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Abstract. Poisson distribution is normally used to model count data. How-

ever, in practical situations, the equidispersion feature of Poisson tends to go
wrong. In such cases, mixture models are usually used to fit the data. But

serial dependence in the observations does not agree with the mixture models

and hence, they assume independence. The Hidden Markov Model (HMM)
comes in handy in such a scenario as it handles both overdispersion (variance

greater than mean) and serial dependence in the data. HMM is an extension of

Markov models and it can be considered as a generalization of mixture model.
In this study, we generate two sets of count data - (i) independent and overdis-

persed and (ii) serially-dependent and overdispersed and conduct a simulation

study for proving the performance of HMM. For the study, the Poisson-Hidden
Markov (P-HMM) Model is applied to a real data on the monthly cases of

Hepatitis-B in the state of Kerala in South India, which is overdispersed and
serially dependent. Viterbi algorithm is used to obtain the best estimate of the

state sequence. By applying Akaike information criterion (AIC) and Bayesian

information criterion (BIC) model selection criteria, we could find that the
prevalence of Hepatitis-B can be modelled by 5-state P-HMM.

1. Introduction

Time series of disease count data is serially correlated and numerous models
have been suggested for their analysis. Time series count, in general, are molded
by autoregressive and moving average (ARMA) model [1], which is based on the
normal distribution. Disease count in unit area is usually modelled by Poisson
distribution. The equidispersion feature is one of the important characteristics of
Poisson distribution. However, in many practical cases, either mean will be greater
than variance or vice-versa, making Poisson assumption wrong. Real-life count
data, including epidemiological surveillance stats, are frequently characterized by
overdispersion.

Mixture models are used to deal with overdispersed observations which are usu-
ally a bimodal or a multimodal distribution. But serial dependence in the observa-
tions does not agree for the mixture models and so it assumes independence. When
it comes to practical applications, the independence assumption usually fails. A
method for permitting serial dependence in the observations is to assume that pa-
rameter process is consecutively dependent. A suitable technique to do so is to
assume that it is a Markov chain (MC). The resulting model for the observations is
called an HMM, which can accommodate both overdispersion and serial dependence
[2].
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In this paper, we test the performance of the HMM for two sets of overdispersed
data (dependent and non-dependent) using a simulation study. For this, we apply
P-HMM to a series of monthly Hepatitis-B prevalence counts in the state of Kerala,
South India, between 2006 and 2017. We estimate the P-HMM parameters and then
decode the most likely sequence of hidden states.

2. Hidden Markov Models

An HMM is a two-phased stochastic process Zt = (Ht, Ot), the time variable
t ∈ N , where the first stochastic process Ht is a finite set of states with a set of
probabilities called transition probabilities and this state process is hidden refered
to as parameter process. This hidden variable Ht satisfies Markov property, or it
form a Markov chain (MC). The second stochastic process Ot is the set of obser-
vations which can be generated from any of these states. The distribution of Ot

depends only on the current state Ht and not on previous states or observations.
This process is called state-dependent process. Let Ot = {O1, O2, · · · , OT } is the se-
quence of observed random variables and another set of discrete random variables
Ht = {H1, H2, · · · , HT } is the hidden or unobserved. Consider the realizations
o(t) = (o1, o2, · · · , ot) which is generated from the unobserved or hidden variables
h(t) = (h1, h2, · · · , ht). Here {hk} form a discrete MC. Then the probability of
observed h from state i at time t can be expressed as

(2.1) P (Ht = i|O(t) = o(t)).

These conditional probabilities are called state probabilities and here i = 1, 2, · · · ,m
is the number of hidden states of the MC. The probability of transitions between
the states can be expressed as

(2.2) aij = P (Ht = j|H1 = r,H2 = s, ...,H(t−1) = i) = P (Ht = j|H(t−1) = i).

Theses probabilities a′ijs are called transition probabilities, which can also be rep-
resented in the form of a matrix A = (aij)m×m, known as the transition proba-
bility matrix (TPM) and it satisfies the following conditions: aij ≥ 0, i, j ≥ 1 and∑m

j=1 aij = 1, i = 1, 2, · · · ,m.
Another important term in HMM is state dependent probabilities which can be

defined as P = (pi(o)), where

(2.3) pi(o) = P (ot = o|ht = i), i = 1, 2 · · · ,m.

This is the probability mass function (pmf) of Ot when the process is in state i.
This expression can be conveniently represent in a matrix form.
Define the initial distribution π = πi, where πi = P (Ht = i) as the probability that
the state i at time t(a row vector with nonnegative elements) if

πA = π and π1′ = 1.

For discrete-valued observations Ot, for t = 1, 2, 3, · · · , we have

P (Ot = o) =

m∑
i=1

P (Ht = i)P (Ot = o|Ht = i) =

m∑
i=1

πi(t)pi(o).

This expression can conveniently be rewritten in matrix form as:

= πP(t)1′.
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Now, the joint distribution of HMM can be written as

p(o1, o2, ..., oT ;h1, h2, ..., hT ) = p(h1)p(o1|h1)

T∏
t=2

p(ht|h(t−1))p(ot|ht).

Summing over h1, h2, · · · , hT we have the marginal pmf of the observation sequence
(2.4)

P (O1, O2, · · · , OT ) =
∑
(h1)

∑
(h2)

· · ·
∑
(hT )

{π(h1)p(o1|h1)

T∏
(t=2)

p(ht|h(t−1))p(ot|ht)}.

The likelihood function in matrix form is hence LT given by

(2.5) LT = πP (o1)AP (o2)AP (o3) · · ·AP (oT )1′.

The three parameters (components) for HMM are state transition probabilities,
state dependent probabilities and initial state distribution. Hence, an HMM can be
represented as Λ = (A,P,Π). Clearly, HMM is well defined by states, state probabil-
ities, transition probabilities, state dependent probabilities and initial probabilities
[2].
There are three main problems involved in an HMM analysis. Firstly, evaluation
problem, for given observation sequence and the model, to compute P (O|Λ), the
probability of the observation sequence, which we can solve using forward-backward
algorithm [3]. Secondly, the learning problem, where the likelihood LT estimation
will be performed, this can be done by using EM algorithm [4]. And thirdly, de-
coding problem, in which we try to uncover the hidden part of the model, ie, the
most likely state sequence, using Viterbi algorithm [5].

3. Simulation Framework

We demonstrate the performance of the HMM for overdispersed and dependent
count data through a simulation study, which is one of the objectives of this work.
To achieve this goal, we generate an overdispersed and independent and overdis-
persed and serially dependent data from a bimodel Poisson distribution with mean
values 5 and 20. Further, P-HMM is applied to the both the generated data to
evaluate the model fit and estimation efficiency. The simulation is conducted with
R software. Figure 1 & 2 shows the auto correlation function (ACF) of both the sets
of generated data. Figure 1 clearly indicates that the data are serially dependent.
For both the settings, 1,000 runs are conducted. In each run, data are estimated

via the EM algorithm method. The simulations are repeated on different sample
sizes ranging from 300 to 900. Table 1 and 2 show the simulation results for two
types of overdispersed counts with the sample sizes 300 to 900. The tables include
the Mean Squared Errors (MSE) and the biases of the parameter estimates. The
formulas of bias and MSE are as follows

bias(θ̂) = θ̄ − θ,

MSE(θ̂) =
1

N

N∑
i=1

(θ̂i − θ)2,

where θ is the true parameter value, θ̂ is the estimate of θ for the ith simulated

data, θ̄ = 1
N

∑N
i=1 θ̂i, and N = 1000 is the number of replicates. We can see that

table 1 have the lowest bias and MSE values in almost all cases.
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Table 1. MSE (bias) values of estimates for overdispersed and
serially dependent count data.

N 300 500 700 900

a11 0.0029(0.0466) 0.0027(0.0485) 0.0027(0.0492) 0.0026 (0.0486)
a21 0.0028(-0.0461) 0.0027(-0.0479) 0.0026(-0.0481) 0.0027(-0.0497)
λ1 0.0363(-0.0047) 0.0223(-0.0030) 0.0156(-0.0095) 0.0122(0.0044)
λ2 0.1468(-0.0055) 0.0813(-0.0043) 0.0569(0.0041) 0.0458(-0.0064)

Table 2. MSE (bias) values of estimates for overdispersed count data.

N 300 500 700 900

a11 0.2061(-0.4517) 0.2043(-0.4505) 0.2051(-0.4518) 0.2039(-0.4508)
a21 0.0651(0.2518) 0.0633(0.2499) 0.0637(0.2511) 0.0632(0.2505)
λ1 0.0529(0.0064) 0.0307(-0.0069) 0.0219(-0.0013) 0.0172(0.0033)
λ2 0.1191(-0.0234) 0.0719(-0.0024) 0.0514(0.0097) 0.3966(-0.0081)

We known that count data are basically modelled by Poisson. But in many
practical situations overdispersion exists and hence, we go for Negative Binomial
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Figure 1. Overdispersed and serially dependent series: sample
autocorrelation function.
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Figure 2. Overdispersed and independent series: sample auto-
correlation function.
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Table 3. Model selection statistics

model -LogL AIC BIC

Poisson 1477.34(1390.39) 2956.68(2782.78) 2960.39(2786.49)
NegBin 1020.17(1047.91) 2044.35(2099.81) 2051.76(2107.22)
P-Mixture 948.57(974.51) 1903.14(1955.01) 1914.25(1966.12)
P-HMM 829.13(973.50) 1668.27(1957.00) 1686.79(1975.52)

(NegBin) or Poisson mixture (P-Mixture) models for modelling such data. We com-
pare P-HMM with Poisson, NegBin and P-Mixture models and the result obtained
is shown in table 3. It shows the values of model selection statistics of overdispersed
and serially dependent data and those of overdispersed and independent data (in
parenthesis). Summing up, we can say that HMM is the best model for fitting,
when the data is overdispersed and serially dependent. When the observations are
not correlated, mixture models are also preferable for modelling.

4. Real data analysis using P-HMM

A series of monthly Hepatitis-B incidence counts in the state of Kerala in South
India for the 2006-2017 period is considered for the analysis. A time series plot
of this data is given in figure-3. It has as many as 144 time points. A total of
10743 cases were studied with mean value 74.6 and variance 1370.8. In this case,
the sample variance is greater than its mean, which shows that the data is clearly
overdispersed. In this Hepatitis-B time series data the minimum occurrence of 8
incidences was recorded in October 2007 while the maximum occurrence of 222 was
reported in June 2012.

Figure 4 shows the ACF of the Hepatitis-B incidence counts between 2006 and
2017. As evident in the figure, the observations are considerably correlated over
the lags that gives direct serial dependence in the Hepatitis-B time series. The
overdispersion and serial dependence of the incidence counts of Hepatitis-B time
series have prompted us to build a P-HMM for analyzing this series.

Here the parameters are estimated from Hepatitis-B counts by applying the EM
estimation method using R software. The parameter estimation of P-HMM (m =
2,3,4,5,6 & 7) is shown in Table 4. We assume that the underlying MC is stationary.

Since π̂ is the stationary distribution of TPM Â in each case, its value need not
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Figure 3. monthly Hepatitis-B cases in Kerala.
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Table 4. P-HMMs fitted to the Hepatitis-B series

model i λ A Mean

m = 2
1
2

31.9
93.1

[
0.8434 0.1566
0.0709 0.9291

]
93.37

m = 3
1
2
3

31.3
78.6
122.8

 0.8547 0.1239 0.0214
0.0946 0.7728 0.1327
0.0000 0.2930 0.7070

 78.59

m = 4

1
2
3
4

31.2
76.1
110.4
167.0


0.8576 0.1183 0.0241 0.0000
0.1050 0.7114 0.1836 0.0000
0.0000 0.3223 0.5679 0.1098
0.0000 0.0000 0.7830 0.2170

 76.09

m = 5

1
2
3
4
5

19.4
41.7
77.3
111.4
167.5


0.7270 0.1809 0.0401 0.0520 0.0000
0.2034 0.6014 0.1952 0.0000 0.0000
0.0000 0.1167 0.7027 0.1806 0.0000
0.0000 0.0000 0.3306 0.5552 0.1142
0.0000 0.0000 0.0000 0.7893 0.2107

 77.31

m = 6

1
2
3
4
5
6

19.3
41.2
74.5
100.2
136.9
221.9


0.7220 0.1780 0.0473 0.0527 0.0000 0.0000
0.2071 0.5995 0.1934 0.0000 0.0000 0.0000
0.0000 0.1433 0.6781 0.1786 0.0000 0.0000
0.0000 0.0000 0.2557 0.4502 0.2941 0.0000
0.0000 0.0000 0.0000 0.8424 0.0803 0.0773
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

 74.48

m = 7

1
2
3
4
5
6
7

14.4
25.1
42.6
74.5
100.3
136.9
221.9



0.6755 0.2082 0.0000 0.1163 0.0000 0.0000 0.0000
0.0966 0.5997 0.2295 0.0000 0.0742 0.0000 0.0000
0.0647 0.1605 0.5613 0.2135 0.0000 0.0000 0.0000
0.0000 0.0000 0.1432 0.6784 0.1784 0.0000 0.0000
0.0000 0.0000 0.0000 0.2557 0.4498 0.2945 0.0000
0.0000 0.0000 0.0000 0.0000 0.8424 0.0803 0.0773
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000


74.54

been estimated. So π̂ automatically approaches a unit vector.

Table 5 shows the AIC and BIC values for each model. In this table k represents
the number of parameters of each model and is given by k = m2. Of these, the
6− state model is chosen by AIC and 5− state by BIC. The model is considered to
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Figure 4. The autocorrelation function of the Hepatitis-B series.
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Table 5. Model selection statistics for P-HMM

model k -LogL AIC BIC

m = 1 1 1818.11 3638.22 3641.19
m = 2 4 940.62 1889.25 1901.13
m = 3 9 759.63 1537.25 1563.98
m = 4 16 721.44 1474.88 1522.40
m = 5 25 652.62 1355.23 1429. 48
m = 6 36 633.62 1339.24 1446.15
m = 7 49 625.48 1348.96 1494.48

Table 6. The most likely sequence of hidden states of 5− state P-HMM

3 3 3 3 3 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 3 3 3
3 3 3 3 3 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 3 3 3
3 3 2 1 1 2 1 1 1 4 4 4 4 4 3 2 3 2 2 3 2 3 3 3 3 3 2
2 1 1 1 1 2 2 2 2 2 3 4 3 3 3 3 4 3 4 3 4 4 5 5 4 4 4
5 4 5 4 4 4 4 4 3 3 3 3 3 3 4 4 3 4 4 5 4 4 3 4 4 4 4
3 3 3 3 4 3 3 3 3 3 3 3 3 4 4 4 4 3 3 4 3 3 3 3 3 3 3
3 3 2 2 2 2 3 3 3

be the most apt one, which can be identified using BIC. So the 5−state model was
used for our analysis and the details of the estimated values are shown in Table 4.
Even the 6− state model can be used as a simple alternative for the analysis.
Clearly, P-HMM with 5 − state model is better fit for our Hepatitis-B prevalence
count. We can call these 5− states as, state 1 - ’large number of zero counts’, state
2 - ’mild occurrence’, state 3 - ’moderate occurrence’, state 4 - ’severe occurrence’
and state 5 - ’inflation of outliers’. After determining the classification of the states
of the P-HMM, the estimated parameters of 5− state model are processed by the
Viterbi algorithm (as shown in Table 3) to get the sequence of hidden states. This
gave as the best sequence of the hidden states which generates our observations.

Though Hepatitis B cases are a rarity in Kerala, a sudden outbreak of the disease
was reported during the 2006-17 period. In such a scenario, HMM is the best
method for modelling data. We analysed these observations using P-HMM and
fitted them to the 5 − state model. The parameters of this model is estimated
using EM algorithm, as shown in table 4. The transition probability matrix gives
the probability of the transition from one state to another at any time point. We
can notice very strong diagonal elements in the transition probability matrix of
the 5 − state P-HMM. This means that if the data is generated from state i in
this month, there is a strong possibility that the data for the next month will be
generated from state i itself. This is evident from the state sequence we derived
using Viterbi algorithm.

5. Discussion

As per the WHO guidelines, India is in the intermediate prevalence zone of
Hepatitis-B infection. However, recent studies point to the fact that Hepatitis-B
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virus prevalence in India is < 2%, placing it in the low prevalence zone. Since
Hepatitis-B virus is a transfusion transmissible infection, various studies were con-
ducted on the prevalence of Hepatitis-B among blood donors [6].
The retrospective data over a span of 12 years from South India is considered in this
study. In the case of data from a heterogeneous population, there is a possibility of
clusters or mixtures in the occurrence of diseases. When there are excess zeros in
the count time series data, zero inflated models may be an appropriate modelling
method. One way of modelling the mixture count is HMM modelling. However
this may change based on the scenario. In this study, the prevalence occurrences
of diseases were modelled using the HMM because of the dependence nature of the
disease.
AIC and BIC statistics were used for the model comparison. The models mentioned
in this work can be viewed in the form of independent and dependent mixture mod-
els. The mixture indicated the disease occurrence level. The mixture occurrence in
the data can be because of the seasonal or endemic pattern of the disease occur-
rence.
Researchers used various models to explain the pattern of Hepatitis-B virus disease
occurrence. There are various infectious disease time series studies with ZIP and
ZINB models. Held et al. 2005 ([7]) also used particular versions of count regression
model with auto regressive term to incorporate the time series nature of the data.
Researchers used different forms HMMs for modelling infectous diseases([8], [9],
[10], [11]). When it comes to analysis of infectious diseases counts, ARIMA ([1])
and GLM ([12], [13]) methods are the ones used generally. P-HMM is one of the
popular model for diseases survelliance as it is common to measure the infectious
diseases as counts. Sarvi et al. 2017 ([14]) made inferences based on the air pollu-
tion data using P-HMM.
HMMs are popular became a traditional modelling nowadays. The models can an-
swer many problems using the MC concepts, which cannot be obtained using the
usual time series models such as ARIMA or SARIMA models. One of the most
infectious and dangerous diseases, Hepatitis-B had been a major health concern
across the globe. However, with the advent of medical tech and awareness, the
prevalence level of the infection has declined over the years. This is evident from
the decrease in death cases due to the infection in the state of Kerala in South
India. Launched in 1982, the Hepatitis-B vaccine is 95% effective in preventing
infection.

6. Conclusion

In this study, we conducted a simulation study for testing the HMM’s perfor-
mance for modelling overdispersed and serially dependent nature of observations.
We can, beyond any doubt, say that HMM is the best model for fitting such data.
Taking into account this particular scenario, the HMM was used for analysing the
Hepatitis-B prevalence data, which are overdispersed and serially dependent. Here,
P-HMM was applied for studying discrete time series count data, with which the
hidden state of the observations could be easily traced out. Since the initial distri-
bution was stationary and EM was used for the estimation of the parameters, the
maximum value of the likelihood decreased. For all the models, the estimates of
the transition probabilities and the state-dependent means were not the same, but
close. Also, the estimated value of π reaches unit vector. Applying the AIC and
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BIC methods, it was found that the 5-state model was the best fit for this data.
Global decoding is used for finding out hidden state sequence in majority of the
applications. Here, Viterbi algorithm is applied to determine the most likely state
sequence from the 5-state model.
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