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Abstract. In this paper, we analyse an M/M/1 queueing system with im-
patient customer and working vacation. The server begins the working vaca-

tion when the server finds no customer in the system and the server serves
in a vacation period with slow service rates. If the server come back from

a working vacation and find the queue empty, it starts the another working

vacation. Otherwise, it switches to a normal busy period. If the server is
busy or working vacation When a customer comes to the system, it activates

an impatience timer. If the customer’s service has not finished before the cus-

tomer’s impatience timer expires and never comes back, the customer leaves
the system. The balance equations of the model are all derived using state-

transition diagram. Then, we obtain various performance measures such as

the mean system sizes. Some numerical results and graphical representation
are also represented.

1. Introduction

Queueing system with customer’s impatience are occur in our everyday life.
Many authors treated the impatience phenomenon under various assumptions.When
the system is empty during the working vacation period, the server takes a vaca-
tion to attend secondary jobs at different rates.

The models considered in this paper have applications in practical systems.
For example, consider a leather product-inventory system with impatience timer.
The job of the facility is to produce leather bags to fulfill customer’s orders. The
manufacturing plant may produce leather bags in a make-to-stock manner in order
to meet demand. The production manager, however, does not want to maintain
a higher inventory level becauseit will increase the holding expenses. Therefore,
the manager may halt bag production if the final order is fulfilled and no order
occurs. The manager may decide to wait for the orders if none arrive at that mo-
ment. Depending on whether a production facility is open when an order arrives,
it is either temporarily out of stock or filled from the inventory. Customers whose
orders are temporarily out of stock may become impatient and decide to cancel
their orders if waiting time exceeds a customer’s level of patience (the customer
may have different impatient times). Such a system can be modeled by our models
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developed in this paper.
Altman and Yechiali [1], analyse of M/M/1 and M/G/1 queues, for multiple

and the single-vacation cases, and obtain various types of results. Oliver and Isi-
jola [8], consider M/M/1 queueing system with multiple vacation. Goswami [6],
analyze M/M/1 queue with impatince customers, working vacations and Bernoulli
schedule vacation interruption. Sudhesh and Azhagappan [18], studies an M/M/1
model with server’s vacation and annoyed customers in which the server activates
the timer. Laxmi et al. [13], analyse an infinite size of a server Markovian queue
with a working vacation and annoyed customers.

Swathi and Kumar [19], describes for both vacation models during variant
states like as busy, repair and breakdown are presented. Manoharan and Ashok
[14], In the stationary state, obtained the distributions of the additional queue
length and sojourn time of a customer. Gupta and Kumar [7], considers single
retrial model with a waiting server subject to repair and breakdown under work-
ing vacation, vacation interruption. Chakravarthy [4], deals with the classical
queueing models, the server providing services is assumed to be available at all
times even when there is no customer in the system. Choudhury [5], analyses a
M/G/1 queue with unreliable server and two phases of heterogeneous service. Am-
ina and Latifa [2], deals with a M/M/1 feedback queueing system under balked
customers and two differentiated multiple vacations. Dequan et al. [20], con-
sider an M/M/1 queueing system with impatient customers and vacations. Perel
and Yechiali [15], analyse two-phase multi-server queueing system with customer’s
impatience. Parimala [17], analyse a M/M(a, b)/(2, 1) queueing system of two het-
erogeneous servers and bulk service with various service rates. Bounkhel et al. [3],
analyse M/M/1 queueing system with server adaption by using a strategy where
the service provided can be either single or bulk depending on some threshold level
c.

Kumar and Shinde [12], deals with bulk arrival and service under vacation
interruption and also analyse the steady-state behavior. Selvaraju and Goswami
[16], consider an single server Markovian queue with impatient customers and
working vacations. Kumar and Sharma [11], analyse the transient solution of a
Markovian queuing system with two heterogeneous servers and retention of reneg-
ing customers. Jain et al. [10], study the operating characteristics of an MX/Hk/1
queueing system under multiple vacation policy. Jain [9], examine the character-
istics to M/M/1 queue with infinite capacity and functioning vacation.

2. The Model and Analysis

We consider the multiple working vacation in M/M/1 queueing system with
customer’s impatience timer.

• Customers arrival according to a Poisson process with arrival rates λ1 and
λ0 for busy period and working vacation respectively. Then the service
rate µb for busy period is exponentially distributed.
• The server begins a working vacation when the queue becomes empty, and

vacation time follows an exponential distribution with rate φ. During a
working vacation an arriving customer is served at the rate of µv which
is exponentially distributed. If the server returns from a working vacation
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to find the queue empty, it begins another working vacation. If the queue
is not empty, it switches to a normal busy period.
• Whenever a customer comes and finds the server is busy or working vaca-

tion, then the server activates a timer, which is exponentially distributed
with parameter ε1 or ε0 for busy period or working vacation.

Let N(t) be the number of customers in the system at the time t.

Let J(t) =

{
0, system is in working vacation at time t

1, system is in busy period at time t

The process {N(t), J(t); t ≥ 0} is defined as a continuous-time markov process
with the state space Ω =

{
(0, 0)

⋃
(n, j), j = 0, 1;n ≥ 1

}
Pn,0 = lim

t→∞
P [N(t) = n, J(t) = 0], n ≥ 0

Pn,1 = lim
t→∞

P [N(t) = n, J(t) = 1], n ≥ 1

The balance equations are given below:

λ0P0,0 = (µv + ε0)P1,0 + (µb + ε1)P1,1 (2.1)

(λ0 + µv + nε0 + φ)Pn,0 = λ0Pn−1,0 + (µv + (n+ 1)ε0)Pn+1,0, n ≥ 1 (2.2)

(λ1 + µb + ε1)P1,1 = φP1,0 + (µb + 2ε1)P2,1 (2.3)

(λ1 + µb + nε1)Pn,1 = λ1Pn−1,1 + φPn,0 + (µb + (n+ 1)ε1)Pn+1,1, n ≥ 2 (2.4)

The normalizing condition as follows,

∞∑
n=0

Pn,0 +

∞∑
n=1

Pn,1 = 1. (2.5)

We define the Probability Generating Functions as follows,

G0(z) =
∞∑
n=0

Pn,0z
n and G1(z) =

∞∑
n=1

Pn,1z
n

Multiplying equation (2.2) by zn, using equation (2.1) and summing all possible
values of n, we get

ε0z(1− z)G′0(z)− [(λ0z − µv)(1− z) + φz]G0(z) = − [φz − (1− z)µv]P0,0

−(µb + ε1)zP1,1 (2.6)

In a similar way, we get from equations (2.3) and (2.4)

ε1z(1−z)G′1(z)−(λ1z−µb)(1−z)G1(z) = −φzG0(z)+[φP0,0+(µb+ε1)P1,1]z (2.7)

3. The solutions of differential equations

For z 6= 0 and z 6= 1, equation (2.6) can be written as follows

G′0(z)−
[
λ0
ε0
− µv
zε0

+
φ

ε0(1− z)

]
G0(z) =

1

ε0

[
A

z
− B

1− z

]
(3.1)

where A = µvP0,0 and B = φP0,0 + (µb + ε1)P1,1

To solve the first order linear differential equation (3.1), we get an integrating

73 



R. S. YOHAPRIYADHARSINI AND V. SUVITHA*

factor (IF) as e
−λ0z
ε0 z

µv
ε0 (1− z)

φ
ε0

Multiplying both sides of (3.1) by IF, we get

d

dz

[
e

−λ0z
ε0 z

µv
ε0 (1− z)

φ
ε0G0(z)

]
=

1

ε0

[
A

z
− B

1− z

]
e

−λ0z
ε0 z

µv
ε0 (1− z)

φ
ε0

Integrating both sides of above from 0 to z, we get

G0(z) = e
λ0z
ε0 z

−µv
ε0 (1− z)

−φ
ε0

[
AK0(z)−BK1(z)

ε0

]
(3.2)

where K0(z) =

z∫
0

(1− s)
φ
ε0 e

−λ0s
ε0 s

µv
ε0
−1ds and K1(z) =

z∫
0

(1− s)
φ
ε0
−1e

−λ0s
ε0 s

µv
ε0 ds

From equation (3.2), as 0 ≤ G0(1) =
∞∑
n=0

Pn,0 ≤ 1 and lim
z→1

(1− z)
−φ
ε0 →∞, so we

have

e
λ0
ε0

[
A

ε0
K0(1)− B

ε0
K1(1)

]
= 0

After substituting the values of A and B, we get

P0,0 =
(µb + ε1)K1(1)P1,1

µvK0(1)− φK1(1)
(3.3)

Equation (3.2) can be written as

G0(z) =
e
λ0z
ε0 z

−µv
ε0 (1− z)

−φ
ε0

ε0
[µvK0(z)P0,0 − (µb + ε1)K1(z)P1,1 − φK1(z)P0,0]

(3.4)
Substituting equation (3.3) into equation (3.4), we obtain

G0(z) =
e
λ0z
ε0 z

−µv
ε0 (1− z)

−φ
ε0 µv

ε0

[
K0(z)− K0(1)K1(z)

K1(1)

]
P0,0 (3.5)

For z 6= 1 and z 6= 0, equation (2.7) can be rewritten as follows:

G′1(z)−
[
λ1
ε1
− µb
zε1

]
G1(z) =

B − φG0(z)

ε1(1− z)
(3.6)

To solve the first order linear differential equation (3.6), we get an integrating

factor (IF) as e
−λ1z
ε1 z

µb
ε1

Multiplying both sides of (3.6) by IF, we get

d

dz

[
e

−λ1z
ε1 z

µb
ε1 G1(z)

]
=

[B − φG0(z)]

ε1(1− z)
e

−λ1z
ε1 z

µb
ε1

Integrating both sides of above from 0 to z, we get

G1(z) = e
λ1z
ε1 z−

µb
ε1

B
ε1
K2(z)− φ

ε1

z∫
0

G0(s)e−
λ1s
ε1 s

µb
ε1 (1− s)−1ds

 (3.7)
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where K2(z) =
z∫
0

e−
λ1s
ε1 s

µb
ε1 (1− s)−1ds

Using equation (3.3) and substituting equation (3.5) into equation (3.7), we get

G1(z) =
e
λ1z
ε1 z−

µb
ε1 µv

ε1

[
K2(z)K0(1)

K1(1)
− φ

ε0K1(1)
(K1(1)K3(z)−K0(1)K4(z))

]
P0,0

(3.8)

where K3(z) =

z∫
0

e

(
λ0
ε0
−λ1ε1

)
s
(1− s)

−φ
ε0
−1s−

µv
ε0

+
µb
ε1 K0(s)ds

K4(z) =

z∫
0

e

(
λ0
ε0
−λ1ε1

)
s
(1− s)

−φ
ε0
−1s−

µv
ε0

+
µb
ε1 K1(s)ds

Define P.0 = G0(1) =
∞∑
n=0

Pn,0 and P.1 = G1(1) =
∞∑
n=1

Pn,1

Put z = 1 in equations (2.6) and (3.3), we get

P.0 = G0(1) =
µvK0(1)P0,0

φK1(1)
(3.9)

Put z = 1 in equation (3.8), we get

P.1 = G1(1) =
e
λ1
ε1 µvP0,0

ε1

[
K2(1)K0(1)

K1(1)
− φ

ε0K1(1)
(K1(1)K3(1)−K0(1)K4(1))

]
(3.10)

Noting that P.0 + P.1 = 1, we get from Equations (3.9) and (3.10)

P0,0 =

{
e
λ1
ε1 µvP0,0

ε1

[
K2(1)K0(1)

K1(1)
− φ

ε0K1(1)
(K1(1)K3(1)−K0(1)K4(1))

]
+
µvK0(1)

φK1(1)

}−1
(3.11)

4. Performance Measures

Let E[Lsb] be the the average size of the system when the server is in busy
state, let E[Lsv] be the average size of the system when the server is in working
vacation state.
From equation (3.1), using L’Hopital rule, we have

E[Lsv] = lim
z→1

G′0(z) = lim
z→1

[((λ0 − µv)(1− z) + φ) zG0(z) +A(1− z)−Bz]
ε0z(1− z)

=
µv

(φ+ ε0)φK1(1)
[(λ0 − µv)K0(1)− φK1(1)]P0,0

From equation (3.6), using L’Hopital rule, we have

E[Lsb] = lim
z→1

G′1(z) = lim
z→1

[
λ1
ε1
− µb
zε1

]
G1(z) +

B − φG0(z)

ε1(1− z)

=
µbe

λ1ε1(λ1 − µb)
ε21

[
K2(1)K0(1)

K1(1)
− φ

ε0K1(1)
(K1(1)K3(1)−K0(1)K4(1))

]
P0,0

+
µv

ε1(φ+ ε0)K1(1)
[(λ0 − µv)K0(1)− φK1(1)]P0,0
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where P0,0 is given by equation (3.11).
Average size of the system and throughput are obtained as,

E[N ] = E[Lsv] + E[Lsb]

TP = µv
∞∑
n=0

Pn,0 + µb
∞∑
n=1

Pn,1

Mean waiting time,

E[W ] = E[N ]
λeff

where λeff = λ0P0,0 +
∞∑
n=1

(λ0Pn,0 + λ1Pn,1)

Mean delay time,

E[D] = E[N ]
TP

5. Numerical Results

We find performance measures numerically in this section. We consider the
parameters as λ0 = 0.3, λ1 = 0.6, φ = 0.3, ε0 = 2, µb = 2.0, µv = 1, ε1 = 3 for all
the figures and table. In figures, we varied λ0=0.1 to 0.5 and λ1=0.5 to 1.4. In
all the figures, shows that the average size of the system by varying λ0 and λ1
for different parameters µb, µv, φ, ε0, ε1. The figures shows that upward trend lines
and the values are increases for both λ0 and λ1.

In figure 1, displays that the average size of the system by varying λ0 and λ1
for different parameters ε0 and ε1. In figure 2, explains that the average size of
the system by varying λ0 and λ1 for different parameters µb, µv and φ. As the
graphs for E[N ] in figure 1, reveals that the increasing trend with respect to λ1
and depict that E[N ] increases for lowering the values ε0 then for the increasing
values of ε1. As the graphs for E[N ] in figure 2, reveals that the increasing trend
with respect to λ0 and depict that E[N ] increases for lowering the values µv and
µb, then for the increasing values of φ.

In table 1, we varied λ1 = 0.5 to 1.4 and the probability P.,0 is decreases and P.,1
is increases. From table 2, we can see that the arrival rate (λ1) increase then E[Lsb]
also increase. Also the percent variation indicates the increasing trend for E[Lsb]
and decrease for P0,0 and E[Lsv]. From table 3, shows that the effect of arrival
rate for vacation (λ0) on E[Lsv] and E[Lsb]. As λ0 increases, E[Lsv] also increases
and hence P0,0 and E[Lsb] decrease. Also percent variation increases for E[Lsv]
and decrease for P0,0 and E[Lsb]. From table 4, depicts that the effect of service
rate for busy period (µb) on E[Lsv] and E[Lsb]. As µb increases, P0,0 and E[Lsv]
increases and hence E[Lsb] decreases. Also the percent variation increases for P0,0

and E[Lsv] and decreases for E[Lsb]. From table 5, shows the effect of service rate
for working vacation (µv) on E[Lsv] and E[Lsb]. As µv increases, P0,0 and E[Lsv]
decreases and hence E[Lsb] increases. Also the percent variation increase for P0,0,
E[Lsb] and decreases for E[Lsv]. From table 6 and 8, indicates the effect of φ
and ε0 on E[Lsv] and E[Lsb]. As ε0 and φ increases,P0,0 and E[Lsb] increase and
hence E[Lsv] decreases. Also the percent variation decrease for P0,0 and E[Lsv]
and increases for E[Lsb]. From table 7, reflects the effect of vacation rate (ε1) on
the performance measures. As ε1 increases, P0,0, E[Lsv], E[Lsb] increase. Also the
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Figure 1. Average size of the system by varying λ0 and λ1 for
different parameters ε0, ε1

percent variation increase for P0,0, E[Lsv] and E[Lsb].

λ1 P.,0 P.,1 λ1 P.,0 P.,1

0.5 0.2079307 0.7920693 1.0 0.2066783 0.7933217

0.6 0.2076893 0.7923107 1.1 0.2064137 0.7935863

0.7 0.2074435 0.7925565 1.2 0.2061442 0.7938558

0.8 0.2071931 0.7928069 1.3 0.2058696 0.7941304

0.9 0.2069381 0.7930619 1.4 0.2055899 0.7944101

Table 1. Effect of λ1 on probabilities
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Figure 2. Average size of the system by varying λ0 and λ1 for
different parameters µb, µv, φ

78 



M/M/1 HETEROGENEOUS ARRIVAL RATES

λ1 P0,0 E[Lsv] E[Lsb]

0.5 0.1890460 0.0189107 0.3941436
0.7 0.1886030 0.0188664 0.4472287
0.9 0.1881435 0.0188204 0.5003905
1.1 0.1876668 0.0187727 0.5536331
1.3 0.1871721 0.0187232 0.6069610

Percentage variation -0.18739 -0.01875 21.28174

Table 2. Effect of λ1 on performance measures

λ0 P0,0 E[Lsv] E[Lsb]

0.1 0.2007112 0.0059960 0.4219661
0.2 0.1946892 0.0124077 0.4213249
0.3 0.1888266 0.0188887 0.4206768
0.4 0.1831204 0.0254378 0.4200219
0.5 0.1775681 0.0320537 0.4193603

Percentage variation -2.31431 2.60577 -0.26058

Table 3. Effect of λ0 on performance measures

µb P0,0 E[Lsv] E[Lsb]

2.1 0.1892738 0.0189334 0.3940161
2.2 0.1896891 0.0189750 0.3674048
2.3 0.1900763 0.0190137 0.3408376
2.4 0.1904387 0.0190500 0.3143100
2.5 0.1907788 0.0190840 0.2878182

Percentage variation 0.1505 0.01506 -10.61979

Table 4. Effect of µb on performance measures

µv P0,0 E[Lsv] E[Lsb]

1.1 0.1893211 0.0183051 0.4207352
1.2 0.1897893 0.0177508 0.4207906
1.3 0.1902332 0.0172234 0.4208434
1.4 0.1906547 0.0167210 0.4208936
1.5 0.1910554 0.0162417 0.4209415

Percentage variation 0.17343 -0.20634 0.02063

Table 5. Effect of µv on performance measures
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φ P0,0 E[Lsv] E[Lsb]

0.1 0.3357471 0.0131419 0.2981150
0.2 0.2504307 0.0240329 0.3812105
0.3 0.1888266 0.0188887 0.4206768
0.4 0.1502763 0.0146950 0.4437486
0.5 0.1246913 0.0118234 0.4588807

Percentage variation -21.10558 -0.13185 16.07657

Table 6. Effect of φ on performance measures

ε1 P0,0 E[Lsv] E[Lsb]

3.1 0.1935108 0.0193573 0.4297943
3.2 0.1981217 0.0198185 0.4380660
3.3 0.2026609 0.0202726 0.4455750
3.4 0.2071303 0.0207197 0.4523945
3.5 0.2115314 0.0211599 0.4585890

Percentage variation 1.80206 0.18026 2.87947

Table 7. Effect of ε1 on performance measures

ε0 P0,0 E[Lsv] E[Lsb]

2.1 0.1891207 0.0182243 0.4207433
2.2 0.1893471 0.0175858 0.4208071
2.3 0.1895068 0.0169709 0.4208686
2.4 0.1896013 0.0163773 0.4209280
2.5 0.1896324 0.0158035 0.4209853

Percentage variation 0.05117 -0.24208 0.0242

Table 8. Effect of ε0 on performance measures
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6. Conclusion

In this paper, we have analyzed in an M/M/1 queueing system under the server
in working vacation and busy period with impatient timer. In real life situations,
this model can be applied for industrial overcrowding problems like computer
communication networks, telecommunications and manufacturing system. Also
we discussed a example about leather product-inventory system. The steady state
equations, various performance measures, some numerical analysis and graphs are
presented in this paper.
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