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TAYLOR WAVELETS OPERATIONAL MATRIX METHOD FOR
THE NUMERICAL SOLUTION OF STOCHASTIC
VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

S. C. SHIRALASHETTI* AND LATA LAMANT!

ABSTRACT. An effective technique is developed in this paper to analyze sto-
chastic Volterra-Fredholm integral equations. We derive the operational ma-
trix of integration of Taylor wavelets and the stochastic operational matrix
of integration using Taylor wavelets. These operational matrices are used to
achieve the numerical solution of the stochastic Volterra-Fredholm integral
equations. In the current investigation, the convergence analysis and error
analysis are presented. We give some examples to show the strength and ef-
fectiveness of the proposed scheme. Numerical simulations are carried out to
ensure the reliability of the potential technique. The numerical and graphical
results obtained are disclosed. These obtained results show that the scheme
proposed to study and find the solution of stochastic Volterra-Fredholm in-
tegral equations is computationally very practical and accurate.

1. Introduction

Stochastic integral equations play a major role in physics, mathematics, biol-
ogy, chemistry, and economics. These problems often depend on a Gaussian white
noise, governed by certain laws of probability. An explicit form of the solution of
stochastic integral equations is difficult to obtain in many cases. Numerical exper-
iments, therefore, become a practical way to deal with these kinds of problems.
The problem of approximating the solution of stochastic integral equations has
appeared in many articles. Some are found in [1-15].

Wavelets have found their way into many different science and engineering fields
as a powerful tool. Wavelets are mathematical functions that divide data into
frequency components and analyze individual components in their respective res-
olution. As a statistical tool, wavelets can be used to obtain data from vari-
ous phenomena like earthquakes, seismic waves, signal processing, and fields like
acoustics, nuclear engineering, and astronomy. Wavelets allow several functions
and operators to be accurately portrayed. These applications of wavelets have
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gained considerable interest from many researchers and have been implemented in
a wide range of engineering disciplines. In particular, wavelets constructed from
orthogonal polynomials are widely used in the pursuit for the numerical solution
of different types of differential, integral, and integro-differential equations. In
the last few decades, the operational integration matrices for the Haar Wavelets,
Chebyshev Wavelets, Legendre Wavelets, and Bernoulli wavelets were used to solve
integral and integro-differential equations [16-20]. Likewise, stochastic operational
matrices of integration of Haar wavelets, Chebyshev wavelets, Legendre wavelets,
and Bernoulli wavelets were used to solve stochastic integral equations [21-24].

Taylor wavelets were introduced by E. Keshavarz et al. in 2018, for solving
initial and boundary value problems of Bratu-type equations [25] and fractional
integro-differential equations with weakly singular kernels [26] in 2019.

Encouraged by most of the above works, in this article, we introduced a new
stochastic operational matrix of integration using Taylor wavelets (SOMITW) for
solving stochastic Volterra-Fredholm integral equations (SVFIEs). SVFIEs are
previously solved by many authors [27-30].

We consider the following SVFIE:

B T x
y() = f(2)+ / o (e, )y (£) i + / k(e )y (t)dt + / ks (z, (yy(DdW (1), (1.1)

where, y(z) is unknown, f(z), y(z), and k;(x,t), ¢ = 1,2,3 are the stochastic
processes defined on the same probability space, fOI ks(x,t)y(t)dW (t) is the Itd-
integral, and W (z) is a Brownian motion process. This paper is structured in the
following way. Properties of Brownian motion and Taylor wavelets are studied in
section 2. In section 3, we study the operational matrix of integration of Taylor
wavelets (OMITW), and a new SOMITW is constructed. Convergence and error
analysis is studied in section 4. In section 5, a new Taylor wavelets operational
matrix method for solving SVFIE is proposed based on a SOMITW. In section 6,
numerical examples are presented to justify the efficiency of the proposed method.
Ultimately, the conclusion is drawn in section 7.

2. Properties of Brownian motion and Taylor wavelets

2.1. Brownian Motion. For definitions of Brownian motion see [31].

2.2. Taylor wavelets. Taylor wavelets [32] ¥y, n(z) = ¥(k,n,m,z) have four
arguments: n ranging from 1 to 2871, where k is assumed to be any positive
integer, m is the order for Taylor polynomials, and x is the normalized time. They
are defined on the interval [0, 1) as follows:
LAY k—1 n—1 n
Yum(ey= 27 IET TR g S e <atn )
’ 0, otherwise,
with
Ton(x) = V2m + 1T, (z).

The coefficient v/2m + 1 is for normality and m = 0,1, ..., M — 1. Here, T,,, are the
well-known Taylor polynomials of order m which can be defined by T, (z) = ™.
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Taylor polynomials form a complete basis over the interval [0, 1).
For instance, for k = 2 and M = 3, we get:
CZT‘()(m) = 17
Tl (l‘) = \/gxa
Ty(z) = V5a?,
and therefore, the first six Taylor wavelet bases are given as:
Yro(z) = V2
1
wl,l(x):Q\/éx 0§:17<§,
wl,g(ﬂf) = 4\/ 10.732

Yo 0(x) = V2
Yo1(z) = V6(2r — 1)
Vo o(z) = V10(42? — 4z + 1)

| —
IN
8
AN
—

2.3. Function approximation. Let us consider the set of Taylor wavelets as:
$(@) = [$1,02), 11 (2), s 01,0101 (2), $2,0(2), s 02,011 (2)s oy Va1 6 (@), 0 yh 1 g1 (@)]
c L?[0,1). (2.2)

Let us suppose that:

B = span[y o(x), ¥1,1(2), ., Y1, m—1(2), ¥2,0(2), -, Y2, m-1(T)
oy o1 0(2), -y Yar—1 a1 (@) (2.3)
Suppose f is an arbitrary function in L?[0,1). Since B be a finite dimensional
vector space, let f* € B the best approximation of f out of B. This means that

forV.ge B, |lf—f*| <I|f—gl Since, f* € B, there exist unique coefficients
1,0, C1,1, -+, Cok—1 pr—1 such that:

M—12F"1

f(z) = f*(z) = Z Z Cn,m¥n,m (2) = CTy(), (2.4)

m=0 n=1
where C' and ¥(x) are 7 x 1 (1 = 2¥=1 M) vectors, and C is given by:
T
C = [01707 01)17 .oy Cl)Mfl, 02)0, ey CQ)Mfl, ey CQk—1’07 eey CQk—lﬁMfl] (25)

The coefficients ¢, ,,, are computed as:

1
Cn,m = <fa 7/’n,m> = A f($)¢n7m($)d$

Similarly, any arbitrary function k(x,t) € [0,1) x [0,1) can be approximated using
Taylor wavelets as,

k(z,t) = 9T (2) Ky(t) = 0T (K Y (),
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where K = [k, ;] is a 7 X 1 matrix, where the coefficients k,, ,,, are determined
as:

kpm = (Yn,m (@), (k(2,1), Yn,m(t) L//kxt%m)%mﬂﬁm

Using the collocation point z; = 2 ;(1 , equation (2.2) reduces to 1 x m Taylor

wavelets coefficient matrix. For instance, for K = 2 and M = 3, we get

P1,0(x) 1.4142 1.4142 1.4142 0 0 0
Y11(2) 0.4082 1.2247 2.0412 0 0 0
b(z) = Y1,2(2) _ 0.0878 0.7906 2.1960 0 0 0
a,0(2) 0 0 0 1.4142 1.4142 1.4142
Pa.1(2) 0 0 0 0.4082 1.2247 2.0412
Pa.2(x) 0 0 0 0.0878 0.7906 2.1960

3. Stochastic operational matrix of integration of Taylor wavelets

3.1. Operational matrix of integration of Taylor wavelets (OMITW).
The OMITW P is a m X m matrix defined as:

/0 Y(t)dt = Py(x). (3.1)
In particular, for M = 3 and k& = 2, we have
P(x) = [10(x), 1.1 (2), ¥1.2(2), Ya.0(x), Ya1(x), Poa(x)]" . (3.2)

The matrix P for these bases is derived as follows:

1
/‘%0 b = {Jx 0<z<li

1

1
Tﬁdﬁl,l(%) + 5%/12,0(37)7 (3.3)

7’(/)27()(.’17), (34)

~ ——=113(2), (3-5)
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‘ 0 0<wz<i
tydt =< = 2
| vaate {@%_1)27 L
V3
=~ IV 2,2(7), (3.7)
* 0 0<z<3i
tydt =< ) = 2
V5
=~ ﬁiﬁm(l’)- (3.8)
Using equations (3.3) to (3.8), we get
@ 0 2 0o 4+ 0 0]
Jo ¥1,0(t)dt 2V3 e \%
foz 1/)171(t)dt 0 0 w5 4 0 0
’ _ |y wedtl o0 0 0 0 0
/0 Y(t)dt = foz rodt| “lo 0 0 0 Lo ¥(x)
Jo,vea®dt) o0 0 0 0 &
Jov22®dt] g 9 0 0 0 0|
P

3.2. Stochastic operational matrix of integration of Taylor wavelets
(SOMITW). The SOMITW Pg is a 1 x r matrix defined as:

| wawe) = Pevo) (39)
0
In particular, for M = 3 and k£ = 2, the matrix Pg is derived as follows:
v V2W(z), 0<z<?i
t)dw (t) = T 2
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@ V10 (22W (z) — f””QtW()dt), 0<z<3
/0 Vra()dW(t)dt = { V10 1w(%) o2 2wt )dt), 3<r<l1
L ( [ s t) sra(a) + W () vra(e)
< - /2 8@tW(t)dt> Yao(x), (3.12)
0
@ 0, 0<z<i
ow“(”dw(“:{ﬁ(w<x>W@)), bsa<
= (w (3)-w (3)) ot (313)
x 0, 0<z< %
i ¢21<t>dW<t>:{(2¢axf L 2VEW (ndt, A <w<1

@ 0, 0
/O P2,2(t)dt = {m(4z2 — 4z + )W (z) — VIOW () — f%(smt —4/I0)W (t)dt, L

N J(Jﬁv<> /(%ﬁLAJjWMﬁ)WMﬂ+W<)Wﬂﬂ

(3.15)
Using equations (3.10) to (3.15), we get
foz 1/)1,0(t)dW(t)
] Iy )
L P1,2(t)dW (1)
Hdw(t) = |'%
o YOIV = e, s(nyaw (1
i voa()aiv (1)
Jo ¥22(t)dW (t)
Therefore,
[T wwawa
0
w (1) 0 0 w (%) 0 0
2 vawvon) W) o 35 (vaw (3) - s svew o) oo
B -4 'Oi SJEtW(t)dt> 0 w (%) % (JEW (%) - 0% 8ftw(t)dt> 0 0
= 0 0 0 (W (2)-w(2)) 0 o |V
0 0 0 -2 <f§ 2\/6W(t)dt) w (g) 0
2
0 0 0 % <MW (%) T [?(s\ﬁt - 4W)W(t)dt> 0 w (%)
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The OMITW and SOMITW are derived here for k = 2 and M = 3 i.e. for m =6
and the same can be extended for different values of £ and M i.e. for different
values of .

Remark 3.1. If F' is a m vector, then

YT (2)F = Fy(z), (3.16)
where, (x) is t~he Taylor wavelets coeflicient matrix for the collocation point
r;=1 ﬁg‘r’ and F' is a m X 7 matrix given by

F = (a) Py~ (x), (3.17)
where F' = diag(y~(z)F). Also, for a 7 x 1 matrix C,
VT (@)Cy(x) = CTy(a), (3.18)

where CT = X4~ (z), in which X = diag(¢7 (z)Ci(z)).

4. Convergence and error analysis

Lemma 4.1. Let y(z) € L?(R) be a continuous function on the interval [0,1) and
ly(x)| < &, for every x € [0,1). Then, the Taylor wavelet bases of y(x) on equation
(2.4) are bounded as:

A 2
|en,m| < 5 (4.1)

5
EL T om+ 17
where, § is a constant and X is given by:

A=2m+ 1. (4.2)

Proof. Using Taylor wavelets, any arbitrary function y(z) can be approximated
as:
M—12F"1

m=0 n=1

where C' and v¢(z) are given in equations (2.5) and (2.2) respectively and the
coefficients ¢, ,, are determined as:

1
e =< Yy Yo S= / y(&) (@)

B T
=25 \Vom+1 [T y@)Tn (@ e — 20+ 1). (4.4)

n—1
ok—1

Using the definition of ¥, ,,(z) i.e., Taylor wavelets, we have:
Vn,m (@ )—2 V 1T,(2" 'z —n+ 1), 21%1 =

Let A = /2] + 1. Let 272 — n + 1 = v, then equation (4.4) becomes:

v+n—1
=y ( ET >Tm(v)dv.

2k—1"
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A ! v+n—1
len,m| < @/ Y <2kl> ’Tm(v)|dv. (4.6)
272 Jo

Seeing the properties of Taylor polynomials, we can say that:

Therefore,

1
2
To(x)|de < ———, 5> 0. 4.7
| 1@ < -2 (47)
Using the assumption | f(x)| < §, equations (4.6) and (4.7), equation (4.6) becomes:
A 2
|C,|<2% 2m+1 (48)
(]

Theorem 4.2. Let y(z) € L?(R) be a continuous function on the interval [0,1)
and |y(z)| <& for every x € [0,1). By using the Taylor wavelet expansion we
approximate this function. Let y*(x) = Z%;Ol i:ll CnymWn,m(x) be the Taylor
wavelet series. Then, the bound of the truncated error E(x) is given as:

M-1 E o oo 3
IE@)lly = lly@) =y @l < | D > anm| + ( > Zaim> ;

m=0 p=2k-141 m=M n=1

where,

where A = v/2m + 1.

Proof. Any function y(x) € L?[0,1) can be expanded in terms of Taylor wavelets

y(.’ﬂ) = Z ch,m¢n,m(x)~

m=0n=1
If y*(x) is the expansion truncated by using Taylor wavelets, then the error ob-
tained by truncating the above function can be computed as:

M-1 oo [eSIENNe ]
E@)=y@)~y* @) =D Y cambam@)+ Y D cambnm(@). (4.11)
m=0 n=2k-141 m=M n=1
From equation (4.11), we can write
M—-1

> > 2 cnm¥nm(®)
m=0

m=M n=1

2 3 ) 2 %
dx —+ / dx
0

M—1 oo R 1 ) % oo oo 5 1 5 %
<[ S el /Own,m(zn dx +(Z S el /O\wn,mw)\ dm) :

m=0 ,_ok—141 m=M n=1

1B@)| < S cnmtbnm(@)

=0 p=2k-141

+

M—1 oo

—</012 S nmtnm (@)

m=0 p_ok—141

oo

Z Z Cn,mwn,nz(w)

m=M n=1

(4.12)
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From lemma 4.1, using the property

)\ 2
n,m 6 )
lenml < SErd5
equation (4.12) reduces to
) 9 2 1 9 2
Bol< (Y S et [ Wonn(a) e
=0 p—gk—1411 2 0
S == |z/}nm dac) . (4.13)
(m M n=1 2= 2m+1
Let us define
A 2
= 414
an, o T 2m 41 ( )

Then from equation (4.13) and (4.14), we get

N

1

M—1
1B, < <Z S Jamml? /wnmzn dz)

=0 p—2k—144

&ii‘“”‘ /\wm \dm)

Therefore,

N

1
2

IE@)] Z S a2 [ @)+ S e [ 1n (@)
2 nym [ Pnam nom f o Vnm

n=2k—141 m=M n=1
(4.15)
By the definition of Taylor wavelets:
- _ n—1 n
2 m(@) =28"12m+ T2 (25 e — n + 1), 5T << gy (4.16)
Integrating (4.16) with respect to z, we get
ST
/ V7 o (@)de = 2571 (2m + 1) / T2 (2812 — n 4+ 1)da. (4.17)
Sh=T
Let 28712 —n + 1 = u, equation (4.17) becomes:
1
/ V7 (x)de = (2m + 1)/ T2 (u)du. (4.18)
0

From the definition of Taylor polynomials, we have

1 1
1
T? = 2y = : 4.1
/0 = (u)du /Ou du p——] (4.19)

Substituting equation (4.19) in (4.18), we get

/01 Vp o (x)de = 1. (4.20)
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From equations (4.15) and (4.20), we get

M—-1 0 % 00 00 2
IE@)]; = lly(z) —y*(@)] < Z Z O +<Z Zaim>

where o, ., is given in (4.14), in which A = /25 + 1. O

Lemma 4.3. Let k(z,t) € L*(R x R) be a continuous function on [0,1) x [0,1)
and |k(z,t)| < p, for each [z,t) € [0,1) x [0,1). Then, the Taylor wavelet bases of
k(x,t) are bounded as:

M—1 2F—1 pr—1 2kt

. 4
kel < S 3N Z e, o D@ D (4.22)

mi1=0n1=1mo=0ns= 1

where, p is any constant and

np=+/2mpy+1, p=1,2. (4.23)
Proof. Let us approximate k(z,t) as k*(z,t) = T (t) Ky (z). Here K = [ky ] is
a matrix of order m x m and

M—1 2F=1 pr—1 2k—1

ol = 30 30 ST ST (k@) Y (@) s Grana (1))

m1=0n1=1mo=0ns=1
Hence,

M—1 2F—t p—1 21

bl € 50 S0 ST STk @) s Yy (@) s ()] (4.24)

m1=0n1=1me=0nz=1

By the definition of inner product,

(0 @) s @) e () = | 1 [ / " bt 2 (2) do:} bnsms (£)d.

(4.25)
By the definition of Taylor wavelets, equation (4.25) reduces to:

k(@) , ¥y my (@) 5 Yny, 7"2 )

ny
i F—1 i -
=9k 1771712 /n2271 /7121 . k(t, x)Tm, (2 T —ny+ ) dz | Ty (2k Y — o+ 1) dt
Sk=T =T
(4.26)

Let 28712 —ny + 1 = v and 2~ — ny + 1 = u. Then equation (4.26) becomes:

(K (z,1) s Yy my () s Vg ma ()

1 1
mne v4+ny—1 u+ne—1
- 2k—1 /O |:/0 |:k < 9k—1 ’ 9k—1 >:| T, (U) d”U:| Tin, (u) du.

Therefore,

((k (, %1 m1 ) s Ynam, (8))
<v+n1 1 u4ng—

(4.27)

) 2k

>‘Tm1 )| [T, (w)] dvdu.
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In the hypothesis it is assumed that |k(z,¢)] < p and hence, equation (4.27)
becomes:

Gk (1) o () (1)) < A2 / / Tons )] Tony ()] .

(4.28)
Using the properties of Taylor polynomials, we have,
! 2
T d — 4.29
| T < 52 (429)
and
! 2
T d . 4.30
| s < 52 (430
And therefore equation (4.28) reduces to,
7’]17’]2 2 2
E(2,t) U, m R . 4.31
(W (@) W @) Vs () < Jipgeg e (431)

And from equation (4.24), we get

M—1 2F—1 pr—1 2kt

4
nml < 3 3N Z e, o D@ 1) (4.32)

mi= Onl 1m2 On2 1

O

Theorem 4.4. Let k(z,t) € L? (R x R) be a continuous function on [0,1) x [0,1)
and [k(z,t)| < p for all [z,t) € [0,1)%x[0,1). By using the Taylor wavelet expansion
we approximate this function. Let

M—1 2F-1 pp—1 2k—1

t) = Z Z Z Z pmW¥nymi (T) Yrg,ms, (t)

m1:0 n1:1 mg:O ’ng:l

be the Taylor wavelet series. Then, the bound of the truncated error E (x,t) can
be given as:

1E (@, 1), = ||k (2,t) — k" (2, 1),

1
M—1 2k—1 oo <) 2
2
2 > X Prym
m1=0mn1=1mog=M ng=1

M—1 2k—1 M-1 oo ,
<X X X > Pum

m1=0, —gk—1,]my=0ng=1

\—/
= [

1
2

M-—1 2 oo oo oo [sS)
(Z Z Z me) +< S>> Zpi,m) . (4.33)
mi)=Mnj=1mg=M ng=1

m1=0,, —gk—141 mag=0ny=1

where,
M—1 2F—t pp—1 21

771772 4

mi1=0n1=1mo=0ns= 1

where m1 and ne are given in equation (4.23).
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Proof. Any function k(z,t) € L? (R x R) can be expanded in terms of Taylor
wavelets as:

k(z, Z Z Z Z ke m¥nymy (%) Yngms (1) -
1=0n1=1ma=0ns=1

If this expansion is truncated by using Taylor wavelets, then then the error ob-
tained by truncating the above function can be computed as:

A
N
Il
e -
F
3
=
3
E
<
N
3
©

m1=0n1=1mg=0pn,=2k—141] 9

M—-1 [eS) [eS) oo
+ Do D kum¥urm () Yngams (1)
m1=0p,=2k—141ma=0ns=1 2

(S

2

Z knmny my () Yngms ()| dzdt

Ong=2k-141

IN
—
c\’_‘
::\’_‘

2 3

+</01/01 > 7 i ikmm%,ml () Yrg,ms ()| dadt

3
I
o
2
[
A
3
N
[

M na=1
2

[NE

Z Z Z kn m¢n1 m1 )/IZ)TLQ,’ITLZ (t) dfl}'dt

m1=0py=2k=141ma=0n2=1
1

2 2
dxdt) .

+< L1 5 5 5 ko @ s 0
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Therefore,

[N

[N

From equation (4.20), we have

1

/ 1/121 my ()dr =1,
o ,

/ 11Z]n2 7TL2 1'

And hence equation (4.35) reduces to,

and

1

|Emt>|2(MZl N> ikm|)+<MZZ_ i iwnml)z

m1=0,, —gk—141 mag=0ny=1

3
=
(=]
3
=
I
A
3
5
i
3
tO
I

Nf=

m1=0,, —gk—141 mg=0ny=1

1
M—-1 0o oo o oo 2
(Z DS Z’fmnl) +< DOEDBEDY Zk2> :
m ny= no=1
(4.36)
Using Lemma 4.3, we have

M—1 2F=1 pr—1 2k—1
4

|Enm| < Z Z Z mie T D@ 1) (4.37)

mi1= O’I’Ll 1m2 On2 1

Let
M—1 2F=1 p—1 21 4

771772
Prm =D D Y. P Ve (4.38)

mi1=0n1=1mo=0ns= 1

From (4.37) and (4.38), we have

|En,m| < pnm- (4.39)
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From equations (4.36) and (4.39), we get

[

M—1 ok—1 M—-1 oo M-12k—1 o %
EeoL< (Y Y Y s +(z DS Zpi,m>

m1=0,, —ok—141 my=0ng=1

+ (MZI i i i pi,m) + (

m1=0,,—gk—141mg=0ng=1

Theorem 4.5. Let y(z) and y*(z) are the exact and approximate solution of
equation (1.1), respectively. Also, let us assume that

(D) lly@)l, <&,

(2) [lki (z,t)]], < M;, i =1,2, and 3,

() (B—a)(Myi+m)+ (Mz+72) + [W (@)l (M3 +73) <1,
then,

A+ 71 (8 — @) + 728 + |[W ()] o 73€
B—a)(Mi+7)— (M2 +72) — [W (@)l (M +73)°

ly(@) =y*(@)ll; < 1= (

where
A = max||f(z) — f* (@)l
vi = max ||ki(z,t) — kj (2, 1)y, i=1,2and 3,

and A and v; are given in Theorem 4.2 and Theorem 4.4, respectively.

Proof. Let us approximate all the known and unknown functions of equation (1.1)
using Taylor wavelets. Let us suppose that f*(z), ki (x,t), k5(x,t), and k3(z,t)
are approximations of f(x), k1(x,t) and ko(x,t), respectively. Then,

8
y(@) —y*(z) = f(z) — " (z) + / (k1 (z,t) y(x) — k7 (2,1) y" () d

e

+ [ O 090~ K (o) 0
0

+ [ a0~ k5 (0.0 () dW 0.
0
Thus,
ly(z) = y™ (@)lly <[[f(2) = [ (@)lly + (B = @) [ (k1 (z,8) y(x) = k7 (2,8) y™(2)) ]
+ ([ (ke (2, 1) y(2) — ks (2,8) y™(2)) ]
+ W (@)oo 1(ks (2, 1) y() — k3 (2, 1) y™ ()]l - (4.41)
For i =1,2,3, we have
ki (2, 8) y(z) =k (2, ) y™(@)lly < [k (2, 0) ][5 [[y(2) =y (@)
i, t) = k5 (2, )l ly(z) =y ()5
+ ki, ) = K5 (2, )] Iy ()l -
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Using Theorem 4.4 and assumptions 1 and 2, we have
1k (2, 1) y(x) = k7 (2, 0) y™ ()l < (Mi + %) ly(2) —y* (@)l + 7€ (442)
Using Theorem 4.2 and equations (4.41) and (4.42), we get
ly(z) =y (@)l < A+ (B —a) (M +m) lly(x) —y* (@), + ¢
+ (M2 +72) [ly(2) — y* (@), +72¢
+ W (@)oo (Mz +73) ly(z) — y™ ()]l + 3¢
By using the assumption 3, we finally conclude that
. A+71(8 =)+ 7€ + [[W (@)l 13€
ly(z) —y (w)llzsl_(ﬁ_ i — — :
a) (My +71) = (M2 +72) = [W (2) ]| (Ms +73)
O

Theorem 4.6. If y(x) is a sufficiently smooth function defined on the interval
[0,1) and y*(x) is the Taylor wavelet approzimation of y(x). Then

o)~y @) =0 ().

n

Proof. If the points x is selected as the root of the Taylor polynomial of order n,
then

1
—y* <= * . 4.43
@)~y (@) < 5 max |y (@) (4.43)
Let us assume that o is any constant such that
* <o. 4.44
e [y (z)] < o (4.44)

Then, from (4.43) and (4.44), we conclude that

[y(a) —y" @] < 7.

o)~y @) =0 ().

n

or

5. Taylor wavelets operational matrix method

In this section, we use the newly derived SOMITW for the numerical solution
of SVFIE. Here we consider the SVFIE given in equation (1.1) as,

B T x
y(z) = f(x)Jr/a y(t)kl(x,t)dtJr/O y(t)kg(:c,t)dt+/() y(t)ks(z, t)dW(t). (5.1)

For the sake of simplicity, we assume that («, 8) = (0,1). Approximating f(x),
y(x) and k;(z,t), i = 1,2,3 with respect to Taylor wavelets as follows:

y(@) = CTh(a) = C¥7 (), (5.2)

where C' is given in equation (2.5) and is the unknown vector to be determined.
f(z) ~ FTy(z) = FyT (2), (5.3)
ki(z,t) = 97 (2) Ka(t) = 07 () K] 9 (), (5.4)
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ko (2, 1) = T () Kagp(t) = 97 (1)K v(2), (5.5)
ks(z,t) = 7 (2)Ks(t) = 7 (1) K3 ¢(2), (5.6)

where C' and F' are Taylor wavelet coefficient vectors, and K7, K5, and K3 are
Taylor wavelet matrices. Substituting (5.2), (5.3), (5.4), (5.5), and (5.6) in (5.1),
we get

CTy(x) = FTy(a) + CT (/01 w<t>wT<t>dt) Kip(o) + o7 () KT (/0 ¢(t>wT(t>Cdt)
st @] ([ Mot weaw ).

Using the relation fol P(t)yT (t)dt = 1 and the remark 3.1, we get

CTip(a) = FTap(a) + CT Kib(a) + 47 () KT ( I éw)dt)

0

st @rt ([ cvnar).

where C is a 7 x 7 matrix. Using the OMITW and SOMITW, we get
CTop(x) = FTop(x) + CT Kyp(x) + 97 (2) K5 CP(x) + 97 (2) K5 CPo(x).
Let Xy = KgC’P and X3 = KP,TC’PS. Again using remark 3.1, we get
CTyp(x) = CTE () = X p(w) — XFv(x) = FTp(x),

where XQ and X’g are ™m X m matrices and are linear functions of vector C' and
this equation is applicable for all z € [0, 1), hence

ot - CTK, — XI - XTI =FT. (5.7)

Solving this linear system of equations we get the unknown vector C. Substituting
this unknown vector in equation (5.2), we get the solution the SVFIE given in
equation (5.1).

6. Numerical experiments

Test problem 6.1. Consider the SVFIE [28],

y(z) = f(z) + /0 cos(x + t)y(t)dt + /Oz(x + t)y(t)dt

(6.1)
+/ exp(—(z +t))y(t)dW (t), z,t € [0,1),
0
where
f(z) = 2* +sin(1 + x) — 2cos(1 + x) — 2sin(z) — % + %W(m) (6.2)

Here, y(x) is the unknown stochastic process defined on the probability space
(Q,F,P), and W(x) is the Brownian motion process. The exact solution of
this integral equation is unknown. Table 1 shows the numerical results obtained
by Taylor wavelet method (TWM) described in section 5, Haar wavelet method
(HWM) [28], and Block pulse functions (BPFs) [33], and figure 1 shows the com-
parison of obtained numerical results with HWM [28] and BPF's [33] for m = 8 for
test problem 6.1.
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Method of Implementation

For m = 6:
Comparing equation (6.1) with equation (5.1), we get
ki(x,t) = cos(z + t), (6.3)
ko(z,t) = x + ¢, (6.4)
k3(z,t) = exp(—(x +1)). (6.5)

Approximating equations (6.2), (6.3), (6.4), and (6.5) using Taylor wavelets, we
obtain the vector F', and matrices K7, K5, and Kj3. Substituting the obtained
vector F', matrices K7, K, K3, and the approximated unknown solution C' in
(6.1), and by the use of OMITW and the SOMITW, we obtain the unknown
vector C' as

C = [-0.0090951 0.047419 0.049192 0.143 0.1214 0.071002] .
Substituting this in y(z) ~ CTy(x) = CyT (x), we obtain the solution as
y(z) = [0.0108132 0.0841029 0.191955 0.258026 0.407048 0.605956} .

TABLE 1. Approximate solution for test problem 6.1.

x TWM HWM BPFs TWM HWM BPFs
for m = 6 | for m = 2% [28] | for m = 2° [33] | for m =8 | for m = 20 [28] | for m = 26 [33]
0.1 0.01814217 0.01894037 0.01991100 0.1579785 0.018461086 0.01551376
0.3 0.11645853 0.10263681 0.11746767 0.1539505 0.103326990 0.05832510
0.5 0.22499050 0.24699817 0.27412074 0.2523345 0.246273470 0.27753509
0.7 0.36234140 0.46248377 0.51447080 0.4152632 0.464473170 0.48867600
0.9 0.58606520 0.76428458 0.76857228 0.8694996 0.746050990 0.82223316
0.9
vl
—&--TWM '/e
08F |—©—HWM /A
—%—BPF //
07+t "/ A
’/
7,
06 7 -
/
’)_(\0.5 r ’/, q
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FIGURE 1. Approximate solution of test problem 6.1 for m = 8.
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Test problem 6.2. Consider the SVFIE [28],

y (@) = f() +/01<w +ouan+ [ - ouwar+ o

— /Om sin(z + H)y()dW (1), ot € [0,1), (6.6)

where,
1

f(z) =2—cos(1) — (1 + z)sin(1) + 550 sin(W(z)).

Here, y (z) is the unknown stochastic process defined on the probability space
(Q, F, P), and W(z) is the Brownian motion process. The exact solution of this
integral equation is unknown. Table 2 shows the numerical results obtained by
TWM described in section 5, HWM [28], and BPFs [33], and figure 2 shows the
comparison of obtained numerical results with HWM [28] and BPF's [33] for m = 8
for test problem 6.2. Method of implementation is shown in test problem 6.1.

TABLE 2. Approximate solution for test problem 6.2.

z TWM HWM BPFs TWM HWM BPFs
for i =6 | for m = 25 [28] | for m = 2% [33] | for m =8 | for m = 26 [28] | for . = 26 [33]
0.1 | 0.9080739 0.95261751 0.99832325 0.8064844 0.95351151 0.99586771
0.3 | 0.9364542 0.90442995 0.94271558 0.7857089 0.90583300 0.96183409
0.5 | 0.7428050 0.81494616 0.89309254 0.4800800 0.81603608 0.85038394
0.7 | 0.5160346 0.69226490 0.76959231 0.3425870 0.69438254 0.75669689
0.9 | 0.3634411 0.54802651 0.69244110 0.4047484 0.54967133 0.61203566
\ o TWM
\ —6—HWM
09 \ —%—BPF |
\
\
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FIGURE 2. Approximate solution of test problem 6.2 for m = 8.

7. Conclusion

In this paper, we used the Taylor wavelets and their stochastic operational
integration matrix in a profitable way to solve stochastic Volterra-Fredholm inte-
gral equations. This technique used to solve stochastic Volterra-Fredholm integral
equations using Taylor wavelets is free of difficulties. In the present study, the con-
vergence and error analysis is offered to show reliability and usefulness. Numerical
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experiments are performed in order to show the efficiency of the proposed method.
We can conclude that the projected algorithm is very efficient and well structured
to solve the stochastic Volterra-Fredholm integral equations and are presented
numerically to systematically and better describe the real world problems.
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