η̄s ∆i
εXs ∂kXτ,x+εei

s ; ηT,ε = ∇ε,i∇hT ∆i
εXT ∂kXτ,x+εei

T ;
ϑY

s,ε = ∇ε,i
2 ∇2F̄s∆i

εXs∂kXτ,x+εei
s +∇ε,i

3 ∇3F̄s∆i
εYs∂kY τ,x+εei

s

+∇ε,i
3 ∇2F̄s∆i

εYs∂kXτ,x+εei
s +∇ε,i

2 ∇3F̄s∆i
εXs∂kY τ,x+εei

s .

(2.24)

Further, the triple (∆i
0∂kXt, ∆i

0∂kYt, ∆i
0∂kZt) will denote the unique solution to

FBSDE (2.23) whose coefficients ϑX
s,ε, ηT,ε, and ϑY

s,ε are taken at ε = 0. The
existence and uniqueness of the above triple follows from Theorem A.1 in [15]. Let
us show that, a.s.,

max{Eτ |∆i
ε∂kXt|2,Eτ |∆i

ε∂kYt|2} 6 µ1 for all ε > 0, t ∈ [τ, T ]. (2.25)

Itô’s formula implies

|∆i
ε∂kYt|2 +

∫ T

t

|∆i
ε∂kZs|2ds = |∇h(XT )∆i

ε∂kXT +ηT,ε|2 +2
∫ T

t

(∇2F̄s ∆i
ε∂kXs

+∇3F̄s ∆i
ε∂kYs + ϑY

s,ε, ∆
i
ε∂kYs) ds +

∫ T

t

(∆i
ε∂kYs, ∆i

ε∂kZsdWs).

From here, by using the forward SDE in (2.23), we conclude that there exists a
constant γ̄K < γ̂K , depending only on K, such that for τ ∈ [T − γ̄K , T ],

Eτ |∆i
ε∂kYt|2 6 µ2

(
1 +

∫ T

τ

Eτ

(|ϑX
s,ε|2 + |ϑY

s,ε|2
)
ds + Eτ |ηT,ε|2

)
a.s.

By the assumptions of the theorem and (2.17), the right-hand side of the above
inequality is bounded a.s. This implies (2.25).

Now let us prove the existence of a continuous second derivative of the map
Y τ,x

τ . Let ζX(t) = ∆i
ε∂kXt − ∆i

ε′∂kXt, ζY (t) = ∆i
ε∂kYt − ∆i

ε′∂kYt, ζZ(ε, t) =
∆i

ε∂kZt−∆i
ε′∂kZt. The FBSDE for the triple (ζX(t), ζY (t), ζZ(t)) takes the form:




ζX(t) = − ∫ t

τ

(
ζY (s) +∇η̄sζX(s) + ϑX

s,ε − ϑX
s,ε′) ds,

ζY (t) = ∇hT ζX(T ) + ηT,ε − ηT,ε′ +
∫ T

t

(∇2F̄sζX(s)
+∇3F̄sζY (s) + ϑY

s,ε − ϑY
s,ε′

)
ds− ∫ T

t
ζZ(s) dWs.

(2.26)

Note that FBSDE (2.26) has a similar structure with FBSDE (2.18). Thus, similar
to (2.19), we conclude that there exists a constant γ̊K < γ̄K such that for τ ∈
[T − γ̊K , T ],

E|ζX(t)|p + E|ζY (t)|p + E
(∫ T

t

|ζZ(s)|2ds
) p

2 6 µ3

(
E |ηT,ε − ηT,ε′ |p+

E
∫ T

τ

[|ϑX
s,ε − ϑX

s,ε′ |p + |ϑY
s,ε − ϑY

s,ε′ |p]ds
)

6 µ4 |ε− ε′|p (2.27)
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on [τ, T ]. The last inequality holds by (2.11) and (2.20). Combining (2.27) with
Corollary A.6 from [15] (similar to the previous step), we obtain that there exists
a positive constant γK < γ̊K such that for all x, x′ ∈ Rn, τ, τ ′ ∈ [T − γK , T ], and
t ∈ [τ, T ],

E|∆i
ε∂kY τ,x

t −∆i
ε′∂kY τ ′,x′

t |p 6 µ5(|ε− ε′|p + |x− x′|p + |τ − τ ′| p
2 ).

By Kolmogorov’s continuity criterium, there exists a continuous version of the map
[0, +∞)× [T −γK , T ]×Rn → Rn, (ε, τ, x) 7→ ∆i

ε∂kY τ,x
τ . This means that the map

[T − γK , T ]× Rn → Rn, (τ, x) 7→ ∂kY τ,x
τ is differentiable in xi and the derivative

in continuous in (τ, x) a.s. Further, (2.25) implies that

|∂2
ikY τ,x

τ | 6 √
µ2 a.s. (2.28)

We remark that µ2 depends only on K and does not depend on ν. Moreover, (2.28)
holds uniformly in (τ, x) ∈ [T − γK , T ]×Rn by continuity. This implies that there
exists a set Ω̃ of full P-measure such that for all ω ∈ Ω̃, Y τ,x

τ is twice continuously
differentiable in x, and, moreover, the derivatives of Y τ,x

τ up to the second order
are bounded.

Step 5. Solution to random PDE (2.4). Define ȳ(τ, x, ω) = Y τ,x
τ (ω) for each

ω ∈ Ω̃. Note that ȳ(τ, x) is FT−τ -measurable and by (2.12), a.s.,

Y τ,x
t = ȳ(t, Xτ,x

t ) for all τ, t ∈ [T − γK , T ], x ∈ Rn. (2.29)

Let us prove that ȳ(t, x) is a solution to (2.4). The idea of the proof is similar to
that of Theorem 3.2 in [30]. However, we deal with the random coefficient case.
Define Lu = ν∆u + (u + η̄,∇)u. We have

ȳ(t + h, x)− ȳ(t, x) = [ȳ(t + h, x)− ȳ(t + h, Xt,x
t+h)] + [ȳ(t + h,Xt,x

t+h)− ȳ(t, x)].

Since ȳ is of class C0,2
b , we can apply Itô’s formula to the first

term. Further, by (2.10) and (2.29), we substitute the second term
with − ∫ t+h

t
F̄δ(s,Xt,x

s , ȳ(s,Xt,x
s )ds +

∫ t+h

t
Zt,x

s dWs. Remark that, by (2.8),
F̄δ(s,Xt,x

s , ȳ(s, Xt,x
s )) = F̄ (s,Xt,x

s , ȳ(s,Xt,x
s )) so we can skip the index δ. Thus,

we obtain that, a.s.,

ȳ(t+h, x)− ȳ(t, x) = −
∫ t+h

t

Lȳ(t+h,Xt,x
s )ds−

√
2ν

∫ t+h

t

∇ȳ(t+h, Xt,x
s )dWs

−
∫ t+h

t

F̄ (s,Xt,x
s , ȳ(s,Xt,x

s ))ds +
∫ t+h

t

Zt,x
s dWs

for all (t, x, h). Fix a partition P = {τ = t0 < t1 < · · · < tn = T}. Taking the
conditional expectation Eτ and summing up, we obtain that, a.s.,

ȳ(τ, x)− h(x) = Eτ

n−1∑

i=0

∫ ti+1

ti

(Lȳ(ti+1, X
ti,x
s ) + F̄ (s,Xti,x

s , ȳ(s,Xti,x
s ))

)
ds.

(2.30)

Indeed, the conditional expectation of the stochastic integrals is zero by Lemma
2.7. Note that the expression under the integral sign is bounded, a.s., since Lȳ(t, x)
is bounded by what was proved in the previous steps.
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Further, Lȳ(t, x) and F̄ (s,Xt,x
s , ȳ(s,Xt,x

s )) are a.s. continuous in (t, x). Letting
the mesh of P in (2.30) go to zero, by the conditional bounded convergence the-
orem, we obtain that ȳ(t, x) solves (2.4) on [T − γK , T ] × Rn. Further, by (2.8),
(2.21), (2.28), and by equation (2.4) itself, we conclude that, a.s., ȳ ∈ C1,2

b . Finally,
as we have already mentioned in Step 1, ȳ is FT−τ -adapted for each x ∈ Rn. The
theorem is proved. ¤

2.3. Gradient estimate. In this section, we present an FBSDE stochastic
method to obtain a uniform in r bound for the gradient ∂xy(t, x) of the solution
y(t, x) to the following final value problem:





∂ty(t, x) + 1
2 tr(∂2

xxy(t, x)σ(t, x)σ(t, x)>)
+(ϕ(t, x, y(t, x)), ∂x)y(t, x) + f(t, x, y(t, x), ∂xy(t, x)σ(t, x, y)) = 0,

y(T, x) = h(x), x ∈ Rn, t ∈ [r, T ], r > 0.

(2.31)

Here σ(t, x)> is the transpose to the matrix σ, tr(∂2
xxy(t, x)σ(t, x)σ(t, x)>) is the

vector whose l-th component is the trace of the matrix ∂2
xxyl(t, x)σ(t, x)σ(t, x)>,

where yl(t, x) is the l-th component of y(t, x), and (ϕ(t, x, y(t, x)), ∂x) is the formal
scalar product of ϕ and the vector ∂x with the coordinates ( ∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xn
).

Equation (2.31) is assumed to be Rm-valued, σ(t, x), ϕ(t, x, y), and f(t, x, y, z) take
values in Rn×n, Rn, and Rm, respectively, and the arguments of these functions
are of appropriate dimensions.

It is well known that the FBSDE associated to (2.31) takes the form (see e.g.
[15])

{
Xτ,x

t = x +
∫ t

τ
ϕ(s,Xτ,x

s , Y τ,x
s )ds +

∫ t

τ
σ(s,Xτ,x

s )dWs,

Y τ,x
t = h(Xτ,x

T ) +
∫ T

t
f(s,Xτ,x

s , Y τ,x
s , Zτ,x

s )ds− ∫ T

t
Zτ,x

s dWs,
(2.32)

where τ ∈ [r, T ], Wt is an n-dimensional Brownian motion.
Consider a probability space (Ω,F ,P), and for each fixed τ ∈ [0, T ], define the

filtration FW
τ,t = σ{Ws −Wτ , s ∈ [τ, t]} ∨ N , where N is the collection of P-null

sets. The solution (Xτ,x
t , Y τ,x

t , Zτ,x
t ) to (2.32) is understood in the same way as in

[15].
In the remainder of this section, we make use of the following assumptions.

(B1) The functions f , ϕ, σ, and h, are differentiable with respect to their spatial
variables; the derivatives ∂xσ and ∇h are bounded by a constant K, and
the other derivatives satisfy the linear growth condition on [0, T ] × Rn ×
Rm × Rm×n:

|∂(x,y)ϕ|+ |∂(x,y,z)f | 6 K(1 + |y|).
(B2) Assume there exists a constant L > 0 such that for all (t, x, y, z) ∈ [0, T ]×

Rn × Rm × Rm×n,

|h(x)|+ |σ(t, x)| 6 L; |ϕ(t, x, y)| 6 L(1 + |x|+ |y|);
|f(t, x, y, z)| 6 L(1 + |y|+ |z|).
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(B3) Finally, assume there exists a constant λ > 0 such that for all (t, x) ∈
[0, T ]× Rn and ζ ∈ Rn,

(σ(t, x)σ(t, x)>ζ, ζ) > λ|ζ|2.
Lemma 2.9. Assume y(t, x) is a C1,2

b ([0, T ]×Rn)-solution to final value problem
(2.31) on [r, T ]× Rn. Then, for any τ ∈ [r, T ],

(
Xτ,x

t , y(t, Xτ,x
t ), ∂xy(t,Xτ,x

t )σ(t,Xτ,x
t )

)
(2.33)

is a solution to FBSDE (2.32) on [τ, T ].

Proof. The existence and uniqueness of solution to the SDE

Xτ,x
t = x +

∫ t

τ

ϕ(s,Xτ,x
s , y(s,Xτ,x

s ))ds +
∫ t

τ

σ(s,Xτ,x
s ) dWs (2.34)

is a classical result under (B1) and (B2).
Now assume that (Xτ,x

t , Y τ,x
t , Zτ,x

t ) is given by (2.33). Then, the forward SDE
in (2.32) is satisfied. Applying Itô’s formula to y(t,Xτ,x

t ) at times t and T , we can
easily check that the above triple verifies the backward SDE in (2.32). ¤

Our main result in this subsection is the following.

Theorem 2.10. Assume (B1)–(B3). Further assume that y(t, x) is a C1,2
b -solution

to final value problem (2.31) on [r, T ]×Rn. Then, there exists a constant γT,K,L,λ,
that depends only on T , K, L, and λ, such that for all (x, t) ∈ Rn × [r, T ],

|∂xy(t, x)| 6 γT,K,L,λ. (2.35)

In particular, the constant γT,K,L,λ does not depend on r.

Proof. Everywhere throughout the proof, γ
(i)
A , i = 1, 2, . . ., will denote constants

depending only on the set of parameters A.
Step 1. Boundedness of y(t, x). Let (Xτ,x

t , Y τ,x
t , Zτ,x

t ) be the solution to (2.32)
on [τ, T ] given by (2.33). For simplicity of notations, in what follows, we skip the
upper index τ, x using it just where it is necessary.

Itô’s formula and the backward SDE in (2.32) imply

E|Yt|2 +
∫ T

t

E|Zs|2ds = E|h(XT )|2 + E
∫ T

t

2(f(s,Xs, Ys, Zs), Ys)ds. (2.36)

By Assumption (B2), there exists a constant γ
(1)
L such that

E|Yt|2 +
∫ T

t

E|Zs|2ds 6 L2 + γ
(1)
L

∫ T

t

E|Ys|2ds +
1
2

∫ T

t

E|Zs|2ds.

By Gronwall’s inequality, for all t ∈ [τ, T ],

E|Yt|2 6 γ
(2)
L,T .

Since Y τ,x
t = y(t,Xτ,x

t ), where Xτ,x
t is the unique solution to (2.34), then

|y(τ, x)| 6 ML,T , (2.37)

where ML,T is a constant that depends only on L and T .
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Step 2. Transformation of the PDE. Rewrite PDE (2.31) with respect to

ỹ(t, x) =
1
α

y(t, x), (2.38)

where α = 3ML,T . We obtain




∂tỹ(t, x) + 1
2 tr(∂2

xxỹ(t, x)(σσ>)(t, x)) +
(
ϕ(t, x, α ỹ(t, x)), ∂x

)
ỹ(t, x)

+ 1
αf

(
t, x, αy(t, x), α ∂xỹ(t, x)σ(t, x)

)
= 0,

ỹ(T, x) = 1
αh(x).

(2.39)

Let Xt be the solution to SDE (2.40) below

Xt = x +
∫ t

τ

ϕ(s,Xs, αỹ(s,Xs))ds +
∫ t

τ

σ(s,Xs)dWs. (2.40)

By Lemma 2.9, the triple

Xt, Yt = ỹ(t,Xt), Zt = ∂xỹ(t,Xt)σ(t,Xt) (2.41)

is the solution to the associated FBSDE{
Xt = x +

∫ t

τ
ϕ(s,Xs, αYs)ds +

∫ t

τ
σ(s,Xs)dWs,

Yt = 1
αh(XT ) +

∫ T

t
1
αf(s, Xs, αYs, αZs)ds− ∫ T

t
ZsdWs.

(2.42)

Although the solution triple, defined by (2.41), is different than the triple defined
by (2.33)–(2.34), we denote it again by (Xt, Yt, Zt) for simplicity of notation.

Step 3. Boundedness of E exp
{

λ
4

∫ T

τ
|∇ỹ(s, Xs)|2ds

}
. Note that (2.37) and

(2.38) imply that |ỹ(τ, x)| 6 1
3 for all τ ∈ [r, T ] by the choice of α, and, therefore,

by (2.41),

|Yt| 6 1
3

for all t ∈ [τ, T ] a.s. (2.43)

By Itô’s product formula and (2.42), we obtain

|Yt|2 +
∫ T

t

|Zs|2ds =
1
α2
|h(XT )|2 + 2

∫ T

t

(
1
α

f(s, Xs, αYs, αZs), Ys)ds

+ 2
∫ T

t

(Ys, ZsdWs) 6 γ
(3)
L,α

(
1 +

∫ T

t

|Y |s ds +
∫ T

t

|Y |2s ds
)

+
1
2

∫ T

t

|Zs|2ds

+ 2
∫ T

t

(Ys, ZsdWs).

By (2.43), there exists a constant γ
(4)
L,T such that

1
2

∫ T

t

|Zs|2ds 6 γ
(4)
L,T + 2

∫ T

t

(Ys, ZsdWs).

This implies

exp
{1

2

∫ T

t

|Zs|2ds
}

6 γ
(5)
L,T exp

{
2

∫ T

t

(Ys, ZsdWs)− 2
n∑

i=1

∫ T

t

(Ys, Z
i
s)

2ds
}

× exp
{2

9

∫ T

t

|Zs|2ds
}

.
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Therefore,

exp
{1

4

∫ T

t

|Zs|2ds
}

6 γ
(5)
L,T exp

{
2

∫ T

t

(Ys, ZsdWs)− 2
n∑

i=1

∫ T

t

(Ys, Z
i
s)

2ds
}

.

(2.44)

Note that on the right-hand side we have a Doléans-Dade exponential of a mar-
tingale considered as a process with respect to T while t is fixed. Indeed, by (B2)
and (2.41), the Novikov condition E

[
exp{∑n

i=1

∫ T

t
(Ys, Z

i
s)

2ds}] < ∞ is fulfilled.
Therefore, the expectation of the exponential on the right-hand side of (2.44)
equals to one. Finally, representation (2.41) for Zs and (B3) imply

E exp
{λ

4

∫ T

τ

|∇ỹ(s,Xs)|2ds
}

6 γ
(5)
L,T . (2.45)

Step 4. Obtaining an a priori bound for ∂xy(t, x). Since any solution to the final
value problem (2.31) is bounded by MT,L, introduce ϕ̂ and f̂ as follows

ϕ̂(t, x, y) = ϕ(t, x, yξMT,L
(y)) and f̂(t, x, y, z) = f(t, x, yξMT,L

(y), z),

where ξMT,L(y) is a C∞-cutting function for the ball BMT,L introduced in Remark
2.2. Note that by (B1), ϕ̂ and f̂ possess bounded derivatives w.r.t. the spacial
variables. Let γ

(6)
K,L,T be the common bound for these spatial derivatives. This

bound depends on K, and on T , L via the constant MT,L. Observe that the
solution (Xt, Yt, Zt) to FBSDE (2.42), given by (2.41), is also a solution to

{
Xt = x +

∫ t

τ
ϕ̂(s,Xs, αYs)ds +

∫ t

τ
σ(s,Xs)dWs,

Yt = 1
αh(XT ) +

∫ T

t
1
α f̂(s, Xs, αYs, αZs)ds− ∫ T

t
ZsdWs.

(2.46)

Let (∂xXs, ∂xYs, ∂xZs) denote the derivative of the solution to FBSDE (2.46) w.r.t.
the initial data x. Further, for the function f̂(t, x, y, z), ∇2f̂ = ∂xf̂ , ∇3f̂ = ∂y f̂ ,
and∇4f̂ = ∂z f̂ . For the function ϕ̂, the derivatives∇2 and∇3 are defined similarly.
In case of just one spatial variable, as in the function σ, we skip the index 2. Remark
that under (B1)-(B2), the differentiability of the solution Xτ,x

t to SDE (2.34) is
well known and the derivative process satisfies

∂xXt = I +
∫ t

τ

∇ϕ̃s∂xXsds +
∫ t

τ

∇σs∂xXsdWs,

where

ϕ̃(t, x) = ϕ̂(t, x, αỹ(t, x)),

ϕ̃s and σs are abbreviations for ϕ̃(s,Xs) and σ(s, Xs), respectively. An application
of Itô’s formula gives

|∂xXt|2 = 1 + 2
∫ t

τ

(∇ϕ̃s∂xXs, ∂xXs)ds + 2
n∑

k=1

∫ t

τ

(∇σk
s ∂xXs, ∂xXs)dW k

s

+
n∑

k=1

∫ t

τ

|∇σk
s ∂xXs|2ds, (2.47)
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where σk
s = (σs, ek). Define

ϑs =

{
∂xXs

|∂xXs| if ∂xXs 6= 0,

0 otherwise.

Equation (2.47) becomes

|∂xXt|2 = 1 + 2
∫ t

τ

(∇ϕ̃sϑs, ϑs)|∂xXs|2ds +
n∑

k=1

∫ t

τ

|∇σk
s ϑs|2|∂xXs|2ds

+ 2
n∑

k=1

∫ t

τ

(∇σk
s ϑs, ϑs)|∂xXs|2dW k

s .

This implies the following representation for |∂xXt|2 via the Doléans-Dade expo-
nential:

|∂xXt|2 =e−1 exp
{ ∫ t

τ

[
2(∇ϕ̃sϑs, ϑs) +

n∑

k=1

(|∇σk
s ϑs|2 + 2(∇σk

s ϑs, ϑs)2
)]

ds
}

× exp
{

2
n∑

k=1

∫ t

τ

(∇σk
s ϑs, ϑs)dW k

s − 4
n∑

k=1

∫ t

τ

(∇σk
s ϑs, ϑs)2ds

}
.

In the above expression, the term 2
∑n

k=1

∫ t

τ
(∇σk

s ϑs, ϑs)2ds was added and sub-
tracted so we could get the estimate

|∂xXt|2 6 exp
{

2
∫ t

τ

(
2|∇ϕ̃s|+ 3|∇σs|2

)
ds

}
(2.48)

+ exp
{

4
n∑

k=1

∫ t

τ

(∇σk
s ϑs, ϑs)dW k

s − 8
n∑

k=1

∫ t

τ

(∇σk
s ϑs, ϑs)2ds

}
.

Since ∇ϕ̃(t, x) = ∇2ϕ̂(t, x, αỹ(t, x)) + α∇3ϕ̂(t, x, αỹ(t, x))∂xỹ(t, x),

|∇ϕ̃s| 6 γ
(6)
K,L,T (1 + α|∇ỹ(s,Xs)|) 6 γ

(6)
K,L,T +

4(γ(6)
K,L,T )2α2

λ
+

λ

16
|∇ỹ(s, Xs)|2.

Taking the expectation of the both parts of (2.48), we obtain

E|∂xXt|2 6 γ
(7)
K,L,T,λ E exp

{λ

4

∫ T

τ

∣∣∇ỹ(s,Xs)
∣∣2ds

}
+ 1 6 γ

(8)
K,L,T,λ, (2.49)

where the last inequality holds by (2.45).
Further, let us estimate E|∂xYt|2. Applying Itô’s product formula and using the

backward SDE in (2.46), we obtain that

E|∂xYt|2 +
∫ T

t

E|∂xZs|2ds =
1
α2
E|∇hT ∂xXT |2

+ 2
∫ T

t

E
( 1
α
∇2f̂s∂xXs +∇3f̂s∂xYs +∇4f̂s∂xZs, ∂xYs

)
ds 6 γ

(9)
K,T,L

(
E|∂xXT |2

+
∫ T

t

E|∂xXs|2ds +
∫ T

t

E|∂xYs|2ds
)

+
1
2

∫ T

t

E|∂xZs|2ds. (2.50)
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By (2.49) and Gronwall’s inequality,

E|∂xYt|2 6 γ
(10)
K,L,T,λ.

Evaluating at t = τ , and taking into account that ỹ and y are related by the
formula y(t, x) = αỹ(t, x), we obtain the final estimate, i.e., there exists a constant
γK,L,T,λ such that

|∂xy(τ, x)| 6 γK,L,T,λ.

The theorem is proved. ¤

2.4. Global existence. We start with a lemma on the uniqueness of a C1,2
b -

solution to Cauchy problem (2.2).

Lemma 2.11. Assume (A1)–(A3). Then, problem (2.2) can have at most one
pathwise C1,2

b ([0, T ]× Rn)-solution on [0, T ].

Proof. Assume there are two solutions y1, y2 ∈ C1,2
b ([0, T ]×Rn) to problem (2.2),

and let y = y1 − y2. Then, y(t, x) solves the problem
{

∂ty(t, x) = ν∆y(t, x)− (η(t, x) + y1,∇)y(t, x)
+

(
Φ(t, x) + ∂xy2

)
y(t, x) = 0, y(0, x) = 0,

(2.51)

where Φ(t, x) =
∫ 1

0
∂yF (t, x, λy1 + (1 − λ)y2)dλ. Then, y(t, x) = 0 since we can

express y(t, x) via the fundamental solution to (2.51). ¤

Let us proceed with the global existence. Define the sequence of stopping times

TN = T ∧ inf
{
t ∈ (0, T ] : ‖η(t, · )‖C4

b(Rn) > N
}
, (2.52)

where N > 0 is an integer. Note that since η ∈ C0,4
b ([0, T ] × Rn) on Ω0, then the

stopping time TN is non-zero on Ω0. Furthermore, we define

ηN (t, x) = η(t ∧ TN , x) and hN (x) = h(x) I{‖h‖C2
b
(Rn)6N} . (2.53)

Note that for each ω ∈ Ω0, ‖ηN‖C0,4
b ([0,T ]×Rn) 6 N .

The existence and uniqueness of a global solution to (1.1) is case η = ηN is
given by Lemma 2.12 below.

Lemma 2.12. Let (A1)–(A3) hold. Then, there exists a unique Ft-adapted C0,2
b -

solution to

y(t, x) = hN (x) +
∫ t

0

[
f(s, x, y)− (y,∇)y(s, x) + ν∆y(s, x)

]
ds + ηN (t, x). (2.54)

Proof. Define FN (t, x, y) by (2.3) via ηN . Then, |FN (t, x, y)|+ |∇(x,y)FN (t, x, y)|+
|∇2

(x,y)FN (t, x, y)| 6 KN (1 + |y|), where KN > N is a deterministic constant
depending only on N . Consider the backward equation associated to (2.54) by
means of substitution (2.1) and the time change:

ȳ(t, x) = hN (x) +
∫ T

t

[
ν∆ȳ(s, x)− (η̄N (t, x) + ȳ,∇)ȳ(s, x) + F̄N (s, x, ȳ)

]
ds.

(2.55)

96



MULTIDIMENSIONAL STOCHASTIC BURGERS EQUATION VIA FBSDES

Here F̄N (t, x, y) = FN (T − t, x, y) and η̄N (t, x) = ηN (T − t, x).
By Theorem 2.8, on a deterministic interval [T − γKN , T ], where γKN is the

small constant defined by Theorem 2.8, there exists an FT−t-adapted C1,2
b -solution

ȳN (t, x) to equation (2.55). Then, yN (t, x) = ȳN (T − t, x) + ηN (t, x) is an Ft-
adapted C0,2

b -solution to (2.54) which exists on some set ΩN ⊂ Ω0, P(ΩN ) = 1.
Remark that for each ω ∈ ΩN , ȳN (t, x, ω) is also a pathwise solution to (2.55).
By Theorem 2.10, ∂xȳN (t, x, ω) is bounded by a constant µKN ,T depending only
on KN and T but not depending on the length of the time interval γKN

. Further
remark that µKN ,T is the same for all ω ∈ ΩN .

Now take t1 = γKN and consider the equation

y(t, x) = yN (t1, x) +
∫ t

t1

[
f(s, x, y)− (y,∇)y(s, x) + ν∆y(s, x)

]
ds

+ ηN (t, x)− ηN (t1, x). (2.56)

Note that Ft = σ{Bs, s ∈ [t1, t]}∨Ft1 and yN (t1, x) is Ft1 -measurable. Further, by
what was proved, ∂xyN (t1, x) is bounded by µKN ,T . Hence, by Theorem 2.8, there
exists a constant γ′KN

such that on the time interval [t1, t1 + γ′KN
], there exists

a C0,2
b -solution to (2.56). Furthermore, for each t ∈ [t1, t1 + γ′KN

], this solution
is Ft-adapted. In the similar manner, a C0,2

b -solution to (2.54) can be built on
the next successive interval [t2, t2 + γ′KN

], where t2 = γKN + γ′KN
. It is important

to mention that the initial condition on each short-time interval has a bounded
derivative in x (by the constant µKN ,T ) by Theorem 2.10. By glueing the solutions
on short-time intervals, we obtain a C0,2

b -solution to (2.54) on [0, T ]. Remark that
this solution is unique by Lemma 2.11 since (2.54) can be reduced to equation of
type (2.2) by substitution (2.1). ¤

The main result of this work is Theorem 2.13 below which gives the existence
of an Ft-adapted C0,2

b -solution to equation (1.1).

Theorem 2.13. Assume (A1)–(A3). Then, there exists a unique C0,2
b -solution to

equation (1.1) which is Ft-adapted for each x ∈ Rn.

Proof. Consider equation (1.1) for a fixed ω0 ∈ ∩NΩN , where ΩN is the set of
ω, where yN solves (2.54), i.e., we regard (1.1) as a deterministic equation. Then,
η(t, x, ω0) can be regarded as a bounded function in t and x. Applying Lemma
2.12, to deterministic equation (1.1), we obtain the existence and uniqueness of a
C0,2

b -solution y(t, x, ω0). Pick an integer N > 0 such that ‖h( · , ω0)‖C2
b(Rn) 6 N .

Then, h( · , ω0) = hN ( · , ω0). Further note that on [0, TN (ω0)], equations (1.1) and
(2.54) coincide. By Lemma 2.11, yN (t, x, ω0) = y(t, x, ω0) on [0, TN (ω0)]. Since
TN (ω0) → T as N → ∞, then yN (t, x, ω0) → y(t, x, ω0). This is valid for any
ω0 ∈ ∩NΩN . Therefore, y(t, x, ω) is Ft-adapted. ¤

3. Vanishing viscosity limit

Here we investigate the behavior of the solution to (1.1) when the viscosity ν
goes to zero. Throughout this section, the C2

b-norm of the function h(x) is assumed
bounded in ω. At first, we assume that η(t, x) = ηN (t, x), where ηN (t, x) is defined
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by (2.53). This will allow us to prove that the local vanishing viscosity limit for
equation (2.2) exists on [0, γKN ], where γKN is defined in the proof of Lemma 2.12.

In what follows, βi, i = 1, 2, . . ., denote positive constants, and Eτ denote the
conditional expectation with respect to FT−τ .

Lemma 3.1. Assume (A1)–(A3). Further assume that η = ηN , and ‖h‖C2
b

is
bounded in ω ∈ Ω0. Then, for all ω ∈ Ω0, the system of forward-backward random
equations {

Xτ,x,0
t = x− ∫ t

τ

(
η̄(s,Xτ,x,0

s ) + Y τ,x,0
s

)
ds,

Y τ,x,0
t = h(Xτ,x,0

T ) +
∫ T

t
F̄ (s,Xτ,x,0

s , Y τ,x,0
s ) ds

(3.1)

possesses a unique solution (Xτ,x,0
t , Y τ,x,0

t ) on [T −γKN , T ] which is continuous in
(τ, x, t).

Proof. Forward-backward system (3.1) is a particular case of FBSDE (2.5). There-
fore, if T − τ < γKN , then (3.1) has a unique solution (Xτ,x,0

t , Y τ,x,0
t ) for each

fixed ω ∈ Ω0. Further, the uniform boundedness of Y τ,x,0
t is a direct conse-

quence of the backward equation in (3.1) and Gronwall’s inequality. Further-
more, (2.11) can be proved for (3.1) pathwise and without involving expecta-
tions. This implies the uniform in t ∈ [T − γKN

, T ] continuity of the solution
(Xτ,x,0

t , Y τ,x,0
t ) in (τ, x) (as before, it is assumed that (Xτ,x,0

t , Y τ,x,0
t ) is extended

to [T−γKN , τ ] by (x, Y τ,x,0
τ )). Therefore, the solution (Xτ,x,0

t , Y τ,x,0
t ) is continuous

in (τ, x, t) ∈ [T − γKN
, T ]× Rn × [T − γKN

, T ]. ¤

For each (t, x, ω) ∈ [T − γKN
, T ]× Rn × Ω0, we define

ȳ0(t, x) = Y t,x,0
t . (3.2)

Let for any viscosity ν ∈ (0, ν0], where ν0 > 0 is a fixed parameter, ȳν(t, x)
denote the unique FT−t-adapted C1,2

b -solution to (2.4). In the lemma below, we
will treat ν as a “time” parameter and ȳ · : [0, ν0] × Ω → Cb([T − γKN , T ] × Rn),
(ν, ω) 7→ ȳν( · , · ), as a stochastic process with values in Cb([T − γKN

, T ]× Rn).

Lemma 3.2. Under assumptions of Lemma 3.1, there exists a constant γ̇KN
<

γKN such that there is a continuous version of

ȳ · : [0, ν0]× Ω → Cb([T − γ̇KN , T ]× Rn), (ν, ω) 7→ ȳν( · , · ). (3.3)

Proof. Let (Xτ,x,ν
t , Y τ,x,ν

t , Zτ,x,ν
t ) be the solution to (2.5) associated to ν ∈ (0, ν0].

As before, sometimes we skip the upper index (τ, x) (but keep ν). We have




Xν
t −X ν̄

t =
∫ t

τ

[
η̄(s,Xν

s )− η̄(s,X ν̄
s ) + Y ν

s − Y ν̄
s

]
ds

+(
√

2ν −√2ν̄)(Wt −Wτ ),
Y ν

t − Y ν̄
t = h(Xν

T )− h(X ν̄
T ) +

∫ T

t
(F̄δ(s,Xν

s , Y ν
s )− F̄δ(s,X ν̄

s , Y ν̄
s )) ds

− ∫ T

t
(Zν

s − Z ν̄
s )dWs,

(3.4)

where F̄δ is defined by (2.9). Note that Zτ,x,0
t = 0. By Gronwall’s inequality, the

forward SDE implies that a.s.

Eτ |Xν
t −X ν̄

t |2 6 β1

[
(T − τ)2Eτ |Y ν

t − Y ν̄
t |2ds + (T − τ)|ν − ν̄|]. (3.5)
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Itô’s formula applied to the BSDE in (3.4) gives

Eτ |Y ν
t − Y ν̄

t |2 6 Eτ |h(Xν
T )− h(X ν̄

T )|2

+ 2Eτ

∫ T

t

(F̄δ(s, Xν
s , Y ν

s )− F̄δ(s,X ν̄
s , Y ν̄

s ), Y ν
s − Y ν̄

s )
]
ds a.s. (3.6)

From (3.5) and (3.6) it follows that there exists a positive constant γ̇KN
< γKN

such that for each fixed ν and ν̄, a.s.,

|yν(τ, x)− yν̄(τ, x)| 6 β2|ν − ν̄| for all x ∈ Rn, τ ∈ [T − γ̇KN , T ]. (3.7)

Remark that since for each fixed ν and ν̄, Y τ,x,ν
τ and Y τ,x,ν̄ possess (τ, x)-

continuous modifications, (3.7) holds on a set of full P-measure that does not
depend on τ and x. Further remark that the constant β2 on the right-hand side of
(3.7) does not depend on τ and x. Therefore, for an integer p > 1,

E sup
x∈Rn,τ∈[T−γ̇KN

,T ]

|yν(τ, x)− yν̄(τ, x)|2p 6 β3|ν − ν̄|p. (3.8)

By Kolmogorov’s continuity theorem ([26], p. 31), there is an a.s. ν-continuous
version of the stochastic process ȳ· : [0, ν0]×Ω → Cb([T − γ̇KN

, T ]×Rn), (ν, ω) 7→
ȳν( · , · ). ¤

Lemma 3.3 below states the existence of a local vanishing viscosity limit of
equation (2.4) for η = ηN .

Lemma 3.3. Let assumptions of Lemma 3.1 be fulfilled. Then, there exists a
positive constant βKN

< γ̇KN
such that ȳ0(t, x), defined by (3.2), is a C1,1

b -solution
to equation (2.55) with ν = 0 on [T−βKN , T ]. Moreover, as ν → 0, a.s., ȳν(t, x) →
ȳ0(t, x) uniformly in (x, t) ∈ Rn×[T−βKN , T ], where ȳν is the ν-continuous version
defined by (3.3).

Proof. Let us prove that for each fixed x ∈ Rn and τ ∈ [T − βKN , T ], we can take
a limit in (2.4) as ν → 0 in the space L2(Ω), where βKN

is an appropriate small
constant. Note that the proof of differentiability of the FBSDE solution (Step 3 of
the proof of Theorem 2.8) holds for the case ν = 0 (with Zτ,x,0

t = 0). Therefore,
(Xτ,x,0

t , Y τ,x,0
t ) is differentiable in x, and (∂kXτ,x,0

t , ∂kY τ,x,0
t , 0) satisfies (2.22).

The FBSDE for the triple (∂kXν
t − ∂kX0

t , ∂kY ν
t − ∂kY 0

t , ∂kZν
t ) takes the form





∂kXν
t − ∂kX0

t = − ∫ t

τ

(∇η̄(s,X0
s )(∂kXν

s − ∂kX0
s ) + ∂kY ν

s − ∂kY 0
s + ξX

ν (s)
)
ds

∂kY ν
t − ∂kY 0

t = ∇h(X0
T )(∂kXν

T − ∂kX0
T )

+
∫ T

t

[∇2F̄δ(s,X0
s , Y 0

s )(̇∂kXν
s − ∂kX0

s ) + ∇3F̄δ(s,X0
s , Y 0

s )(∂kY ν
s − ∂kY 0

s )
+ξY

ν (s)
]
ds +

∫ T

t
∂kZν

s dWs + ςY
T,ν ,

(3.9)

where ξX
ν (s) = −(∇η̄(s,Xν

s ) − ∇η̄(s,X0
s )

)
∂kXν

s , ςY
T,ν =

(∇h(Xν
T ) −

∇h(X0
T )

)
∂kXν

T , ξY
ν (s) =

(∇2F̄δ(s,Xν
s , Y ν

s ) − ∇2F̄δ(s,X0
s , Y 0

s )
)
∂kXν

s +(∇3F̄δ(s,Xν
s , Y ν

s ) − ∇3F̄δ(s,X0
s , Y 0

s )
)
∂kY ν

s . From (3.9), by standard argu-
ments, we obtain that there exists a constant βKN

< γ̇KN
such that for all
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τ ∈ [T − βKN , T ], x ∈ Rn, and ν > 0, a.s.,

|∂kY τ,x,ν
τ − ∂kY τ,x,0

τ |2 6 β4 Eτ

{ ∫ T

T−βKN

(|ξX
ν (s)|2 + (|ξY

ν (s)|2)ds + |ςY
T,ν |2

}
.

By what was proved, we can choose continuous versions of the maps [T−βKN
, T ]×

Rn → C([T − βKN
, T ]), (τ, x) 7→ ∂kXτ,x, (τ, x) 7→ ∂kY τ,x, (τ, x) 7→ Xτ,x, (τ, x) 7→

Y τ,x, and of the map (τ, x) 7→ Y τ,x
τ . Therefore, the above estimate holds on a set

of full P-measure that does not depend on τ and x. Hence,

E sup
x∈Rn,τ∈[T−βKN

,T ]

|∂xȳν(τ, x)− ∂xȳ0(τ, x)|2

6 β4 E
{

sup
τ,x
Eτ

∫ T

T−βKN

(|ξX
ν (s)|2 + (|ξY

ν (s)|2)ds + |ςY
T,ν |2

} → 0 as ν → 0

by (2.17), (3.5), and (3.7). Further, by (2.8) and (2.21), the bounds for ȳν(t, x)
and ∂xȳν(t, x) do not depend on ν ∈ (0, ν0]. Therefore, as ν → 0,

E sup
x∈Rn,τ∈[T−βKN

,T ]

|(ȳν , ∂x)ȳν(t, x)− (ȳ0, ∂x)ȳ0(t, x)|2

6 E sup
x∈Rn,τ∈[T−βKN

,T ]

(|(ȳν − ȳ0), ∂x)ȳν(t, x)|2 + |(ȳ0, ∂x)(ȳν − ȳ0)(t, x)|2) → 0.

(3.10)

Finally, by (2.28), ∆ȳν(t, x) is bounded uniformly in ν ∈ (0, ν0] and (t, x) ∈ [T −
βKN , T ]× Rn. This implies that as ν → 0,

ν E sup
x∈Rn,τ∈[T−βKN

,T ]

|∆ȳν(t, x)|2 → 0. (3.11)

Now equation (2.4), together with Lemma 3.2, (3.10), and (3.11) imply that, a.s.,
for all (t, x) ∈ [T − βKN , T ]× Rn,

ȳ0(t, x) = h(x) +
∫ T

t

[
(ȳ0,∇)ȳ0(s, x) + F̄N (s, x, ȳ0(t, x))

]
ds. (3.12)

Further, by Lemma 3.2, for the ν-continuous version of the process ȳ · : [0, ν0]×Ω →
C([T − βKN

, T ]× Rn), (ν, ω) 7→ ȳν , it holds that, a.s.,

sup
x∈Rn,τ∈[T−βKN

,T ]

|ȳν(τ, x)− ȳ0(τ, x)| → 0 as ν → 0.

The lemma is proved. ¤

The following theorem is the main result of this section.

Theorem 3.4. Assume (A1)–(A3). Further, we assume that ‖h‖C2
b

is bounded
in ω ∈ Ω0. Then, there exists a stopping time S, positive a.s., such that on [0, S]
there exists a C0,1

b -solution y0(t, x) to the inviscid stochastic Burgers equation

y(t, x) = h(x) +
∫ t

0

[
f(s, x, y)− (y,∇)y(s, x)

]
ds + η(t, x). (3.13)

This solution is Ft-adapted for each x ∈ Rn. Moreover, if ỹ0(t, x) is another
C0,1

b -solution to (3.13) on [0, S̃], where S̃ is a positive stopping time, then, a.s.,
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ỹ0(t, x) = y0(t, x) on [0, S ∧ S̃]. Furthermore, if yν(t, x) is the C0,2
b -solution to

(1.1) (whose existence has been established by Theorem 2.13), then there exists
a ν-continuous version of y· : [0, ν0] × Ω → Cb([0, S] × Rn), (ν, ω) 7→ yν . In
particular, it holds that limν→0 yν(t, x) = y0(t, x) a.s., where the limit is uniform
in (x, t) ∈ Rn × [0, S].

Proof. Let ȳN
0 be defined by (3.2) and associated to a positive integer N . As it was

shown in the proof of Lemma 3.3, ȳN
0 is a C1,1

b -solution to (3.12) on [T − βKN
, T ].

Therefore, yN
0 (t, x) = ȳN

0 (T − t, x) + ηN (t, x) is a C0,1
b -solution to

y(t, x) = h(x) +
∫ t

0

[
f(s, x, y)− (y,∇)y(s, x)

]
ds + ηN (t, x) (3.14)

on [0, βKN
]. Define S = βKN

∧ TN , where TN is given by (2.52). By Lemma 2.11,
yN

ν (t, x) = yν(t, x) on [0, S] for all ν ∈ (0, ν0], where yν(t, x) is the unique C0,2
b -

solution to (1.1). Since, by Lemma 3.3, limν→0 yN
ν (t, x) = yN

0 (t, x), a.s., in the
space Cb([0, βKN

]×Rn), then yN
0 (t, x) = y0(t, x) on [0, S]. Thus, we skip the index

N when we consider this solution in [0, S]. Clearly, on [0, S], y0(t, x) verifies (3.13)
a.s.

Assume, equation (3.13) has another C0,1
b -solution ỹ0(t, x) which verifies this

equation on a random time interval [0, S̃], where the stopping time S̃ is positive
a.s. On [T − S̃, T ], we define y̌0(t, x) = ỹ0(T − t, x) − η(T − t, x), and consider
equation (3.15) below pathwise for each τ ∈ [T − S̃, T ]:

X̃τ,x,0
t = x−

∫ t

τ

(
η̄(s, X̃τ,x,0

s ) + y̌0(s, X̃τ,x,0
s )

)
ds. (3.15)

Let X̃τ,x,0
t be the solution to (3.15). Then, it is straightforward to verify that(

X̃τ,x,0
t , y̌0(t, X̃

τ,x,0
t )

)
is a solution to (3.1). Indeed, it suffices to note that

∂ty̌0(t, X̃
τ,x,0
t ) = (∂tX̃

τ,x,0
t , ∂x)y̌0(t, X̃

τ,x,0
t ) and compute ∂tX̃

τ,x,0
t via (3.15). By

the uniqueness of solution to (3.1) on [T − S ∧ S̃, T ], we conclude that y0(t, x) =
ỹ0(t, x) on [0, S ∧ S̃]× Rn a.s. The theorem is proved. ¤
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