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Abstract. In this paper we discuss , (i) f(x) ∈ Z[x] be a polynomial of

degree n having all zeros in the set Dr for some r ∈ N − {1} and there
exists an integer m with |m| ≥ r + t where t ∈ N such that |f(m)| is t-times

product of s primes (which may or may not be distinct), then f(x) has at
most s irreducible factors in Z[x] and (ii) Let f(x) ∈ Z[x] be a polynomial of

degree n having all zeros in the set ODr for some r ∈ N − {1}. If |f(m)| is
product of r primes where |m| < r − 1 , then f(x) has at most r irreducible
factors in Z[x] .

1. Introduction

There has been a close relationship between prime numbers and irreducibility.
Establishing the relationship firstly A Cohn′s Irreducibility Criterion for base-10
version was introduced in [1].A classical Cohn’s irreducibility criteria stated:- If a
prime number p is expressed in base-10 as p = ak10

k+ak−110
k−1+ · · ·+a1 10+a0

(where 0 ≤ ai ≤ 9) then the polynomial f(x) = akx
k+ak−1x

k−1+ · · ·+a1 x+a0 is
irreducible in Z[x]. The generalisation of A Cohn′s irreducibility criterion for base-
b is given by Brillhart, Filesta and Odlyzko in [2] which is stated as:- If a prime
number p is expressed in base-b as p = akb

k + ak−1b
k−1 + · · ·+ a1 b+ a0 (where

0 ≤ ai ≤ b− 1) then the polynomial f(x) = akx
k + ak−1x

k−1 + · · ·+ a1 x+ a0 is
irreducible in Z[x].R.Murthy gave a simplified proof and history of the result in [3].
There exists various results on prime b-adiac expansion and polynomials having
prime or prime power value. The well known Eisenstein’s irreducibility criterion is
a sufficient condition to check irreducibility of polynomials but this criterion is not
applicable to all polynomials with integer coefficients that are irreducible over the
rational numbers.Being a sufficient condition its domain is restricted. Furthermore
all these results available are sufficient conditions for irreducibility of polynomials.
So, many researchers are working towards new irreducibility criteria on different
domains.

2. Preliminary Results

Let the set {z ∈ C||z| < r, r ∈ N} and {z ∈ C||z| > r, r ∈ N} are denoted by
Dr and ODr,where C denotes the set of complex numbers.
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A region Dr which denoted above is simply connected because every closed
curve which lies entirely in Dr can be pulled to a single point in Dr.

Now we prove two lemmas which are extension of lemma 2.1 from [4].

Lemma 2.1. Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 ∈ Z[x] be a polynomial
such that 0 < a0 ≤ a1 ≤ · · · ≤ ak−1 < ak ≤ · · · ≤ an for some 0 < k ≤ n then
f(x) ∈ Z[x] is a polynomial having all zeros in the set Dr for some r ∈ N − {1}.

Proof:- Suppose on the contrary f(x) has a zero α with |α| ≥ r. Then α is a
root of F (x) = (x− 1)f(x) = anx

n+1 + (an−1 − an)x
n + · · ·+ (a0 − a1)x− a0. α

being root of F (x), we have anα
n+1 = (an−an−1)α

n+ · · ·+(a1−a0)α+a0. Now,
|α| ≥ r > 1, we get |anαn+1| < (an−an−1)|αn|+· · ·+(a1−a0)|αn|+a0|αn| = |anαn|
which leads to a contradiction |α| < 1 because an > 0. Hence, f(x) ∈ Z[x] is a
polynomial having all zeros in the set Dr.

Lemma 2.2. Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 ∈ Z[x] be a polynomial
of degree n such that –[ r−1

2 ]|an| < a0 ≤ a1 ≤ · · · ≤ ak−1 < ak ≤ · · · an for some
0 < k ≤ n, then f(x) ∈ Z[x] be a polynomial having all zeros in the set Dr for
some r ∈ N − {1}.

Proof:-Suppose on the contrary f(x) has a zero α with |α| ≥ r. Then α is a
root of F (x) = (x − 1)f(x) = anx

n+1 + (an−1 − an)x
n + · · · + (a0 − a1)x − a0.

α being root of F (x), we have anα
n+1 = (an − an−1)α

n + · · · + (a1 − a0)α + a0.
Case 1:-None of ai is negative (means positive or zero)
Now, using |α| ≥ r > 1, we get |anαn+1| < (an − an−1)|αn|+ · · ·+(a1 − a0)|αn|+
a0|αn| = |anαn| which leads to a contradiction |α| < 1 because an > 0. Hence
f(x) ∈ Z[x] is a polynomial having all zeros in the set Dr.
Case 2:- Some of ai may negative or zero but an ̸= 0
Now using the concept that |α| ≥ r > 1, we have |anαn+1| < (an − an−1)|αn| +
· · · + (a1 − a0)|αn| + (−a0)|αn| = (an − 2a0)|αn| < (|an| + 2|a0|)|αn| implies

|α| < 1 + 2|a0|
|an| < 1 + 2[ r−1

2 ] ≤ r which leads to a contradiction |α| < r because

–[ r−1
2 ]|an| < a0.Hence, f(x) ∈ Z[x] is a polynomial having all zeros in the set Dr.

Redefining lemma 1 from [3].

Lemma 2.3. Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 ∈ Z[x] be a polynomial
of degree n such that an > 0 and r > max(max0≤i≤n−1 |nai

an
|, 1) then f(x) ∈ Z[x]

is a polynomial having all zeros in the set Dr for some r ∈ N − {1} .

Proof:-Suppose to the contrary that f(x) has a zero α with |α| ≥ r. Then
anα

n = (−an−1)α
n−1 + · · ·+ (−a1)α− a0.

|anαn| = |(−an−1)α
n−1+ · · ·+(−a1)α−a0| ≤ (|an−1||αn−1|+ · · ·+ |a1||α|+ |a0|).

|αn| ≤ ( |an−1|
|an| |α|n−1+· · ·+ |a1|

|an| |α|+
|a0|
|an| ) ≤ max0≤i≤n−1 | ai

an
|(|α|n−1+· · ·+|α|n−1+

|α|n−1)
By use of |α| ≥ r > 1, we get |αn| ≤ max0≤i≤n−1 | ai

an
|(|α|n−1).

Now, we have |α| ≤ max0≤i≤n−1 | ai

an
| < r which leads to a contradiction |α| < r.

Hence, f(x) ∈ Z[x] be a polynomial having all zeros in the set Dr.

Next lemma is extension of previous one.
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Lemma 2.4. Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 ∈ Z[x] be a polynomial

of degree n such that an > 0 and r > max(| |an−1|+|an−2|+···+|a1|+|a0|
an

|, 1) then

f(x) ∈ Z[x] is a polynomial having all zeros in the set Dr for some r ∈ N − {1} .

Proof:-Suppose to the contrary that f(x) has a zero α with |α| ≥ r. Then
anα

n = (−an−1)α
n−1 + · · ·+ (−a1)α− a0.

|anαn| = |(−an−1)α
n−1+ · · ·+(−a1)α−a0| ≤ (|an−1||αn−1|+ · · ·+ |a1||α|+ |a0|).

|αn| ≤ ( |an−1|
|an| |α|n−1 + · · · + |a1|

|an| |α| +
|a0|
|an| ) ≤ (| ai

an
||α|n−1| + · · · + | a1

an
||α|n−1| +

| a0

an
||α|n−1|)

|αn| ≤ |an−1|+|an−2|+···+|a1|+|a0|
|an| |αn−1|.

By use of |α| ≥ r > 1, we get |αn| ≤ |an−1|+|an−2|+···+|a1|+|a0|
|an| |αn−1|.

Now, we have |α| ≤ |an−1|+|an−2|+···+|a1|+|a0|
|an| < r which leads to a contradiction

|α| < r.
Hence, f(x) ∈ Z[x] is a polynomial having all zeros in the set Dr.

Theorem 2.5. (Rouche’s Theorem) If we have functions f and g which are an-
alytic on a simple closed contour C, and meromorphic inside the contour C, and
if |g| < |f | on contour C, then both f and f + g have same number of zeros in
C,where each zero is counted as many times as its multiplicity.

3. Main Theorems

Now we extend Lemma 2.2 from [4].

Theorem 3.1. Let f(x) ∈ Z[x] be a polynomial having all zeros in the set Dr for
some r ∈ N −{1}. If there exists an integer m with |m| ≥ r+ t where t ∈ N such
that |f(m)| is t− times of the prime number, then f(x) is irreducible over the field
of rationals.

Proof:-Suppose to the contrary that f(x) = g(x)h(x) where g(x), h(x) ∈ Z[x].
In view of hypothesis at least one of |g(m)|, |h(m)| is divisor of t . Without loss of
generality, assume that |g(m)||t.

Write g(x) = c
∏k

i=1(x− αi) where αi ∈ Dr∀ i = 1, 2, · · · , k
Keeping in mind that |αi| < r and |m| ≥ r+t =⇒ |m|−|αi| > t ∀ i = 1, 2, · · · , k
By use of |a− b| ≥ |a| − |b|, we have

|g(m)| = |c|
∏k

i=1 |(m− αi)| ≥ |c|
∏k

i=1(|m| − |αi|) > t which is a contradiction
to the fact that f(x) is reducible over Z[x], hence we get f(x) is irreducible over
Z[x] and consequently irreducible over Q[x].

Theorem 3.2. Let f(x) ∈ Z[x] be a polynomial of degree n having all zeros in the
set Dr for some r ∈ N − {1}. If there exists an integer m with |m| ≥ r + 1 such
that |f(m)| is a product of s primes (which may or may not be distinct), then f(x)
has at most s irreducible factors in Q[x].

Proof:-Suppose to the contrary that f(x) = g1(x)g2(x)g3(x) · · · gs+1(x) where
g1(x), g2(x), · · · , gs+1(x) ∈ Q[x]. In view of hypothesis at least one of |gi(m)| where
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1 ≤ i ≤ s + 1 is equal to 1. Without loss of generality, assume that |g1(m)| = 1.

Write g1(x) = c
∏k

i=1(x− αi) where αi ∈ Dr∀ i = 1, 2, · · · , k
Keeping in mind that |αi| < r and |m| ≥ r + 1 =⇒ |m| − |αi| > 1 ∀ i =

1, 2, · · · , k
By use of inequality |a− b| ≥ |a| − |b|, we have

|g1(m)| = |c|
∏k

i=1 |(m−αi)| ≥ |c|
∏k

i=1(|m|− |αi|) > 1 which is a contradiction
with fact that f(x) has more than s irreducible factors over Q[x], hence we get
f(x) has at most s irreducible factors in Q[x].

Theorem 3.3. Let f(x) ∈ Z[x] be a polynomial of degree n having all zeros in the
set Dr for some r ∈ N − {1}. If there exists an integer m with |m| ≥ r + t where
t ∈ N such that |f(m)| is t-times product of s primes (which may or may not be
distinct), then f(x) has at most s irreducible factors in Q[x] .

Proof:-Suppose to the contrary that f(x) = g1(x)g2(x)g3(x) · · · gs+1(x) where
g1(x)g2(x) · · · gs+1(x) ∈ Q[x]. In view of hypothesis at least one of |gi(m)| where
1 ≤ i ≤ s + 1 is divisor of t. Without loss of generality, assume that |g1(m)||t.
Write g1(x) = c

∏k
i=1(x− αi) where αi ∈ Dr∀ i = 1, 2, · · · , k

Keeping in mind that |αi| < r and |m| ≥ r+t =⇒ |m|−|αi| > t ∀ i = 1, 2, · · · , k
By use of inequality |a− b| ≥ |a| − |b|, we say that

|g1(m)| = |c|
∏k

i=1 |(m−αi)| ≥ |c|
∏k

i=1(|m| − |αi|) > t which is a contradiction
with fact that f(x) has more than s irreducible factors over Z[x], hence we get
f(x) has at most s irreducible factors over Z[x].

Theorem 3.4. Let f(x) ∈ Z[x] be a polynomial of degree n having all zeros in
the set ODr for some r ∈ N − {1}. If |f(m) is t-times a prime where |m| < r − t
where t is a positive integer less than p, then f(x) is irreducible in Q[x] .

Proof:-Suppose to the contrary that f(x) = g1(x)g2(x) where g1(x), g2(x) ∈
Z[x]. In view of hypothesis at least one of |gi(m)| where 1 ≤ i ≤ 2 is equal to 1.

Without loss of generality, assume that |g1(m)||t. Write g1(x) = c
∏k

i=1(x − αi)
where αi ∈ ODr∀ i = 1, 2, · · · , k

Keeping in mind that |αi| > r > 1∀ i = 1, 2, · · · , k. Using |m| < p − t, we get
−|m| > t− p.
Now |αi| − |m| > t∀ i = 1, 2, · · · , k

By use of inequality |a− b| ≥ |a| − |b|, we say that

|g1(m)| = |c|
∏k

i=1 |(m−αi)| ≥ |c|
∏k

i=1(|αi| − |m|) > t which is a contradiction
with fact that f(x) is irreducible over Z[x].

Theorem 3.5. Let f(x) ∈ Z[x] be a polynomial of degree n having all zeros in the
set ODr for some r ∈ N − {1}. If |f(m)| is t-times product of two prime where
|m| < r − t where t is a positive integer less than p, then f(x) has at most two
irreducible factors in Q[x] .

Proof:-Suppose to the contrary that f(x) = g1(x)g2(x)g3(x) where g1(x), g2(x)
and g3(x) ∈ Z[x]. In view of hypothesis at least one of |gi(m)| where 1 ≤ i ≤ 3
is equal to 1. Without loss of generality, assume that |g1(m)||t. Write g1(x) =

c
∏k

i=1(x− αi) where αi ∈ ODr∀ i = 1, 2, · · · , k
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Keeping in mind that |αi| > r > 1∀ i = 1, 2, · · · , k. Using |m| < r − t, we get
−|m| > t− r.
Now |αi| − |m| > t∀ i = 1, 2, · · · , k

By use of inequality |a− b| ≥ |a| − |b|, we say that

|g1(m)| = |c|
∏k

i=1 |(m−αi)| ≥ |c|
∏k

i=1(|αi| − |m|) > t which is a contradiction
with fact that f(x) is irreducible over Z[x].

Theorem 3.6. Let f(x) ∈ Z[x] be a polynomial of degree n having all zeros in the
set ODr for some r ∈ N − {1}. If |f(m) is product of r primes where |m| < r− 1
, then f(x) has at most r irreducible factors in Z[x] .

Proof:-Suppose to the contrary that f(x) = g1(x)g2(x)g3(x) · · · gr+1(x) where
g1(x), g2(x), g3(x), · · · , gr+1(x) ∈ Z[x]. In view of hypothesis at least one of |gi(m)|
where 1 ≤ i ≤ r+1 is equal to 1. Without loss of generality, assume that |g1(m)||t.
Write g1(x) = c

∏k
i=1(x− αi) where αi ∈ ODr∀ i = 1, 2, · · · , k

Keeping in mind that |αi| > r > 1∀ i = 1, 2, · · · , k. Using |m| < r − 1, we get
−|m| > 1− r.
Now |αi| − |m| > 1∀ i = 1, 2, · · · , k

By use of inequality |a− b| ≥ |a| − |b|, we say that

|g1(m)| = |c|
∏k

i=1 |(m−αi)| ≥ |c|
∏k

i=1(|αi|− |m|) > 1 which is a contradiction
with fact that f(x) is irreducible over Z[x] hence over Q[x] .

4. Example

Example 4.1. Polynomial f(x) = x5 + x4 + 2x3 + 2x2 + 2x + 3 ∈ Z[x] satisfies
all conditions of lemma 2.1, there exist some r ∈ N − {1} such all the zeros
of f(x) lies in Dr. Now we search value for r using Rouche’s Theorem. Set
γ(x) = −x4 − 2x3 − 2x2 − 2x− 3 and g(x) = x5.
For |x| = 3, we have |γ(x)| ≤ 34 + 2.33 + 2.32 + 2.3 + 3 = 162 < |35| = |g(x)|.
By Rouche’s Theorem, the number of roots of g(x) in |x| < 3(= 5) coincides with
ones of x5 + x4 + 2x3 + 2x2 + 2x+ 3in|x| < 2. Therefore, f(x) = x5 + x4 + 2x3 +
2x2 + 2x+ 3 has 5 roots in D3.So we get r = 3.

Here f(4) = 1451 is a prime number. If assume t = 1 and m = 4, then by using
Theorem 3.1 we say that f(x) has at one irreducible factor. So we conclude that
f(x) is irreducible over Q[x].
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