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Abstract. The paper discusses the effect of autocorrelations on process ca-

pability indices (PCIs).Confidence intervals are constructed for PCIs when
data are autocorrelated. Approximate lower confidence limits for various

Cpk are computed for AR(1) model. Industrial examples are considered to

illustrate the results.

1. Introduction

Persistent pressure passed on to manufacturers from escalating consumer ex-
pectations and the ever growing global competitiveness have produced a rapidly
rising interest in the development of various manufacturing strategy models. Aca-
demic and industrial circles are taking keen interest in the field of manufacturing
strategy. Many manufacturing strategies are currently centered on the traditional
concepts of focused manufacturing capabilities such as quality, cost, dependability
and innovation.

Process capability analysis is conducted assuming that the process under study
is in statistical control and independent observations are generated over time.
However, in practice it is very common to come across processes which, due to
their inherent natures, generate autocorrelated observations. The degree of auto-
correlation affects the behaviour of patterns on control charts. Even, small levels
of autocorrelation between successive observations can have considerable effects
on the statistical properties of conventional control charts. When observations
are autocorrelated the classical control charts exhibit non random patterns and
lack of control. Many authors have considered the effect of autocorrelation on the
performance of Statistical Process Control (SPC) charts.

Shore [22] investigated the effect of autocorrelations on PCIs and models the
autocorrelation structure of a set of data, using an autoregressive model of order
three (AR(3)). Zhang [25] discusses the use of the process capability indices Cp
and Cpk when the process data are autocorrelated. Interval estimation proce-
dures for Cp and Cpk are proposed and their properties are also studied. Process
capability analysis when observations are autocorrelated is addressed using time
series modelling and regression analysis by Noorosana [18]. Guevara and Vargas
[6] deals with the comparison of process capability indices Cp , Cpk , Cpm and
Cpmk when data are autocorrelated. Variances for their estimators are derived
and coverage probabilities of some confidence intervals are calculated.
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With the development of measurement technology and data acquisition tech-
nology, sampling frequency is getting higher and the existence of autocorrelation
cannot be ignored. Lovelace et al.[16] developed lower confidence limits for Cpk
when data are uncorrelated as well as autocorrelated. Sun et al. [23] analyzes five
estimation schemes of process capability for autocorrelated data and their com-
parisons are discussed for small sample and large sample data. Properties of Cp
and Cpk for autocorrelated data in the presence of random measurement errors
are explained in detail by Scagliarini [20,21]. Anis and Kuntal [1] explains some
statistical properties of the estimator of Cp when sample observations are auto-
correlated and affected by measurement errors. Also they discussed the first-order
stationary autoregressive process where measurement error follows a Gaussian dis-
tribution.

Jose and Luke [8, 9] developed confidence intervals for process capability in-
dex Cpk for the balanced and unbalanced one-way random effect model following
Bissells approximation method. Also Jose and Luke [10] introduced a method for
comparing two PCIs under one-way random effect ANOVA model using general-
ized confidence intervals. Their method was found useful in selecting a superior
supplier in a manufacturing firm with limited statistical knowledge.

Ke and Zhang [26] used a Monte Carlo simulation study and a real data exam-
ple to compare asymptotic methods with the various moving average resampling
techniques.In this study, they evaluated the finite sample performance of the six
tests of autocorrelations for both normal and nonnormal series. Toor and Tan-
weer[24] study explores the power and size properties of selected autocorrelation
tests. They compared autocorrelation tests in terms of their power under the
given conditions i.e. specific sample sizes, autocorrelation coefficients and levels of
significance.

In this article, we discuss the effects of PCIs when data are autocorrelated.
The article is structured as follows. In Section 2, we have briefly reviewed pro-
cess capability index Cp and some of the available approximate lower confidence
limits for Cpk. In Section 3, stationary Gaussian processes is explained. Effect of
autocorrelation on PCIs is described in Section 4. Confidence intervals for Cp and
Cpk are computed and given in Section 5. Approximate lower confidence limits
for Cpk are computed and presented in Section 6. Concluding remarks are given
in Section 7.

2. Confidence Intervals for Process Capability Indices

Process Capability Indices are statistical devices used to measure the extent to
which the process characteristic X under consideration meets specifications. For
a normally distributed process with mean and variance σ2, and lower and upper
specification limits L and U, respectively, the index Cp by Juran et al. [11] is given
by

Cp =
U − L

6σ
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2.1. Approximate lower confidence limits for Cpk.

Given the functional form Cpk, as a function of µ and σ, it is unlikely that
exact lower confidence limits can be found for Cpk. Over the years, a number of
researchers have derived various approximate lower confidence limits. Several of
them are briefly described below, assuming an underlying normal distribution. We
first note that if X̄ and S denote the sample mean and sample standard deviation
based on a random sample of n measurements, a natural estimator of Cpk is given
by

Ĉpk =
d− |X̄ −M |

3S

2.1.1. Bissell’s approximation.

Bissell [2] derived an approximate expression for the variance of of Cpk, given
by

V ar(Ĉpk) =
1

9n
+

C2
pk

2n− 2

Based on this expression, Bissell [2] proposed a 100(1−α)% lower confidence limit
for Cpk as

Bpk = Ĉpk − Z1−α

√
1

9n
+

Ĉ2
pk

2n− 2

where Z1−α is the (1− α) percentile value of the standard normal distribution.

2.1.2. Heavlin’s approximation. Using the probability distribution of Ĉpk, Heavlin
[7] obtained a 100(1− α)% lower confidence bound for Cpk as

Hpk = Ĉpk − Z1−α

√
n− 1

9n(n− 3)
+ Ĉ2

pk

1

2(n− 3)

(
1 +

6

n− 1

)
2.1.3. Nagata and Nagahata’s approximation. Nagata and Nagahata [17] obtained
a 100(1− α)% lower confidence bound for Cpk as

Npk =

√
1− 2

5(n− 1)
Ĉpk − Z1−α

√
1

9n
+

Ĉ2
pk

2n− 2

2.1.4. Kushler and Hurley’s approximation. Kushler and Hurley [15] made an in-
depth study of the various approximate confidence intervals. Though the above
mentioned confidence intervals for Cpk are easy to calculate, they are not a mul-

tiple of Ĉpk. They examined the effect of various terms in the expressions of the

above bounds and finally arrived at a simple multiple of Ĉpk as a lower bound for
Cpk, given by

KHpk =

[
1− Z1−α√

2(n− 1)

]
Ĉpk
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3. Stationary Gaussian processes

The correlation in a process can be captured using time series models. An
important class of time series models are the stationary processes, which assume
that the process remains in equilibrium around a constant mean. This type of
models can provide a framework for seeking statistical control when monitoring
auto correlated processes. A process is said to be stationary Gaussian if it is
stationary and Gaussian simultaneously. For more details, refer to Brockwell &
Davis [4]. The first-order autoregressive process AR(1) process is given by Box et
al. [3] has the structure

(3.1) Xt = µ+ φ(Xt−1 − µ) + ξt

where Xt is the value of observation at time t, µ is the process mean and {ξt} is a
white noise process with zero mean and variance σ2

ξ where ξt ∼ N(0, σ2
ξ ). It is also

assumed that −1 < φ < 1. For an AR(1) model, the autocorrelation coefficient
between Xt and Xt−k is given by

ρk = φk, k = 1, 2, ....

4. The effect of process capability indices in discrete stationary
Gaussian processes under autocorrelated data

Suppose for an industrial production process, a certain characteristic, for ex-
ample, the concentration of a certain chemical component is observed. Assume
that a quality characteristic is normally distributed with mean µ = 50 and stan-
dard deviation σ = 7. The upper and lower specification limits are U = 80 and
L = 20. Consider a process with independent observations and a process with ob-
servations following an AR(1) model in equation (3.1) where {Xt} is a stationary
Gaussian process with ξt ∼ N(0, σ2

ξ ) and σ2
ξ = 7. Also assume that −1 < φ < 1.

For different parameter combinations of n, φ and σ, we generated 10,000 random
samples from a normal distribution with independent observations and a process
with observations following an AR(1) model using MATLAB software.

The values of PCIs are computed and compared with and without autocorre-
lated processes. For each process, the mean, standard deviation and the capability
indices Cp, Cpk, Cpmk and Cpm are computed. Through the results of a simulation
study given in Table 1, we can ascertain the effect of autocorrelation on the ex-
pected value of the sample mean, sample standard deviation and different PCIs.
It can be seen that the autocorrelation does not affect the values of sample means
but affects the values of sample standard deviations. Higher the autocorrelation
level, lower the capability index value.

Table 2 shows the expected values and standard errors of the sample mean
and sample standard deviation for processes without and with autocorrelation
following an AR(1) model. It reveals that the autocorrelation does not affect the
expected value of the sample mean for different parameter combinations. As n
increases, the estimated expected value of the standard error increases slightly for
autocorrelated data.
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Table 1. Effect of autocorrelation on mean, standard deviation
(SD), Cp, Cpk, Cpmk and Cpm of processes following AR(1) model
via simulation

without AR(1) with AR(1) Cp = Cpk Cpm = Cpmk

mean SD mean SD without with without with
φ n AR(1) AR(1) AR(1) AR(1)

-0.75 10 50.7589 3.4664 50.5524 10.3790 2.8849 0.9635 0.2702 0.0753
50 50.5081 6.8597 50.0931 8.1806 1.4578 1.2224 0.1388 0.1088
100 50.0615 6.4432 50.1264 6.6910 1.5520 1.0330 0.1503 0.0842

-0.25 10 49.0355 5.3088 49.9378 6.9795 1.8837 1.4328 0.1880 0.1357
50 49.1524 7.4569 50.0751 7.9541 1.4810 1.3406 0.1441 0.1216
100 49.4380 6.6170 50.0908 7.0403 1.5113 1.4204 0.1454 0.1341

0.25 10 49.0154 8.2524 49.7602 8.8764 1.2918 1.2696 0.1174 0.1049
50 49.1886 6.0512 49.6400 7.7150 1.6526 1.2962 0.1623 0.1183
100 50.0452 7.1520 49.7116 10.8421 1.3982 0.9223 0.1313 0.0701

0.75 10 51.1824 7.1835 48.3467 7.2423 1.3921 1.3808 0.1305 0.1291
50 50.2729 7.4208 51.4180 12.9319 1.3476 0.7733 0.1249 0.0520
100 50.8279 6.9558 50.7433 9.0339 1.4377 1.1069 0.1363 0.0938

4.1. The Effect of Variances of PCIs under autocorrelated Data.

Let {Xt} be a stationary Gaussian process. Let {X1, X2, ..., Xn} be a sample

of size n from the process {Xt}. Let X =

n∑
i=1

Xi

n
and S2 = 1

n−1

n∑
i=1

(Xi −X)2 be

the sample mean and the sample variance respectively. Under the assumption that
{Xt} is a discrete stationary Gaussian process, Zhang [25]) derived the statistical

properties of Ĉp and the expected values and variances of X,S2 and S as follows.

E(X) = µx, V ar(X) =
σ2
X

n
g(n, ρi)(4.1)

E(S2) = σ2
Xf(n, ρi), V ar(S

2) =
2σ4

X

(n− 1)2
F (n, ρi)

E(S) = [E(S2)]1/2 = σX [f(n, ρi)]
1/2

and

V ar(S) =
V ar(S2)

4E(S2)
=

[ 2σ4
X

(n−1)2F (n, ρi)

4σ2
Xf(n, ρi)

]
= σ2

X

F (n, ρi)

2(n− 1)2f(n, ρi)
(4.2)

where ρi = ρX(i), for i = 1, 2, ...., n is the autocorrelation of X at lag i,

f(n, ρi) = 1− 2

n(n− 1)

n−1∑
i=1

(n− i)ρi

F (n, ρi) = n+ 2

n−1∑
i=1

(n− i)ρ2i +
1

n2

[
n+ 2

n−1∑
i=1

(n− i)ρi
]2
− 2

n

n−1∑
i=0

n−i∑
j=0

(n− i− j)ρiρj
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Table 2. Expected values and standard errors of the sample
mean and sample standard deviation for processes following an
AR(1) model

Mean SD
without with without with

n φ AR(1) AR(1) AR(1) AR(1)

10 -0.75 Average 50.0048 49.9997 0.4857 0.6983
S.E 0.0509 0.0322 0.0369 0.0819

-0.25 Average 49.9990 50.0040 0.4866 0.5070
S.E 0.0492 0.0499 0.0371 0.0402

0.25 Average 49.9983 50.0008 0.4875 0.4920
S.E 0.0500 0.0647 0.0366 0.0374

0.75 Average 50.0040 49.9976 0.4867 0.5239
S.E 0.0505 0.1519 0.0367 0.0532

50 -0.75 Average 49.999 50.0003 0.4979 0.7400
S.E 0.0099 0.0059 0.0072 0.0183

-0.25 Average 49.9987 49.9980 0.4971 0.5129
S.E 0.0099 0.0082 0.0071 0.0080

0.25 Average 50.0001 50.0033 0.4961 0.5086
S.E 0.0101 0.0130 0.0071 0.0076

0.75 Average 49.9985 50.0010 0.4978 0.6899
S.E 0.0102 0.0375 0.0069 0.0177

100 -0.75 Average 49.9994 49.9991 0.4976 0.7480
S.E 0.0049 0.0029 0.0035 0.0099

-0.25 Average 49.9985 49.9988 0.4987 0.5149
S.E 0.0050 0.0060 0.0036 0.0039

0.25 Average 49.9998 49.9987 0.4995 0.5126
S.E 0.0050 0.0067 0.0035 0.0039

0.75 Average 49.9988 49.9967 0.4998 0.7205
S.E 0.0049 0.0194 0.0036 0.0096

and

g(n, ρi) = 1 +
2

n

n−1∑
i=1

(n− i)ρi

Zhang [25] derived the approximate value of variance of Cp and Cpk and are given
by

V ar(Ĉp) = C2
p

F (n, ρi)

2(n− 1)2f3(n, ρi)
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and

V ar(Ĉpk) =
C2
pk

f(n, ρi)

[
g(n, ρi)

9nĈ2
pk

+
F (n, ρi)

2(n− 1)2f2(n, ρi)

]
Guevara and Vargas [6] developed approximate value of variance of Cpm and Cpmk
as follows.

V ar(Ĉpm) = C2
p

[ 2F (n,ρi)
(n−1)2 + 4g(n,ρi)ξ

2

n

4[f(n, ρi) + ξ2]3

]
V ar(Ĉpmk) = C

2
pk

[
1

f(n, ρi) + ξ2

]{
F (n, ρi)

2(n− 1)2[f(n, ρi) + ξ2]2
+
g(n, ρi)

9n

[
1

Cpk

+
6ξ

2[f(n, ρi) + ξ2]

]2}
where ξ = µ−T

σ . If µ = T , then V ar(Ĉpm) ' V ar(Ĉp) and V ar(Ĉpmk) =

V ar(Ĉpk).

Simulation study is done to compare the variances of these estimators for first
order stationary autoregressive process with parameter φ. Variance of Cp and Cpk
are plotted on Figures 1 and 2 respectively for different parameter combinations
of n and φ and fixed value of PCI. As n increases, Var(Cp)and Var(Cpk) decreases.

Figure 1. Variance
of Cp with Cp=1.5

Figure 2. Variance
of Cpk with Cpk=1.5

4.2. Numerical Example. To demonstrate how the above procedure may be
illustrated through a data set, we consider the example given in Shore [22]. The
data consists of 50 camshaft bearing diameters, given below (arranged in batches
of N = 5; read each column from top to bottom; each batch mean is given in
parentheses).

The autocorrelations and their respective standard errors for lags k = 1, 2, ..., 10
are obtained as follows.

ρk = 0.74 0.54 0.34 0.24 0.13 -0.021 -0.086 -0.21 -0.21 -0.31
S.E = 0.14 0.20 0.23 0.24 0.25 0.25 0.25 0.25 0.25 0.26

The PCIs for processes following an AR(1) model for the data in Table 3 are
given in Table 4. It is clear that autocorrelation lowers the value of process ca-
pability indices. That is, autocorrelation affects the process capability indices of
the production processes.

33



JANE A. LUKE, SIMI SEBASTIAN, AND BINUMON JOSEPH

Table 3. Measurements of 50 camshaft bearing diameters

50 51 50.5 49 50 (50.1)
43 42 45 47 49 (45.2)
46 50 52 52.5 51 (50.3)
52 50 49 54 51 (51.2)
52 46 42 43 45 (45.6)
46 42 44 43 46 (44.2)
42 43 42 45 49 (44.2)
50 51 52 54 51 (51.6)
49 50 49.5 51 50 (49.9)
52 50 48 49.5 49 (49.7)

Table 4. Various values of PCIs for the example given in Table 6.3

without AR(1) with AR(1)
Cp 0.5655 0.5612
Cpk 0.3741 0.3720
Cpmk 0.0620 0.0614
Cpm 0.0930 0.0922

5. Confidence intervals for the capability indices under stationary
Gaussian processes

Zhang [25] derived the approximate expected value and variance of S2, variances

of Ĉp and Ĉpk in terms of the process autocorrelation function. Interval estimates
of Cp and Cpk for autocorrelated processes are computed using the symmetrical
construction method. Given the specification limits and a sample of process data
{X1, X2, ..., Xn}, interval estimators of Cp and Cpk can be constructed as

Ĉp ± kσ̂Cp , Ĉpk ± kσ̂Cpk

where k is a constant chosen by the user, and σ̂Cp
and σ̂Cpk

are the sample standard

deviations of Ĉp and Ĉpk, respectively. For selected values of Ĉp, Ĉpk, n and φ for
AR(1) processes Zhang [25] investigated coverage probabilities for both indices.

Interval estimation for Cp following AR(1) model for various parameter combi-

nations using Ĉp ± kσ̂Cp are reported in Table 5. Also, Table 6 gives confidence
intervals for Cpk following AR(1) model for various parameter combinations using

Ĉpk ± kσ̂Cpk
. For fixed values of φ, the lengths of the intervals decrease when n

increases. For a fixed value of n, when |φ| increases, the length of the intervals
increases. Tables 5 and 6 reveals that based on a small sample and large |φ|, the
uncertainty in Cp and Cpk are relatively large.
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Table 5. Interval estimation for Cp following AR(1) model for
various parameter combinations

k Ĉp n φ=0.25 φ=0.50 φ=0.75

2 1.33 10 (0.6127, 2.0473) (0.6103, 2.0497) (0.5793, 2.0807)
50 (1.0237, 1.6363) (1.0022, 1.6578) (0.9553, 1.7047)
100 (1.0990, 1.5610) (1.1074, 1.5526) (1.0218, 1.6382)

3 1.33 10 (0.3490, 2.3110) (0.3019, 2.3581) (0.2308, 2.4292)
50 (0.8649, 1.7951) (0.7695, 1.8905) (0.7216, 1.9384)
100 (1.0091, 1.6509) (0.9918, 1.6682) (0.9008, 1.7592)

2 2 10 (0.8061, 3.1939) (1.0406, 2.9594) (0.8931, 3.1069)
50 (1.5360, 2.4640) (1.5082, 2.4918) (1.4931, 2.5069)
100 (1.6711, 2.3289) (1.6533, 2.3467) (1.6040, 2.3960)

3 2 10 (0.4698, 3.5302) (0.4821, 3.5179) (0.4692, 3.5308)
50 (1.2984, 2.7016) (1.2565, 2.7435) (1.1654, 2.8346)
100 (1.5136, 2.4864) (1.5121, 2.4879) (1.3776, 2.6224)

Table 6. Interval estimation for Cpk following AR(1) model for
various parameter combinations

k Ĉpk n φ = 0.25 φ = 0.50 φ = 0.75

2 1.33 10 (0.5902, 2.0698) (0.5896, 2.0704) (0.5565, 2.1035)
50 (1.0188, 1.6412) (0.9928, 1.6672) (0.9585, 1.7015)
100 (1.0945, 1.5655) (1.1013, 1.5587) (1.0292, 1.6308)

3 1.33 10 (0.3452, 2.3148) (0.3126, 2.3474) (0.1990, 2.4610)
50 (0.8570, 1.8030) (0.7639, 1.8961) (0.7148, 1.9452)
100 (1.0223, 1.6377) (0.9913, 1.6687) (0.9704, 1.6896)

2 2 10 (0.7935, 3.2065) (1.0383, 2.9617) (0.8888, 3.1112)
50 (1.5447, 2.4553) (1.5026, 2.4974) (1.4887, 2.5113)
100 (1.6766, 2.3234) (1.6580, 2.3420) (1.6124, 2.3876)

3 2 10 (0.4668, 3.5332) (0.4757, 3.5243) (0.4673, 3.5327)
50 (1.3052, 2.6948) (1.2622, 2.7378) (1.2037, 2.7963)
100 (1.5051, 2.4949) (1.5067, 2.4933) (1.3758, 2.6242)

6. Comparative study of effect of PCIs for Autocorrelated Data

For many industrial processes, like oil refinery, paper production etc, it is well
known that the level of individual quality characteristics often varies with a wave-
like pattern. Observations on such a characteristic, made at equal time intervals,
are then supposed to be dependent and the outcome of such a process can be
modeled in many ways. Let us consider the lower and upper specifications are
L = 5 and U = 17. For different values of n and φ, we calculated the approximate

lower confidence limits for Ĉpk. To study the distributional characteristics of
the capability indices, samples were generated for each of the sample sizes n =
15, 50, 100, 150 and 200. We compute the approximate lower confidence limits for
Cpk. Table 7 gives the comparative study of effect of autocorrelation on PCIs for
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Table 7. lower confidence limits for Cpk when observations are
independent and autocorrelated (AR(1)) for various parameter
combinations

Bissell Nagata & Nagahata Heavlin Kushler & Hurley’s
without with without with without with without with

φ n AR(1) AR(1) AR(1) AR(1) AR(1) AR(1) AR(1) AR(1)

0.25 10 4.4896 3.5921 4.3246 3.4600 3.1699 2.5358 4.4949 3.5986
50 4.6342 4.1206 4.6114 4.1004 4.5587 4.0536 4.6374 4.1243
100 4.4802 3.5478 4.4699 3.5397 4.4562 3.5289 4.4827 3.5510
150 4.8924 4.6625 4.8851 4.6556 4.8786 4.6494 4.8944 4.6646
200 5.1872 4.2130 5.1815 4.2084 5.1778 4.2054 5.1888 4.2150

0.5 10 4.8727 2.9021 4.6937 2.7953 3.4406 2.0482 4.8776 2.9102
50 4.7348 3.0883 4.7115 3.0731 4.6577 3.0380 4.7379 3.0931
100 4.4465 3.6557 4.4363 3.6474 4.4228 3.6362 4.4491 3.6588
150 5.0280 2.2891 5.0205 2.2857 5.0138 2.2826 5.0299 2.2932
200 4.3588 4.1472 4.3541 4.1427 4.3510 4.1397 4.3608 4.1492

0.75 10 2.3747 1.5732 2.2872 1.5149 1.6754 1.1085 2.3846 1.5881
50 4.5568 2.8895 4.5345 2.8753 4.4827 2.8426 4.5601 2.8947
100 4.6945 4.0806 4.6837 4.0712 4.6694 4.0588 4.6969 4.0834
150 4.5969 3.3076 4.5901 3.3027 4.5839 3.2983 4.5990 3.3105
200 4.3886 2.9144 4.3838 2.9112 4.3807 2.9092 4.3905 2.9173

autocorrelated data. It shows that the effect of autocorrelation changes the values
of PCIs for various parameter combinations.

7. Conclusion

Autocorrelation is prevalent in continuous production processes, such as the
processes in the chemical and pharmaceutical industries. The paper explores the
properties of PCIs when observations are autocorrelated. PCIs are widely used
in manufacturing industries to measure the performance of a process in meeting
preset specifications limits. Autocorrelation has bearing on the variances of PCI
estimators. It demonstrates that higher the sample size lower the variances. As
sample size and autocorrelation increase, the uncertainty in PCIs tends to dimin-
ish. We computed approximate lower confidence limits for Cpk and established
that autocorrelation affects the values of PCIs. Higher the autocorrelation level,
lower the capability index.
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