Revised: 18th January 2024

NOTE ON LEGER COHOMOLOGY OF LIE ALGEBRA BUNDLES

RANJITHA KUMAR, ELSAYIR H. A., AND P. SIVA KOTA REDDY*

ABSTRACT. In analogy with the theory of cohomology of Lie algebras, we develop the concept of module bundle and Lie algebra bundle extensions.

1. Introduction

Let $\xi = (\xi, p, X)$ be a Lie algebra bundle and $\eta = (\eta, q, X)$ a ξ -module bundle with the corresponding representation $\rho : \xi \to \operatorname{End}\eta$. Let $M^n(\xi, \eta)$ denote the C(X)-module of all symmetric morphisms from $\xi^n = \xi \oplus \xi \oplus \cdots \oplus \xi$ to η , for all $n \ge 1$ and $M^0(\xi, \eta) = \operatorname{HOM}(X \times R, \eta)$, where $X \times R$ is the trivial vector bundle over X. The space $M^0(\xi, \eta)$ can be identified with $\Gamma(\eta)$. Now we define differentials $\partial^n : M^n(\xi, \eta) \to M^{n+1}(\xi, \eta)$ for all $n \ge 0$, Consider S in $M^0(\xi, \eta)$. Let us define $f : \xi \to \eta$ by $f(u) = \rho(u) S(x)$ if $u \in \xi_x$. Then the function f is in $M^1(\xi, \eta)$ since it is the composition of the morphisms,

$$\xi \xrightarrow{(Id,p)} \xi \times X \xrightarrow{(Id,S)} \xi \oplus \eta \xrightarrow{\rho} \eta$$

$$u \to (u, p(u) = x) \to (u, S(x)) \to \rho(u)(S(x)).$$

Hence we can define $\partial^{\circ}: M^0(\xi, \eta) \to M^1(\xi, \eta)$ by $\partial^{\circ}(S) = f$ and it can be easily verified that ∂^0 is a C(X)-module homomorphism. Given f in $M^n(\xi, \eta)$, we define $g: \xi^{n+1} \to \eta$ by

$$g(u_0, \cdots, u_n) = \sum_{i=0}^n (-1)^i \rho(u_i) f(u_0, \cdots, \hat{u_i} \cdots, u_n) + \sum_{i < j} (-1)^{i+j} f([u_i, u_j], u_0, \cdots, \hat{u_i}, \cdots, \hat{u_j}, \cdots, u_n),$$

where \hat{u}_i denotes that the i^{th} term is omitted. The map

 $(u_0, \cdots, u_n) \rightarrow \rho(u_i) f(u_1, \cdots, \hat{u_i}, \cdots, u_n)$

is a vector bundle morphism being the composition of the vector bundle morphisms

$$\xi^{n+1} \to \operatorname{End} \eta \oplus \eta \to \eta$$
$$(u_0, \cdots, u_n) \to (\rho(u_i), f(u_1, \cdots, \hat{u_i}, \cdots, u_n)) \to \rho(u_i) f(u_1, \cdots, \hat{u_i}, \cdots, u_n).$$

²⁰⁰⁰ Mathematics Subject Classification. 17B20, 17B56, 17B99, 55R25.

 $Key\ words\ and\ phrases.$ Cohomology group, Lie algebra bundle, Module bundle, Vector bundle.

^{*}Corresponding author.

The mapping $(u_0, \dots, u_n) \to f([u_i, u_j], u_0, \dots, u_n)$ from $\xi^{n+1} \to \eta$ is again a vector bundle morphism being the composition,

$$\xi^{n+1} \to \xi^n \to \eta$$

$$(u_0,\cdots,u_n)\to([u_i,u_j],u_2,\cdots,u_n)\to f([u_i,u_j],u_2,\cdots,u_n)$$

Thus the mapping $g \in M^{n+1}(\xi, \eta)$ and for all $n \ge 1$, we define $\partial^n : M^n(\xi, \eta) \to M^{n+1}(\xi, \eta)$ by $\partial^n(f) = g$, where

$$g(u_0, \cdots, u_n) = \sum_{i=0}^n (-1)^i \rho(u_i) f(u_0, \cdots, \hat{u_i} \cdots, u_n) + \sum_{i < j} (-1)^{i+j} f([u_i, u_j], u_0, \cdots, \hat{u_i}, \cdots, \hat{u_j}, \cdots, u_n),$$

Then it can be easily verified that $\partial^n \partial^{n-1} = 0$ for all $n \ge 1$. So $\{M^n(\xi, \eta), \partial^n\}$ is a cochain complex.

Given a Lie algebra bundle ξ and a ξ -module bundle η , we define the n^{th} cohomology group of ξ with coefficients in η by

$$H^{n}(\xi,\eta) = ker\partial^{n}/Im\partial^{n-1} = Z^{n}(\xi,\eta)/B^{n}(\xi,\eta) \text{ for } n \ge 1$$

and

$$H^0(\xi,\eta) = ker\partial^0.$$

The elements of $ker\partial^n$ are called *n*-cocycles and the elements of $Im\partial^{n-1}$ are called *n*-coboundaries.

Some recent developments in the theory of algebra bundles can be found in [1, 2, 8, 9, 10]. Theory of cohomology of algebra bundles over compact Hausdarff space can found in [4, 6]. In this paper, we develop the theory of Leger cohomology of real Lie algebra bundles over a topological space, though much of the elementary theory is similar for Lie algebras [5, 7].

All underlying vector spaces are finite dimensional. The total space of a bundle $\xi = (\xi, p, X)$ is denoted by ξ itself and fibres by ξ_x .

2. Module Bundle Extensions

Let η and η' be ξ -module bundles. If $\eta \subset E$ and if the sequence

$$0 \to \eta \xrightarrow{i} E \xrightarrow{\phi} \eta' \to 0$$

of ξ -module bundles is exact we say that the pair (E, ϕ) ia an extension of η by η' . Two extensions (E_1, ϕ_1) and (E_2, ϕ_2) of η by η' , they are called equivalent if there is an isomorphism σ of E_1 onto E_2 such that $\phi_2\sigma = \phi_1$. We denote by $\{(E, \phi)\}$ the class of extensions equivalent to (E, ϕ) . Let $M = \bigcup_{x \in X} M_x$, where M_x is the vector space of all module homomorphism of η'_x into η_x . Then M is a vector bundle [4]. We make M into ξ -module bundle by defining

$$u.f(q) = u.f(q) - f(u.q)$$
 for all $u \in \xi_x$, $f \in M_x$ and $q \in \eta_x$.

Proposition 2.1. Let ξ be a Lie algebra bundle over compact Hausdorff space X. Then there is a bijection correspondence between first cohomology group $H^1(\xi, M)$ and Ext $[\eta, \eta']$, the classes of extensions of the ξ -module bundle η by η' .

Proof. Consider an extension

$$(E,\phi) : 0 \to \eta \xrightarrow{i} E \xrightarrow{\phi} \eta' \to 0.$$

Since X is compact Hausdorff, there is a vector bundle splitting morphism $\gamma : \eta' \to E$ such that $\beta \gamma = Id_{\xi}$ [3, page 25]. Let $\Delta : \xi \to M$, $(\Delta_u : q \to u.\gamma(q) - \gamma(u.q))$ for $u \in \xi_x$ and $q \in \eta'$. Then Δ will give the structure of a ξ -module bundle on E. For,

$$\rho: \xi \oplus E \to E$$

defined by

$$\rho(u, (p \oplus q)) = \{u.p + \Delta_u(q)\} \oplus u.q,$$

for all $u \in \xi_x$, $p \in \eta$, $q \in \eta'$ is a representation of ξ if and only if $\Delta \in H^1(\xi, M)$. \Box

Now we give ξ -module structure on Ext $[\eta, \eta']$. Let $u \in \xi_x$, and (E, ϕ) an module extension of η by η' . We set

$$E^* = \bigcup_{x \in X} E^*_x$$
, where $E^*_x = \{(e_1, e_2) \mid e_1, e_2 \in E_x, \text{ and } u.\phi(e_1) = \phi(e_2)\}.$

The map $\psi: E \oplus E \to \eta'$ defined by $\psi(e_1, e_2) = u.\phi(e_1) - \phi(e_2)$ is a surjective vector bundle morphism whose kernel is E^* . Hence E^* is a sub bundle of $E \oplus E$ [3]. Make E^* into ξ -module bundle such that $v.(e_1, e_2) = (v.e_1, v.e_2 + [u, v].e_1)$ for all $v \in \xi_x$ and $(e_1, e_2) \in E^*$. Define an onto map $\psi^*: E^* \to \eta'$ by $\psi^*(e_1, e_2) = \phi(e_1)$. The kernel of ψ^* is (η, η) and the morphism $\omega: (\eta, \eta) \to \eta$ such that $\omega(p_1, p_2) = u.p_1 - p_2$ is (η, η) onto η . The kernel N of ω consists of all pairs (p_1, p_2) for which $p_2 = u.p_1$. Since N is submodule of E^* so that we identify $(\eta, \eta)/N$ with η . Then $\phi^*: E^*/N \to \eta'$ defined by $\phi^*[(e_1, e_2) + N] = \phi(e_1)$ is a module bundle morphism of E^*/N onto η' whose kernel is $(\eta, \eta)/N$ which we have identified with η .

Thus we define

$$u.(E,\phi) = (E^*/N,\phi^*).$$

Suppose that (E_1, ϕ_1) is an extension of η by η' which is equivalent to (E, ϕ) . Let $\sigma: E \to E_1$ be an isomorphism. Then the map $\sigma^*: E^* \to E_1^*$, define by

$$\sigma^*(e_1, e_2) = (\sigma(e_1), \sigma(e_2))$$

is an isomorphism which takes N onto N_1 and induce an isomorphism of E^*/N onto E_1^*/N_1 . Thus we define

$$u.\{(E,\phi)\} = \{u.(E,\phi)\}.$$

3. Lie Algebra Bundle Extensions

Let η be ξ -module bundle which we consider as abelian Lie algebra bundle. An extension of η by ξ is a pair (ζ , Φ) such that η is an ideal bundle of ζ and such that the sequence

$$0 \to \eta \xrightarrow{i} \zeta \xrightarrow{\Phi} \xi \to 0$$

is exact. Two such extensions (ζ_1, Φ_1) and (ζ_2, Φ_2) are called equivalent if there is an isomorphism σ of ζ_1 onto ζ_2 such that $\Phi_2 \sigma = \Phi_1$. We denote by $\{(\zeta, \phi)\}$ the class of extensions equivalent to (ζ, Φ) .

Proposition 3.1. Let ξ be a Lie algebra bundle over compact Hausdorff space X. Then there is a bijection between second cohomology group $H^2(\xi, \eta)$ of ξ with coefficients in ξ -module bundle η and $\text{Ext}(\xi, \eta)$, the collections of all equivalence classes of all extensions of η by ξ .

Proof. Consider the short exact sequence of Lie algebra bundles $0 \to \eta \xrightarrow{\alpha} \zeta \xrightarrow{\beta} \xi \to 0$. Here η is consider as abelian Lie algebra bundle. Since X compact Hausdorff above short exact sequence splits $\zeta = \xi \oplus \eta$ as a vector bundles [3, page 25]. Now define, for any $u, v \in \xi_x$ and $a, b \in \eta_x$

$$\theta_{\zeta}(u+a,v+b) = \theta(u,v) + \{\rho(u)b - \rho(v)a + \kappa(u,v)\}.$$

The Jacobi identity holds if and only if $\kappa : \xi \oplus \xi \to \eta$ is a 2-cocycle.

We give ξ -module bundle structure on $\text{Ext}(\xi, \eta)$ as follows; Let consider $u \in \xi_x$ and (ζ, Φ) an extension of η by ξ . Define

$$\zeta^* = \bigcup_{x \in X} \zeta_x^*, \text{ where } \zeta^* = \{ (u_1, u_2) \mid u_1, u_2 \in \zeta, \theta(u, \Phi(u_1)) = \Phi(u_2) \}.$$

Define a morphism $\Psi : \zeta \oplus \zeta \to \eta$ defined by $\Psi(u_1, u_2) = \theta(u, \Phi(u_1)) - \Phi(u_2)$ is a surjective vector bundle morphism whose kernel is ζ^* . Hence ζ^* is a sub bundle of $\zeta \oplus \zeta$ [3]. We make ζ^* into a Lie algebra bundle by defining

$$\Theta((u_1, u_2), (u_1^{'}, u_2^{'})) = (\theta(u_1, u_2^{'}), \theta(u_1, u_2^{'}) + \theta(u_2, u_1^{'}))$$

Define an onto map $\Psi^*: \zeta^* \to \xi$ by $\Psi^*(u_1, u_2) = \Phi(u_1)$. The kernel of Ψ^* is (η, η) and the morphism $\Omega: (\eta, \eta) \to \eta$ such that $\Omega(m_1, m_2) = u.m_1 - m_2$ is (η, η) onto η . The kernel N of Ω consists of all pairs (m_1, m_2) for which $m_2 = u.m_1$. Since N is submodule of ζ^* so that we identify $(\eta, \eta)/N$ with η . Then $\Phi^*: \zeta^*/N \to \xi$ defined by $\Phi^*[(u_1, u_2) + N] = \Phi(u_1)$ is a vector bundle morphism of ζ^*/N onto ξ whose kernel is $(\eta, \eta)/N$ which we have identified with η .

Thus we define

$$u.(\zeta,\phi) = (\zeta^*/N, \Phi^*).$$

Suppose that (ζ_1, Φ_1) is an extension of η by ξ which is equivalent to (ζ, Φ) . Let $\sigma : \zeta \to \zeta_1$ be an isomorphism. Then the map $\sigma^* : \zeta^* \to \zeta_1^*$, define by

$$\sigma^*(u_1, u_2) = (\sigma(u_1), \sigma(u_2))$$

is an isomorphism which takes N onto N_1 and induce an isomorphism of ζ^*/N onto ζ_1^*/N_1 . Thus we define

$$u.\{(\zeta, \Phi)\} = \{u.(\zeta, \Phi)\}.$$

Acknowledgment. The authors would like to thank the referees for their invaluable comments and suggestions which led to the improvement of the manuscript.

References

- AlFran, H. A., Kamalakshi, K., Rajendra, R. and Siva Kota Reddy, P.: On Smooth Lie Algebra Bundles of Finite Type, *Glob. Stoch. Anal.*, **11**(1) (2024), 75–79.
- AlFran, H. A., Kamalakshi, K., Rajendra, R. and Siva Kota Reddy, P.: On Malcev Algebra Bundles, J. Appl. Math. Inform., 42(1) (2024), to appear.
- 3. Atiyah, M. F.: K-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967.
- Chidambara, C. and Kiranagi, B. S.: On cohomology of associative algebra bundles, J. Ramanujan Math. Soc., 9(1) (1994), 1–12.
- Gorbatsevich, V. V., Onishchik, A. L., Vinberg, E. B. and Minachin, V.: Lie Groups and Lie Algebras III: Structure of Lie Groups and Lie Algebras, Encyclopaedia of Mathematical Sciences, Volume 41, Springer, Berlin, (1994).
- Kiranagi, B. S. and Prema, G.: Cohomology of Lie algebra bundles and its applications, Indian J. Pure Appl. Math., 16(7) (1985), 731–735.
- 7. Leger, G. F.: On cohomology of Lie algebras, Proc. Amer. Math. Soc., 8 (1957), 1010–1020.
- Monica, M. V. and Rajendra, R.: Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles, *Int. Electron. J. Algebra*, 35 (2024), 95–107.
- Prasad, H. M., Rajendra, R. and Kiranagi, B. S.: On module bundles over algebra bundles, Proc. Jangjeon Math. Soc., 24(2) (2021), 171–184.
- Prasad, H. M., Rajendra, R. and Kiranagi, B. S.: On exact sequences of module bundles over algebra bundles, *Palest. J. Math.*, **12**(1) (2023), 42–49.

RANJITHA KUMAR: DEPARTMENT OF MATHEMATICS, VIT BHOPAL UNIVERSITY, BHOPAL-INDORE HIGHWAY, KOTHRIKALAN, SEHORE, MADHYA PRADESH-466 114, INDIA *E-mail address*: ranju286math@gmail.com; ranjithakumar@vitbhopal.ac.in

Elsayir H. A.: Department of Mathematics, Al-Qunfudhah University College, UMM Al-Qura University, Mecca, SAUDI ARABIA *E-mail address*: hamusa@uqu.edu.sa

P. SIVA KOTA REDDY: DEPARTMENT OF MATHEMATICS, JSS SCIENCE AND TECHNOLOGY UNIVERSITY, MYSURU-570 006, KARNATAKA, INDIA

 $E\text{-}mail\ address:\ pskreddy@jssstuniv.in;\ pskreddy@sjce.ac.in$