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Abstract. The primary objective of this research paper is to investigate the

characteristics of the controllability problem in both linear and nonlinear frac-
tional integro-differential damped dynamical systems with control delay. We

have successfully derived necessary and sufficient conditions for establishing

controllability in linear fractional integro-differential damped dynamical sys-
tems with control delay. Furthermore, by employing Schauder’s fixed point

theorem, we have demonstrated sufficient conditions for achieving controlla-

bility in nonlinear fractional integro-differential damped dynamical systems
with control delay. To illustrate the theoretical aspects, several examples

have been provided.

1. Introduction

Differential equations of fractional order arise more commonly in various science
and applied engineering research fields, such as fluid flow [23], signal processing
[16], and so many different applied fields [11, 12, 15, 20, 24]. We see to [22], for a
new pamphlet on fractional calculus. On the other hand, controllability is one of
the essential vital tools in mathematical control theory and the most important
structural property of the dynamical system. In the brief overview of the dynamical
systems’ controllability development, the reader can see the literature review [14].
Extensive research has been conducted on the controllability of nonlinear systems
in finite-dimensional spaces, primarily employing fixed-point principles, refer to
[2, 13], for further details. Utilizing fractional-order derivatives and integrals in
control theory has shown superior outcomes compared to traditional integer-order
approaches. Numerous authors have examined the controllability of fractional
dynamical systems in finite-dimensional spaces, including references to [1, 7, 17,
21] and additional sources mentioned in [6] and [18]. Recently, Balachandran
et al. [3, 5] and other researchers have established adequate conditions for the
controllability of nonlinear fractional dynamical systems by employing Schauder’s
fixed-point theorem.

The kernel of the classical controllability operator eAt has several useful prop-
erties, including uniform convergence and the semigroup property. However, when
considering the corresponding fractional system (tα−1Eα,α(Atα), 0 < α < 1), the
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controllability operator’s kernel becomes singular at t = 0 and does not adhere to
the property of a semigroup. This makes it challenging to generalize the theory
to all fractional systems. Many constraints and restrictions must be imposed to
ensure the solvability of these problems. One of these problems arises from the
presence of the term tα−1, which can be avoided by excluding it from the kernel
of the controllability operator. For example, in [9], the author utilized a fractional
integrator Iα−10 in the control and nonlinear terms of the given fractional system
to mitigate these issues. The issue of approximate controllability has been success-
fully resolved by utilizing the analytic resolvent method and capitalizing on the
continuity of a resolvent. On the other hand, the author Matar [19] investigated
the controllability of linear and nonlinear fractional integro-differential systems of
order 0 < α < 1.

The controllability of linear and nonlinear fractional damped dynamical systems
has been investigated in multiple studies. Balachandran et al. explored this topic
in their research [4]. They provide insights into the controllability of these systems.
Moreover, He et al. [10] mainly focused on the linear fractional damped dynamical
system with a time delay in control. They established a necessary and sufficient
condition for the controllability of this system. Zhongyang and Feng investigated
the controllability of the following nonlinear fractional damped dynamical system
with a time delay in control [25]

CDα
0 x(t)−A CDβ

0x(t) = Bu(t) + Cu(t− ι) + f(t, x(t), u(t)), for t ≥ 0,

where A CDβ
0x(t) represents the fractional damped term, u denotes the control

input, and ι is the time control delay.
In light of the above discussion and mainly motivated by [9, 10, 19, 25], we study

the controllability of the following fractional integro-differential damped dynamical
system with a delay in control:

CDp
0ϑ(ξ)−F CDq

0ϑ(ξ) = GI1−qν(ξ) +Mν(ξ − ι)
+f(ξ, ϑ(ξ), ν(ξ)), ξ ≥ 0,

ϑ(0) = ψ0, ϑ
′(0) = ψ1,

ν(ξ) = 0, ξ ∈ [−ι, 0],

(1.1)

where CDp
0ϑ,

CDq
0ϑ are Caputo fractional derivatives of ϑ of order 1 < p < 2 and

0 < q < 1, respectively. ϑ(·) ∈ Rn is a state vector, ν(·) ∈ Rm is a control vector,
F ∈ Rn×n, and G,M ∈ Rn×m are any matrices; ι > 0 is the time delay; and
f : [0, `] × Rn × Rm → Rn is a continuous nonlinear function. We establish the
controllability results of the system (1.1) using Schauder’s fixed point theorem.

2. Preliminaries

Definition 2.1. The system represented by equation (1.1) is controllable over
the interval [0, `], if for any given vectors ψ0, ψ1, ψ2 ∈ Rn, there exists a control
input ν ∈ L1(−ι, `) that can steer the system’s corresponding solution with initial
conditions ϑ(0) = ψ0 and ϑ′(0) = ψ1 to satisfy the condition ϑ(`) = ψ2.

Lemma 2.2. [10] Let α > −1 be a given parameter. Assuming that ϕ(`2, s) ≥ 0
is a continuous function with respect to s on the interval [`1, `2], and satisfying the
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following condition:

∫ `2

`1

(`2 − s)αϕ(`2, s)ds = 0, (2.1)

then it follows that ϕ(`2, s) is identically equal to zero for all s ∈ [`1, `2].

3. Controllability of linear systems

Consider the following linear system corresponding to (1.1)


CDp

0ϑ(ξ)−F CDq
0ϑ(ξ) = GI1−qν(ξ) +Mν(ξ − ι), ξ ≥ 0,

ϑ(0) = ψ0, ϑ
′(0) = ψ1,

ν(ξ) = 0, ξ ∈ [−ι, 0].
(3.1)

In this section, we talk about the solution and controllability of the system (3.1)
that needed in the next section.

Lemma 3.1. The solution of system (3.1) for ξ ∈ (0, ι] is expressed as follows:

ϑ(ξ) = ψ0 + ξEp−q,2(Fξp−q)ψ1

+

∫ ξ

0

(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q)

)
Gν(s)ds, (3.2)

and for ξ > ι

ϑ(ξ) = ψ0 + ξEp−q,2(Fξp−q)ψ1

+

∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
ν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds. (3.3)

Proof. Taking the Laplace transform of system (3.1), we have

spL{ϑ(ξ)} − sp−1ϑ(0)− sp−2ϑ′(0)−FsqL{ϑ(ξ)}+ Fsq−1ϑ(0)

= Gsq−1Lν(ξ) +ML{ν(ξ − ι)},
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L{ϑ(ξ)} = (spI −Fsq)−1spL{ψ0} − (spI −Fsq)−1FsqL{ψ0}
+(spI −Fsq)−1sp−2ψ1 + (spI −Fsq)−1sq−1L{Gν(ξ)}
+(spI −Fsq)−1L{Mν(ξ − ι)}

= L{ψ0}+ (sp−qI −F)−1sp−q−2ψ1 + (sp−qI −F)−1s−1L{Gν(ξ)}
+(sp−qI −F)−1s−qL{Mν(ξ − ι)}

= L{ψ0}+ L(ξEp−q,2(Fξp−q))ψ1

+L(ξp−qEp−q,p−q+1(Fξp−q))L{Gν(ξ)}
+L(ξp−1Ep−q,p(Fξp−q))L{Mν(ξ − ι)}

= L{ψ0}+ L(ξEp−q,2(Fξp−q))ψ1

+L(ξp−qEp−q,p−q+1(Fξp−q) ∗ Gν(ξ))

+L(ξp−1Ep−q,p(Fξp−q) ∗Mν(ξ − ι)). (3.4)

By applying the convolution theorem to (3.4), we obtain

L{ϑ(ξ)} = L{ψ0}+ L
(
ξEp−q,2(Fξp−q)

)
ψ1

+L
∫ ξ

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds

+L
∫ ξ

0

(
(ξ − s)p−1Ep−q,p

(
F(ξ − s)p−q

))
Mν(s− ι)ds. (3.5)

Applying the inverse Laplace transform to (3.5), we get

ϑ(ξ) = ψ0 + ξEp−q,2(Fξp−q)ψ1 +∫ ξ

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds

+

∫ ξ

0

(
(ξ − s)p−1Ep−q,p

(
F(ξ − s)p−q

))
Mν(s− ι)ds.

For ξ ∈ (0, ι]

ϑ(ξ) = ψ0 + ξEp−q,2(Fξp−q)ψ1 +∫ ξ

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds,

and for ξ > ι

ϑ(ξ) = ψ0 + ξEp−q,2(Fξp−q)ψ1

+

∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds

+

∫ ξ−ι

0

(
(ξ − s− ι)p−1Ep−q,p

(
F(ξ − s− ι)p−q

))
Mν(s)ds,
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ϑ(ξ) = ψ0 + ξEp−q,2(Fξp−q)ψ1

+

∫ ξ−ι

0

[
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
]
ν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds.

�

Define

〈F|G,M〉 = δ + Fδ + F2δ + F3δ + · · ·+ Fn−1δ
+η + Fη + F2η + F3η + · · ·+ Fn−1η, (3.6)

where n is order of F and δ =Im(G), η =Im(M). Then the space 〈F|G,M〉 is
spanned by the columns of the matrix

[G,FG,F2G, . . . ,Fn−1G,M,FM,F2M, . . . ,Fn−1M].

Lemma 3.2. For any z ∈ Rn let us define the function Q(ξ) : Rn → Rn as
follows:
For ξ ∈ (0, ι],

Q(ξ)z =

∫ ξ

0

[
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
GGT

×(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)T]
zds, (3.7)

and for ξ > ι,

Q(ξ)z =

∫ ξ−ι

0

[
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
]

×
[
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
]T
zds

+

∫ ξ

ξ−ι

[
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
GGT

×(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)T]
zds. (3.8)

Then Im
(
Q(ξ)

)
= 〈F|G,M〉 for ξ > 0.
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Proof. We know that, Im
(
Q(ξ)

)
= 〈F|G,M〉 is equivalent to

KerQ(ξ) =

n−1⋂
i=0

KerGT (FT )i
n−1⋂
j=0

KerMT (FT )j . (3.9)

We will only present the proof for the scenario when ξ > ι. The proof for the case
when ξ belongs to the interval (0, ι] follows a similar approach and will be omitted
here.
To proof (3.9), first we show that

KerQ(ξ) ⊂
n−1⋂
i=0

KerGT (FT )i
n−1⋂
j=0

KerMT (FT )j . (3.10)

If z ∈ KerQ(ξ) and z 6= 0, then

0 = zTQ(ξ)z = zT
∫ ξ−ι

0

[
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
]

×
[
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
]T
zds

+zT
∫ ξ

ξ−ι

[
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
GGT

×(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)T]
zds. (3.11)

0 =

∫ ξ−ι

0

∥∥∥∥((ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)T

z

∥∥∥∥2ds
+

∫ ξ

ξ−ι

∥∥∥∥GT (ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)T
z

∥∥∥∥2ds, (3.12)

which implies that

0 =

∫ ξ−ι

0

∥∥∥∥((ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)T

z

∥∥∥∥2ds, (3.13)

and

0 =

∫ ξ

ξ−ι

∥∥∥∥GT (ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)T
z

∥∥∥∥2ds. (3.14)
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By using Lemma 2.2 and equation (3.14), we have

0 = GTEp−q,p−q+1

(
F(ξ − s)p−q

)T
z = GT

∞∑
k=0

(FT )k(ξ − s)k(p−q)

Γ
(
k(p− q) + p− q + 1

)z,
on s ∈ [ξ − ι, ξ]. (3.15)

By taking s = ξ in (3.15), we get GT z = 0. Further, it follows from (3.14) that

0 =

∫ ξ

ξ−ι
(ξ − s)p−q

∥∥∥∥GT ∞∑
k=0

(FT )k(ξ − s)k(p−q)

Γ
(
k(p− q) + p− q + 1

)z∥∥∥∥2ds,
0 =

∫ ξ

ξ−ι
(ξ − s)p−q

∥∥∥∥ GT

Γ(p− q + 1)
z + GT

∞∑
k=1

(FT )k(ξ − s)k(p−q)

Γ
(
k(p− q) + p− q + 1

)z∥∥∥∥2ds,
which means that

0 =

∫ ξ

ξ−ι
(ξ − s)p−q

∥∥∥∥ GT

Γ(p− q + 1)
z

∥∥∥∥2ds,
and

0 =

∫ ξ

ξ−ι
(ξ − s)p−q

∥∥∥∥GT ∞∑
k=1

(FT )k(ξ − s)k(p−q)

Γ
(
k(p− q) + p− q + 1

)z∥∥∥∥2ds,
0 =

∫ ξ

ξ−ι
(ξ − s)2(p−q)

∥∥∥∥GT ∞∑
k=1

(FT )k(ξ − s)(k−1)(p−q)

Γ
(
k(p− q) + p− q + 1

)z∥∥∥∥2ds. (3.16)

By Lemma 2.2 and equation (3.16), we get

0 = GT
∞∑
k=1

(FT )k(ξ − s)(k−1)(p−q)

Γ
(
k(p− q) + p− q + 1

)z, on s ∈ [ξ − ι, ξ]. (3.17)

Taking s = ξ in (3.17), yields

GTFT z = 0.

By mathematical induction, we obtain

GT (FT )kz = 0 for k = 2, 3, . . . , n− 1. (3.18)

According to the Cayley-Hamilton Theorem, there exist functions
Ω0(ξ),Ω1(ξ),Ω2(ξ), . . . ,Ωn−1(ξ) defined over the interval [0,∞), such that

Ep−q,p−q+1

(
Fξp−q

)
=

n−1∑
i=0

Ωi(ξ)F i. (3.19)

From (3.18) and (3.19), we get(
Ep−q,p−q+1

(
Fξp−q

)
G
)T
z ≡ 0, for all ξ ≥ 0. (3.20)

By using (3.13) and (3.20), we get

0 =

∫ ξ−ι

0

∥∥∥∥((ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)T
z

∥∥∥∥2ds. (3.21)
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Similar to (3.15), (3.17) and (3.18), we have

MT (FT )kz = 0, k = 0, 1, 2, . . . , n− 1. (3.22)

From the Cayley-Hamilton Theorem, there exist functions
π0(ξ), π1(ξ), π2(ξ), . . . , πn−1(ξ) defined on [0,∞), such that

Ep−q,p
(
F(ξ)p−q

)
=

n−1∑
j=0

πj(ξ)F j . (3.23)

From (3.18) and (3.22), we have

z ∈
n−1⋂
i=0

KerGT (FT )i
n−1⋂
j=0

KerMT (FT )j ,

that is,

KerQ(ξ) ⊂
n−1⋂
i=0

KerGT (FT )i
n−1⋂
j=0

KerMT (FT )j . (3.24)

Conversely, we show that

n−1⋂
i=0

KerGT (FT )i
n−1⋂
j=0

KerMT (FT )j ⊂ KerQ(ξ).

Let z ∈
⋂n−1
i=0 KerGT (FT )i

⋂n−1
j=0 KerMT (FT )j , (3.18) and (3.22) are true. For

ξ − ι < s ≤ ξ,

(ξ − s)p−q
(
Ep−q,p−q+1

(
F(ξ − s)p−q

)
G
)T
z

=

n−1∑
i=0

Ωi(ξ − s)(ξ − s)p−qGT (FT )iz

= 0. (3.25)

And for 0 ≤ s ≤ ξ − ι,(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G +

(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)T

z

=

n−1∑
i=0

Ωi(ξ − s)(t− s)p−qGT (FT )iz +

n−1∑
j=0

πj(ξ − s− ι)(ξ − s− ι)p−1MT (FT )jz

= 0. (3.26)
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By using (3.25) and (3.26), we obtain (3.12), after that we can say that 0 =
zTQ(ξ)z. Therefore, z ∈ KerQ(ξ), that is

n−1⋂
i=0

KerGT (FT )i
n−1⋂
j=0

KerMT (FT )j ⊂ KerQ(ξ). (3.27)

From (3.24) and (3.27), we have that (3.9) is true and the proof of Lemma 3.2 is
completed. �

Lemma 3.3. R(0, 0) = 〈F|G,M〉.

Lemma 3.4. R(0, 0, 0) = 〈F|G,M〉.

See, [10] for the proof of Lemma 3.3 and 3.4.

4. Main results

The main results of this section can be stated as follows:

Theorem 4.1. The systems (3.1) is controllable if and only if

rank[G,FG,F2G, . . . ,Fn−1G,M,FM,F2M, . . . ,Fn−1M] = n. (4.1)

Proof. From (3.6), the condition (4.1) is equivalent to 〈F|G,M〉 = Rn.
First, we show that Rn ⊂ 〈F|G,M〉.

Case I: If the control arrived time ` > ι.
Then assuming that system (3.1) is controllable, for any ϑ ∈ Rn and initial

state ψ0 = 0, ψ1 = 0, and initial control φ = 0, according to the definition (2.1),
there exists a control ν(s) such that

ϑ(ξ) =

∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
ν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds. (4.2)
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From (3.19), (3.23) and (4.2), we have

ϑ(ξ) =

∫ ξ−ι

0

(
(ξ − s)p−q

n−1∑
i=0

Ωi(ξ − s)F iG

+(ξ − s− ι)p−1
n−1∑
j=0

πj(ξ − s− ι)F jM
)
ν(s)ds

+

∫ ξ

ξ−ι
(ξ − s)p−q

n−1∑
i=0

Ωi(ξ − s)F iGν(s)ds,

ϑ(ξ) =

n−1∑
i=0

F iG
(∫ ξ−ι

0

(ξ − s)p−qΩi(ξ − s)

+

∫ ξ

ξ−ι
(ξ − s)p−qΩi(ξ − s)

)
ν(s)ds

+

n−1∑
j=0

F jM
(∫ ξ−ι

0

(ξ − s− ι)p−1πj(ξ − s− ι)
)
ν(s)ds,

ϑ(ξ) =

n−1∑
i=0

F iG
(∫ ξ

0

(ξ − s)p−qΩi(ξ − s)
)
ν(s)ds

+

n−1∑
j=0

F jM
(∫ ξ−ι

0

(ξ − s− ι)p−1πj(ξ − s− ι)
)
ν(s)ds. (4.3)

Assume that (∫ ξ

0

(ξ − s)p−qΩi(ξ − s)
)
ν(s)ds = F (ξ), (4.4)

and (∫ ξ−ι

0

(ξ − s− ι)p−1πj(ξ − s− ι)
)
ν(s)ds = G(ξ − ι). (4.5)

From (4.3), (4.4) and (4.5), we get

ϑ(ξ) =

n−1∑
i=0

F iGF (ξ) +

n−1∑
j=0

F jMG(ξ − ι). (4.6)

From (4.6), we conclude that ϑ ∈ 〈F|G,M〉. Thus, Rn ⊂ 〈F|G,M〉, and (4.1)
holds.
Case II: If the control arrived time ` ∈ (0, ι], the proof follows a similar approach
and will be omitted here.

For the converse part, assume that condition (4.1) holds, then we have to show
that the system (3.1) is controllable. There are two cases.
Case I: The control arrived time ` ∈ (0, ι]. The condition (4.1) holds, then
Rn ⊂ 〈F|G,M〉. For any ϑ̄ ∈ Rn and any initial state ψ0, ψ1, let

k = ϑ̄− ψ0 − ξEp−q,2(Fξp−q)ψ1. (4.7)
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For k ∈ Rn = 〈F|G,M〉, by Lemma 3.3, we have k ∈ R(0, 0). From [10, Definition
2.1], there exists a control ν∗ ∈ L1(0, `) with initial control zero such that

k =

∫ ξ

0

(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q)

)
Gν∗(s)ds. (4.8)

From (4.7) and (4.8), we have

ϑ̄ = ψ0 + ξEp−q,2(Fξp−q)ψ1 +∫ ξ

0

(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q)

)
Gν∗(s)ds, (4.9)

which means that the system with control delay is controllable for control arrived
time ` ∈ (0, ι].
Case II: The control arrived time ` > ι. Assume that condition (4.1) holds, then
Rn ⊂ 〈F|G,M〉. For any ϑ̄ ∈ Rn and any initial state ψ0, ψ1 with zero initial
control, let

k = ϑ̄− ψ0 − ξEp−q,2(Fξp−q)ψ1 (4.10)

For k ∈ Rn = 〈F|G,M〉, by Lemma 3.4, we have k ∈ R(0, 0, 0). By [10, Definition
2.1], there exists a control ν(ξ) ∈ L1(0, ι) such that

k =

∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
ν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds. (4.11)

Then from (4.10) and (4.11), we have

ϑ̄ = ψ0 + ξEp−q,2(Fξp−q)ψ1 +

∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
ν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds, (4.12)

which means that the system with control delay is controllable for control arrived
time ` > ι. The sufficiency is shown and thus, the proof is completed. �

Remark 4.2. Let Q be invertible, then the control ν̄(ξ) ∈ Rm is defined by for
` ∈ (0, ι]

ν̄(ξ) =


0, ξ ∈ [−ι, `− ι],
0, ξ ∈ (`− ι, 0],[
(`− ξ)p−qEp−q,p−q+1

(
F(`− ξ)p−q)

)
G
]T
Q−1y1, ξ ∈ (0, `],

(4.13)

where

y1 = ψ2 − ψ0 − ξEp−q,2(Fξp−q)ψ1,
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and the control ν̄(ξ) ∈ Rm is defined by for ` > ι

ν̄(ξ) =



0, ξ ∈ [−ι, 0],[(
(`− ξ)p−qEp−q,p−q+1

(
F(`− ξ)p−q

)
G

+(`− ξ − ι)p−1Ep−q,p
(
F(`− ξ − ι)p−q

)
M
)]T

Q−1y2,

ξ ∈ (0, `− ι],[
(`− ξ)p−qEp−q,p−q+1

(
F(`− ξ)p−q

)
G
]T
Q−1y2, ξ ∈ (`− ι, `],

(4.14)

where

y2 = ψ2 − ψ0 − ξEp−q,2(Fξp−q)ψ1,

is optimal and steers the system (3.1) from initial state ψ0, ψ1 to final state ψ2 at
time `. That means under the control (4.13) or control (4.14), respectively, the
solution of systems (3.1) satisfies ϑ(0) = ψ0, ϑ

′(0) = ψ1 and ϑ(`) = ψ2.

Corollary 4.3. The system (3.1) is controllable if and only if Q(ξ) is invertible.

Proof. For the proof of the above corollary, see [25]. �

5. Controllability of nonlinear fractional systems with control delay

Using Lemma 3.1, the general solution of nonlinear fractional integro-differential
damped dynamical system (1.1) is given by

ϑ(ξ) = ψ0 + ξEp−q,2(Fξp−q)ψ1 +

∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
u(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds

+

∫ ξ

0

(
(ξ − s)p−1Ep−q,p

(
F(ξ − s)p−q

))
f(s, ϑ(s), ν(s))ds. (5.1)

Let W be the Banach space of all continuous Rn × Rm-valued functions defined
on interval J = [0, `], denoted as

W = {(z, v) : z ∈M(J,Rn), v ∈M(J,Rm)},

equipped with uniform norm ‖(z, v)‖ = ‖z‖ + ‖v‖, where ‖z‖ = sup{|z(ξ)|, ξ ∈
J} and ‖v‖ = sup{|v(ξ)|, ξ ∈ J}, that is, W = M(J,Rn) ×M(J,Rm), where
M(J,Rn) = {z : J → Rn|z is continuous on J}, M(J,Rm) = {v : J → Rn|v is
continuous on J} are Banach spaces. For Rn and Rm we denote the max norm by
| · |n and | · |m and use the notation | · |, if there is no confusion.
For every (z, v) ∈ W , let the following nonlinear fractional integro-differential
damped dynamical system:

CDp
0ϑ(ξ)−F CDq

0ϑ(ξ) = GI1−qν(ξ) +Mν(ξ − ι) + f(ξ, z, v), ξ ≥ 0,
ϑ(0) = ψ0, ϑ

′(0) = ψ1,
ν(ξ) = 0, ξ ∈ [−ι, 0].

(5.2)
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By using (5.1), the solution of system (5.2) can be written as

ϑ(ξ) = ψ0 + ξEp−q,2(Fξp−q)ψ1 +

∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
ν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds

+

∫ ξ

0

(
(ξ − s)p−1Ep−q,p

(
F(ξ − s)p−q

))
f(s, z, v)ds. (5.3)

For crispness, let us acquaint the following notations and constants:

H1(ξ, s) = (ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G +

(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M,

H2(ξ, s) = (ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G,

b1 = sup
ξ∈[0,`]

‖ψ0 + ξEp−q,2(Fξp−q)ψ1‖,

b2 = sup
ξ∈[0,`]

‖Ep−q,p
(
F(ξ − s)p−q‖,

b3 = sup
ξ∈[0,`]

‖Ep−q,p−q+1

(
F(ξ − s)p−q‖,

b4 = sup
ξ∈[0,`]

∥∥∥∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
dsM

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gds

∥∥∥,
b5 = max

i=1,2
sup
ξ∈[0,`]

‖HT
i (`, ξ)‖,

sup |f | = sup{|f(s, z(s), v(s))|; s ∈ J},
d1 = 4b5|Q−1|

[
|ψ2|+ b1

]
,

d2 = 4b1,

c1 = 4b5|Q−1|
[
b2`

pp−1 sup |f |
]
,

c2 = 4b2`
pp−1,

d = max{d1, d2, b4d1},
c = max{c1, c2, b4c1}.

We also define the control function

ν(ξ) =

{
HT

1 (`, ξ)Q−1y, ξ ∈ [0, `− ι),
HT

2 (`, ξ)Q−1y, ξ ∈ [`− ι, `], (5.4)
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where

y = ψ2 − ψ0 − `Ep−q,2(F`p−q)ψ1

−
∫ `

0

(
(`− s)p−1Ep−q,p

(
F(`− s)p−q

))
f(s, z, v)ds,

where ψ2 ∈ Rn are chosen arbitrary.

Lemma 5.1. [8] Assume that the function f is locally bounded in v and satisfies
the condition such that

lim
|v|→∞

|f(w, v)|
|v|

= 0 (5.5)

uniformly in w ∈ J , we can conclude that for any given pair of constants c and
d, there exists a constant r such that if |v| ≤ r, then c|f(w, v)|+d ≤ r for all w ∈ J .

The main results of this section are presented in the following theorems.

Theorem 5.2. Assume that f is a continuous function that satisfies the condition

lim
|(ϑ,ν)|→∞

|f(ξ, ϑ, ν)|
|ϑ, ν|

= 0 (5.6)

uniformly in ξ ∈ J , and the linear fractional integro-differential damped dynamical
system (3.1) with delay in control is controllable. Then the nonlinear fractional
integro-differential damped dynamical system (5.2) with delay in control is control-
lable on J .

Proof. By the assumption, system (3.1) is controllable. By Corollary 4.3, Q is
given in (3.2) is non-singular. We define the operator Θ : W →W, such that

Θ(z, v) = (ϑ, ν), (z, v) ∈W,
where ϑ(ξ) is given by (5.3), such as

ϑ(ξ) = ψ0 + ξEp−q,2(Fξp−q)ψ1 +

∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
ν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds

+

∫ ξ

0

(
(ξ − s)p−1Ep−q,p

(
F(ξ − s)p−q

))
f(s, z, v)ds, (5.7)

where ν(ξ) is given by (5.4). We indicate νi(ξ), where i = 1, 2 such as

νi(ξ) = HT
i (`, ξ)Q−1y,

νi(ξ) = HT
i (`, ξ)Q−1

[
(ψ2 − ψ0 − `Ep−q,2(F`p−q)ψ1

−
∫ `

0

(
(`− s)p−1Ep−q,p

(
F(`− s)p−q

))
f(s, z, v)ds

]
. (5.8)
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The function f satisfies the condition (5.6), hence by Lemma 5.1, for every pair
of constants c, d there exists a constant r > 0 such that if |(z, v)| ≤ r, then
d+ c|f(ξ, z, v)| ≤ r, for all ξ ∈ J .
Let L(r) = {(z, v) ∈W : ‖(z, v)‖ ≤ r}. If (z, v) ∈ L(r), then from (5.8) and (5.7),
we have

|νi(ξ)| =
∥∥∥HT

i (`, ξ)Q−1
[
(ψ2 − ψ0 − `Ep−q,2(F`p−q)ψ1

−
∫ `

0

(
(`− s)p−1Ep−q,p

(
F(`− s)p−q

))
f(s, z, v)ds

]∥∥∥
|νi(ξ)| ≤ ‖HT

i (`, ξ)‖|Q−1|
[
|ψ2|+ b1 + b2`

pp−1 sup |f |
]

|νi(ξ)| ≤ b5|Q−1|
[
|ψ2|+ b1

]
+ b5|Q−1|

[
b2`

pp−1 sup |f |
]

|νi(ξ)| ≤
d1
4

+
c1
4

sup |f |

|νi(ξ)| ≤
1

4

(
d+ c sup |f |

)
|νi(ξ)| ≤

r

4
, (5.9)

and

|ϑ(ξ)| =
∥∥∥ψ0 + ξEp−q,2(Fξp−q)ψ1 +∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
ν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds

+

∫ ξ

0

(
(ξ − s)p−1Ep−q,p

(
F(ξ − s)p−q

))
f(s, z, v)ds

∥∥∥
|ϑ(ξ)| ≤ b1 + b4|νi(s)|+ b2`

pp−1 sup |f |

|ϑ(ξ)| ≤ d2
4

+ b4

[d1
4

+
c1
4

sup |f |
]

+
c2
4

sup |f |

|ϑ(ξ)| ≤ d

2
+
c

2
sup |f |

|ϑ(ξ)| ≤ r

2
. (5.10)

Therefore, if ‖z‖ ≤ r
2 and ‖v‖ ≤ r

2 , then |(z, v)| = ‖z‖ + ‖v‖ ≤ r, for all s ∈ J .
Thus, (5.9) and (5.4) give us ‖ν‖ ≤ r

4 and (5.10) gives us ‖ϑ‖ ≤ r
2 .

Therefore, the mapping Θ maps L(r) into itself, implying Θ(L(r)) ⊂ L(r). Since
the continuity of f ensures the continuity of the operator Θ, we can conclude
that Θ is completely continuous, as guaranteed by the Arzela-Ascoli theorem.
Consequently, L(r) is closed, bounded, and convex. By applying the Schauder
fixed-point theorem, we can assert that the operator Θ has a fixed point (z, v) ∈
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L(r) such that Θ(z, v) = (z, v) = (ϑ, ν). Hence, we obtain the following such that

ϑ(ξ) = ψ0 + ξEp−q,2(Fξp−q)ψ1 +

∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
ν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds

+

∫ ξ

0

(
(ξ − s)p−1Ep−q,p

(
F(ξ − s)p−q

))
f(s, z, v)ds.

Thus, ϑ(ξ) is the solution the system (5.2) and it is verify that ϑ(`) = ψ2. Hence
the system (5.2) is controllable on J . �

If ℘j ∈ L1(J), j = 1, 2, . . . , α, then ‖℘j‖ is L1 norm of ℘j(·), defined as

‖℘j‖ =

∫
J

|℘j(s)|ds.

For crispness, let us acquaint the following notations and constants:

g1 = sup
ξ1,ξ2∈[0,`]

∥∥∥(ξ1Ep−q,2(Fξp−q1 )− ξ2Ep−q,2(Fξp−q2 )
)
ψ1

∥∥∥,
g2 = sup

ξ1,ξ2∈[0,`]

∥∥∥((ξ1 − s)p−1Ep−q,p
(
F(ξ1 − s)p−q

)
−(ξ2 − s)p−1Ep−q,p

(
F(ξ2 − s)p−q

))∥∥∥,
g3 = sup

ξ2∈[0,`]

∥∥∥(ξ2 − s)p−1Ep−q,p
(
F(ξ2 − s)p−q

)∥∥∥,
g4 = sup

ξ1,ξ2∈[0,`]

∥∥∥∥∫ ξ1−ι

0

(
(ξ1 − s)p−qEp−q,p−q+1

(
F(ξ1 − s)p−q

)
G

+(ξ1 − s− ι)p−1Ep−q,p
(
F(ξ1 − s− ι)p−q

)
M

−(ξ2 − s)p−qEp−q,p−q+1

(
F(ξ2 − s)p−q

)
G

−(ξ2 − s− ι)p−1Ep−q,p
(
F(ξ2 − s− ι)p−q

)
M
)
ds

∥∥∥∥,
g5 = sup

ξ1,ξ2∈[0,`]

∥∥∥∥∫ ξ2−ι

ξ1−ι

(
(ξ2 − s)p−qEp−q,p−q+1

(
F(ξ2 − s)p−q

)
G

+(ξ2 − s− ι)p−1Ep−q,p
(
F(ξ2 − s− ι)p−q

)
M
)
ds

∥∥∥∥,
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g6 = sup
ξ1∈[0,`]

∥∥∥∥∫ ξ1

ξ1−ι

(
(ξ1 − s)p−qEp−q,p−q+1

(
F(ξ1 − s)p−q

))
Gds

∥∥∥∥,
g7 = sup

ξ2∈[0,`]

∥∥∥∥∫ ξ2

ξ2−ι

(
(ξ2 − s)p−qEp−q,p−q+1

(
F(ξ2 − s)p−q

))
Gds

∥∥∥∥,
ej = max

{
4b2b5`

pp−1|Q−1|‖℘j‖, 4b2`pp−1‖℘j‖
}
,

c̄j = max{ej , b4ej}.

Theorem 5.3. Assume that %j : Rn × Rm → R+ is measurable functions and
℘j : J → R+ is L1(J) functions, where j = 1, 2, . . . , α such that

‖f(ξ, ϑ, ν)‖ ≤
α∑
j=1

℘j(ξ)%j(ϑ, ν). (5.11)

Then the controllability of (3.1) implies the controllability of (5.2), if

lim
r→∞

(
r −

α∑
j=1

c̄j sup %j(ϑ, ν) : ‖(ϑ, ν)‖ ≤ r
)

= +∞. (5.12)

Proof. Define the operator Θ : W → W such as Θ(z, v) = (ϑ, ν), where ϑ and ν
are given by (5.3) and (5.4), respectively.
Assume that Ψ(r) = sup{%j(ϑ, ν) : ‖(z, v)‖ ≤ r}.
From (5.12), ∃ r0 such that

r0 −
α∑
j=1

c̄jψ(r0) ≥ d,

This implies that
α∑
j=1

c̄jψ(r0) + d ≤ r0.

Also,

Lr0 = {(z, v) ∈W : ‖(z, v)‖ ≤ r0}.
If (z, v) ∈ Lr0 , then by (5.4) and (5.3), we have

|νi(ξ)| =

∥∥∥∥HT
i (`, ξ)Q−1

[
(ψ2 − ψ0 − `Ep−q,2(F`p−q)ψ1

−
∫ `

0

(
(`− s)p−1Ep−q,p

(
F(`− s)p−q

))
f(s, z, v)ds

]∥∥∥∥
|νi(ξ)| ≤ ‖HT

i (`, ξ)‖|Q−1|
[
|ψ2|+ b1 + b2`

pp−1
α∑
j=1

‖℘j‖Ψj(r0)
]

|νi(ξ)| ≤ b5|Q−1|
[
|ψ2|+ b1

]
+ b5|Q−1|

[
b2`

pp−1
α∑
j=1

‖℘j‖Ψj(r0)
]

|νi(ξ)| ≤
d1
4

+
ej
4

α∑
j=1

Ψj(r0)
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|νi(ξ)| ≤
1

4

(
d+ c̄j

α∑
j=1

Ψj(r0)
)

|ν(ξ)| ≤ r0
4
, ∀ ξ ∈ J.

This implies that

‖ν‖ ≤ r0
4
,

and

|ϑ(ξ)| =
∥∥∥ψ0 + ξEp−q,2(Fξp−q)ψ1

+

∫ ξ−ι

0

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

)
G

+(ξ − s− ι)p−1Ep−q,p
(
F(ξ − s− ι)p−q

)
M
)
ν(s)ds

+

∫ ξ

ξ−ι

(
(ξ − s)p−qEp−q,p−q+1

(
F(ξ − s)p−q

))
Gν(s)ds

+

∫ ξ

0

(
(ξ − s)p−1Ep−q,p

(
F(ξ − s)p−q

))
f(s, z, v)ds

∥∥∥
|ϑ(ξ)| ≤ b1 + b4|νi(s)|+ b2`

pp−1
α∑
j=1

‖℘j‖Ψj(r0)

|ϑ(ξ)| ≤ d2
4

+ b4

[d1
4

+
ej
4

α∑
j=1

Ψj(r0)
]

+ b2`
pp−1

α∑
j=1

‖℘j‖Ψj(r0)

|ϑ(ξ)| ≤ d

2
+
c̄j
2

α∑
j=1

Ψj(r0)

‖ϑ‖ ≤ r0
2
.

Hence, Θ maps Lr0 into itself, that means Θ(Lr0) ⊂ Lr0 . Further, we need to
show that Θ(L(r)) is equicontinous ∀ r > 0. Let for every (z, v) ∈ L(r) and
ξ1, ξ2 ∈ J, ξ1 < ξ2, we have

|νi(ξ1)− νi(ξ2)| =

∥∥∥∥(HT
i (`, ξ1)−HT

i (`, ξ2)
)
Q−1

[
(ψ2 − ψ0 − `Ep−q,2(F`p−q)ψ1

−
∫ `

0

(
(`− s)p−1Ep−q,p

(
F(`− s)p−q

))
f(s, z, v)ds

]∥∥∥∥
|νi(ξ1)− νi(ξ2)| ≤

∥∥∥(HT
i (`, ξ1)−HT

i (`, ξ2)
)∥∥∥

×
∥∥∥Q−1∥∥∥[|ψ2|+ b1 + b2`

pp−1
α∑
j=1

‖℘i‖Ψj(r)
]
, (5.13)
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and

|ϑ(ξ1)− ϑ(ξ2)| ≤
∥∥∥(ξ1Ep−q,2(Fξp−q1 )− ξ2Ep−q,2(Fξp−q2 )

)
ψ1

∥∥∥
+

∥∥∥∥ ∫ ξ1−ι

0

(
(ξ1 − s)p−qEp−q,p−q+1

(
F(ξ1 − s)p−q

)
G

+(ξ1 − s− ι)p−1Ep−q,p
(
F(ξ1 − s− ι)p−q

)
M

−(ξ2 − s)p−qEp−q,p−q+1

(
F(ξ2 − s)p−q

)
G

−(ξ2 − s− ι)p−1Ep−q,p
(
F(ξ2 − s− ι)p−q

)
M
)
ν(s)ds

∥∥∥∥
+

∥∥∥∥ ∫ ξ2−ι

ξ1−ι

(
(ξ2 − s)p−qEp−q,p−q+1

(
F(ξ2 − s)p−q

)
G

+(ξ2 − s− ι)p−1Ep−q,p
(
F(ξ2 − s− ι)p−q

)
M
)
ν(s)ds

∥∥∥∥
+

∥∥∥∥ ∫ ξ1

ξ1−ι

(
(ξ1 − s)p−qEp−q,p−q+1

(
F(ξ1 − s)p−q

))
Gν(s)ds

∥∥∥∥
+

∥∥∥∥∫ ξ2

ξ2−ι

(
(ξ2 − s)p−qEp−q,p−q+1

(
F(ξ2 − s)p−q

))
Gν(s)ds

∥∥∥∥
+

∥∥∥∥∫ ξ1

0

(
(ξ1 − s)p−1Ep−q,p

(
F(ξ1 − s)p−q

)
−(ξ2 − s)p−1Ep−q,p

(
F(ξ2 − s)p−q

))
f(s, z, v)ds

∥∥∥∥
+

∥∥∥∥∫ ξ2

ξ1

(ξ2 − s)p−1Ep−q,p
(
F(ξ2 − s)p−q

)
f(s, z, v)ds

∥∥∥∥,
≤ g1 + g4|ν(s)|+ g5|ν(s)|+ g6|ν(s)|+ g7|ν(s)|

+g2

α∑
j=1

‖℘j‖Ψj(r) + g3

α∑
j=1

‖℘j‖Ψj(r)

≤ g1 +
(
g4 + g5 + g6 + g7

)r
2

+g2

α∑
j=1

‖℘j‖Ψj(r) + g3

α∑
j=1

‖℘j‖Ψj(r). (5.14)

Hence, it can be observed that the right-hand sides of equations (5.13) and (5.14)
do not rely on specific choices of (z, v). Consequently, it is evident that Θ(L(r))
exhibits equicontinuity for all r > 0. By applying the Arzela-Ascoli theorem, we
can establish that Θ is a compact operator. Since, L(r) is a nonempty, closed,
bounded, and convex set. Therefore, the Schauder fixed-point theorem guarantees
the existence of solution. Moreover, since ϑ(`) = ψ2, it follows that the system
described by equation (5.2) is controllable on J . �

51



ABDUR RAHEEM, MOHD ADNAN, AND ASMA AFREEN

6. Applications

Example.1. Consider the following system
CDp

0ϑ(ξ)−F CDq
0ϑ(ξ) = GI1−qν(ξ) +Mν(ξ − ι)

+f(ξ, ϑ(ξ), ν(ξ)), ξ ≥ 0,
ϑ(0) = ψ0, ϑ

′(0) = 0,
ν(ξ) = 0, ξ ∈ [−ι, 0],

(6.1)

with 1 < p < 2, 0 < q < 1,

F =

(
1 0
0 0

)
, G =

(
0
1

)
, M =

(
2
0

)
, ϑ(ξ) =

(
ϑ1(ξ)
ϑ2(ξ)

)
,

ν(ξ) =

(
ν1(ξ)
ν2(ξ)

)T
and f(ξ, ϑ, ν) =

(
ϑ1

1+ϑ2
2+ν

2
2

0

)
.

A simple calculation shows that(
G FG M FM

)
=

(
0 0 2 2
1 0 0 0

)
, (6.2)

and

rank
(
G FG M FM

)
= 2. (6.3)

From Theorem 4.1, we say that corresponding linear system of (6.1) is controllable.
We see that f(ξ, ϑ, ν) is continuous and satisfies the condition (5.6), and thus the
system (6.1) is controllable by Theorem 5.2.
Example.2. Consider the following system

CDp
0ϑ(ξ)−F CDq

0ϑ(ξ) = GI1−qν(ξ) +Mν(ξ − ι)
+f(ξ, ϑ(ξ), ν(ξ)), ξ ≥ 0,

ϑ(0) = ψ0, ϑ
′(0) = 0,

ν(ξ) = 0, ξ ∈ [−ι, 0],

(6.4)

with

F =

1 0 0
0 0 0
0 0 0

 , G =

0
0
1

 , M =

2
1
0

 , ϑ(ξ) =

ϑ1(ξ)
ϑ2(ξ)
ϑ3(ξ)

 ,

ν(ξ) =

ν1(ξ)
ν2(ξ)
ν3(ξ)

T

and f(ξ, ϑ, ν) =

 ϑ1+ϑ3

1+ϑ2
2+ν

2
2+ν

2
3

0
0

 .

A simple calculation shows that

(
G FG F2G M FM F2M

)
=

0 0 0 2 2 2
0 0 0 1 0 0
1 0 0 0 0 0

 , (6.5)

and

rank
(
G FG F2G M FM F2M

)
= 3. (6.6)
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From Theorem 4.1, we say that corresponding linear system of (6.4) is controllable.
We see that f(ξ, ϑ, ν) is continuous and satisfies the condition (5.6), and thus the
system (6.4) is controllable by Theorem 5.2.
Example.3. Consider the following system

CDp
0ϑ(ξ)−F CDq

0ϑ(ξ) = GI1−qν(ξ) +Mν(ξ − ι)
+f(ξ, ϑ(ξ), ν(ξ)), ξ ≥ 0,

ϑ(0) = ψ0, ϑ
′(0) = 0,

ν(ξ) = 0, ξ ∈ [−ι, 0],

(6.7)

with

F =

1 0 0
0 0 0
0 0 0

 , G =

0
0
1

 , M =

2
0
0

 , ϑ(ξ) =

ϑ1(ξ)
ϑ2(ξ)
ϑ3(ξ)

 ,

ν(ξ) =

ν1(ξ)
ν2(ξ)
ν3(ξ)

T

, f(ξ, ϑ, ν) =

 0
2ϑ3

1+ϑ2
2+ν

2
1+ν

2
2

0

 .

A simple calculation shows that

(
G FG F2G M FM F2M

)
=

0 0 0 2 2 2
0 0 0 0 0 0
1 0 0 0 0 0

 , (6.8)

and

rank
(
G FG F2G M FM F2M

)
= 2. (6.9)

In this case, by Theorem 4.1, we see that the corresponding linear system of (6.7)
is not controllable.
Moreover, f(ξ, ϑ, ν) is continuous and satisfies the condition (5.6), but the system
(6.7) is not controllable.
Example.4. Consider the following system

CDp
0ϑ(ξ)−F CDq

0ϑ(ξ) = GI1−qν(ξ) +Mν(ξ − ι)
+f(ξ, ϑ(ξ), ν(ξ)), ξ ≥ 0,

ϑ(0) = ψ0, ϑ
′(0) = 0,

ν(ξ) = 0, ξ ∈ [−ι, 0],

(6.10)

with

F =

1 0 0
0 0 0
0 0 0

 , G =

0
0
1

 , M =

2
1
0

 , ϑ(ξ) =

ϑ1(ξ)
ϑ2(ξ)
ϑ3(ξ)

 ,

ν(ξ) =

ν1(ξ)
ν2(ξ)
ν3(ξ)

T

, f(ξ, ϑ, ν) =

 ϑ1

1+ϑ1+ν1
ϑ2

1+ϑ2+ν2
ϑ3

1+ϑ3+ν3

 .
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A simple calculation shows that

(
G FG F2G M FM F2M

)
=

0 0 0 2 2 2
0 0 0 1 0 0
1 0 0 0 0 0

 , (6.11)

and

rank
(
G FG F2G M FM F2M

)
= 3. (6.12)

From Theorem 4.1, we say that the corresponding linear system of (6.10) is con-
trollable. Furthermore,

|f(ξ, ϑ, ν)| ≤ 1

‖ϑ(ξ)‖
.

In order to obtain desire results, it is enough to show that the condition (5.12)
holds under the following settings:

α = 1, %(ϑ, ν) =
1

ϑ
.

Hence,

lim
r→∞

(
r − sup c

1

ϑ

)
= +∞,

and thus by Theorem 5.3, the system (6.10) is controllable on J .

7. Conclusions

This study revolves around investigating controllability, a crucial qualitative
characteristic of fractional dynamical systems. Controllability pertains to the sys-
tem’s ability to navigate the entirety of the configuration space through admissible
actions. Our research paper provides proof of a set of necessary and sufficient
conditions that establish the controllability of linear and nonlinear fractional inte-
grodifferential damped dynamical systems with control delay in finite-dimensional
spaces. We have used the MittagLeffler matrix function, Arzela-Ascoli Theorem,
and Schauder fixed-point theorem as essential analytical tools in our analysis. By
leveraging these tools, we have obtained significant insights into the controllability
properties of fractional dynamical systems. Moreover, in the future, this study can
be extended for multiple delays in control under various settings.
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