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Abstract. This paper deals with discrete-time zero-sum linear quadratic
soft-constrained dynamic games in open-loop information structure for index

one descriptor systems. The aim is to provide both necessary and sufficient

conditions for the existence of an open-loop saddle point (OLSP) equilibrium
of the game. To find this equilibrium, the idea is to transform the game from

descriptor system into nonsingular system.

1. Introduction

Dynamic game is a scientific formulation to model a clash situation between
various parties. In linear quadratic setting, these parties drive a dynamical sys-
tem and every of them aims to optimize their personal quadratic cost function
using actions they give to the system. For that goal, dynamic games in linear
quadratic setting have been widely implemented in various areas like resources in
environmental economics, marketing, management, industrial organization, and
armed conflicts ([1], [2]).

The problem is not every system can be presented by an ordinary dynamic game.
In particular, when the systems are presented in a pair of difference and algebraic
equations that model the dynamic and static constrains. In this case, such systems
can be modelled as a descriptor system [3], or singular systems [4]. These systems
have been applied in many fields like large scale interconnected systems ([5], [6]),
biological economic systems [7], circuit systems ([8], [9]), chemical processes [10],
power systems ([11], [12]), mechanical systems ([13], [14]), and medical robotics
([15], [16]).

This article is the continued work of [17] where the game is set for continuous
linear quadratic index one descriptor systems. Here we study its counterpart of the
system time settings that is the discrete-time. For this discrete soft-constrained
descriptor game, we will find necessary and sufficient conditions under which the
game has an open-loop saddle-point (OLSP) solution. To find these conditions
our idea is to change the descriptor dynamic game into an ordinary (nonsingular)
dynamic game. Having being an ordinary game, hence we use the results from
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[18] to obtain the necessary and sufficient conditions of OLSP solution for the
game. The different method have been worked out by [19] but for closed-loop
memoryless information structure and then the result was used to solve the dis-
turbance attenuation control problem. In this paper the players are assumed to
act non-cooperatively and the information structure for both players is considered
an open-loop, that is the players already set their strategies at the moment the
system begins and these strategies cannot be changed once the system is running
[20]. A different way for saddle-point problems has been undertaken by [21] and
[22], while in feedback information structure the problem studied by [23] and [24].
However, all the contributions presented above only consider the hard-constrained
game.

The paper outline is compiled as follows. Section 2 proposes the game to be
studied and the main problem to be solved. Section 3 is focused on the solution
of OLSP equilibrium of the game and the conclusions are compiled in Section 4.

2. Preliminaries

We consider in this paper a game that presented with the dynamical system of
the form

Exk+1 = Axk +B1u1k +B2u2k, xk=1 = x0, k ∈ [1,K] , (2.1)

where E,A ∈ R(n+r)×(n+r), rank (E) = n, Bi ∈ R(n+r)×mi and x0 denotes the
consistent initial state 1. An mi × 1 vector uik ∈ Usi ⊂ Rmi states the strategy
made by the players to control the system, and Usi states the set of all possible
strategies for the two players. The first player aims to minimize his cost functional
Jγ presented in a quadratic form

Jγ (u1k, u2k) =

K∑
k=1

(
xTkQxk + uT1kR1u1k − γuT2kR2u2k

)
+ xK+1Q̄KxK+1, (2.2)

where Q, Q̄K ≥ 0, R1, R2 > 0, and the parameter γ ∈ R is a weighting for the
second player strategy that want to maximize Jγ (or, in other words, to minimize
−Jγ). The game considered above is called a soft-constrained descriptor dynamic
game. The soft-constrained term is added to indicate that there is no hard bound
for u2 in this game [18].

We begin this section by reviewing some basic results of descriptor systems.
Initially, we call from [25] that if there exists λ ∈ C such that det(λE − A) 6= 0
then the couple (E,A) is called regular, otherwise it is called non-regular. If (E,A)
is regular, then the system (1) is said to be regular. Next, when the system (2.1)
is regular then there are non-singular matrices X,Y ∈ R(n+r)×(n+r) such that [26]

Y TEX =

[
In 0
0 N

]
and Y TAX =

[
A1 0
0 Ir

]
(2.3)

1An initial state is called consistent if with the selection of this initial state the system (2.1)

has a solution.
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where A1 and N are appropriate matrices, with N is a nilpotent matrix with index
r and A1 is an (n×n) Jordan matrix. The In and Ir denote identity matrices and
0 is a zero matrix. Applying the coordinates transformation

xk = X

[
x1k
x2k

]
, (2.4)

and using the result of (2.3), the system (2.1) then can be described by the following
two subsystems

x1(k+1) = A1x1k + Y1B1u1k + Y1B2u2k, x1(k=1) =
[
In 0

]
X−1x0

Nx2(k+1) = x2k + Y2B1u1k + Y2B2u2k
(2.5)

where Y =

[
Y1
Y2

]
. The solution of system (2.5) is given by

x1k = Aq1x1,0 +
2∑
j=1

q−1∑
i=0

Aq−i−11 Y1Bjuji

x2k = −
2∑
j=1

q−1∑
i=0

N iY2Bjuj(k+i).

We define q is the nilpotency degree of N , that is the integer q such that Nq = 0
and Nq−1 6= 0. The index of system (2.1) is the degree q of nilpotency of N . When
the matrix E is nonsingular, we specify the index to be zero. If the system (2.1)
has index more than one, then the impulses can appear in the system response
if the control of the system is not smooth enough. Moreover, since the system
(2.1) is usually only an approximation of such nonlinear system then in general
the disturbance of the system caused an impulsive solutions when the system is of
index more than one. For that reason, here we restrict our system has index no
more than one. From [27] the system (2.1) is regular and of index no more than
one if and only if rank

([
E AS∞ (E)

])
= n + r, where S∞ (E) satisfies the

construction that S∞ (E) and T∞ (E) are full rank matrices whose columns span
the null spaces N(E) and N(EH).

Based on the above description, we make the following assumptions.

Assumption 2.1. In this paper, we assume the following applies with respect to
system (2.1):

(1) matrix E is singular
(2) system (2.1) is regular
(3) rank

([
E AS∞ (E)

])
= n+ r.

Next, we describe the open-loop saddle point (OLSP) solution as a main object
discussed in this paper.

Definition 2.2. Consider the zero-sum discrete-time soft-constrained descriptor
dynamic game (2.1,2.2) with open-loop information structure, where Assumption
2.1 applies and the initial state x1,0 is consistent. The set Us = Us1 × Us2 define
the set of bounded piecewise continuous functions that represent the set of all
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admissible actions for both players. The pair (u1k, u2k) are an open-loop saddle-
point (OLSP) equilibrium for the game (2.1,2.2) if for every (u1k, u

∗
2k) , (u∗1k, u2k) ∈

Us, the following inequalities hold

Jγ (u∗1k, u2k) ≤ Jγ (u∗1k, u
∗
2k) ≤ Jγ (u1k, u

∗
2k) .

To find the above OLSP equilibrium the idea is to transform the index one
descriptor dynamic game (2.1,2.2) into a reduced nonsingular dynamic game. That
there is no hassle in the function of final state, then we consider that [28]

XT Q̄KX =

[
QK 0
0 0

]
, where QK ∈ Rn×n. (2.6)

Under the index one assumption, with the coordinate transformation (2.4) the
game (2.1,2.2) has a set of OLSP equilibrium actions (u1k, u2k) if and only if
(u1k, u2k) are OLSP equilibrium actions for the game 2

x1(k+1) = A1x1k + Y1B1u1k + Y1B2u2k, x1(k=1) =
[
In 0

]
X−1x0 (2.7)

0 = x2k + Y2B1u1k + Y2B2u2k (2.8)

where the quadratic cost functional for the first player is

Jγ (u1k, u2k) =
K∑
k=1

([
xT1k xT2k

]
XTQX

[
x1k
x2k

]
+ uT1kR1u1k − γuT2kR2u2k

)
+
[
xT1(K+1) xT2(K+1)

]
XT Q̄KX

[
x1(K+1)

x2(K+1)

]
.

(2.9)
From (2.8), it follows that

x2k = −Y2B1u1k − Y2B2u2k. (2.10)

Substitution (2.6) and (2.10) into the cost function (2.9) shows that (u1k, u2k) are
OLSP equilibrium action for the game (2.1,2.2) if and only if (u1k, u2k) are OLSP
equilibrium actions for the game described by the dynamical system (2.7) which
the first player has a quadratic cost function of the form

Jγ (u1k, u2k) =
K∑
k=1

[ xT1k uT1k uT1k ]
 In 0

0 −BT1 Y T2
0 −BT2 Y T2

[ XT
1

XT
2

]
Q
[
X1 X2

]
×
[
In 0 0
0 −Y2B1 −Y2B2

] x1k
u1k
u2k

+ uT1kR1u1k − γuT2kR2u2k


+xT1(K+1)QKx1(K+1)

=:
N∑
k=1

(
zTkMzk

)
+ xT1(K+1)QKx1(K+1)

(2.11)

2see [29] for the continuous (hard-constrained) open-loop differential game.
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where zk =

 x1k
u1k
u2k

 and

M =

 Q̃ V W
V T R11 N
WT NT R22γ

 . (2.12)

The spelling of the matrices defined in (2.12) is presented in the Appendix.

3. The OLSP Solution

In this section we deal with the game (2.1,2.2) that equivalent with (2.7,2.11)
under the assumption that K is finite and the consistent initial state of the game
to be known, but nor necessary zero. First, we recall a theorem from [18] that
states the existence of solution for such game.

Theorem 3.1. Consider the dynamic game (2.7,2.11). Let Usi be convex, Jγ (u1k, u2k)
be convex in u1k ∈ Us1 for every u2k ∈ Us2 and concave in u2k ∈ Us2 for every
u1k ∈ Us1. Then there exists a saddle point solution in pure strategies for this
game. If, furthermore, Jγ (u1k, u2k) is strictly convex-concave, the saddle point
solution is unique.

According to Theorem 3.1 above, to find the unique OLSP solution of the
game, first we set the open-loop action of the second player, say ū2k, k ∈ [1,K],
and minimize Jγ (u1k, ū2k) in (2.11) with respect to u1k, k ∈ [1,K]. This issue
mathematically may be described as finding a unique solution for the following
linear quadratic optimization problem

min
u1k

Jγ (u1k, ū2k) .

Using the linear quadratic optimization control theory (see e.g. [20]), it states
that the solution exists and is unique. Furthermore, since Jγ (u1k, ū2k), then this
solution is strictly convex in u1k. Mathematically, this solution is characterized
by the discrete-time Riccati equation

Ā11Sk = Q̃11 −AT1 Sk+1Ã11 −AT1 Sk+1B̂
(
γI + B̂TSk+1B̂

)
B̂TSk+1Ã11;

SK+1 = Q1K ,

where Ā11 = I + Y1B1R
−1
11 V

T , Ã11 = A1 − Y1B1R
−1
11 V

T , Q̃11 = Q̄ − V R−111 V
T ,

and B̂B̂T = Y1B1R
−1
11 B

T
1 Y

T
1 .

Next, conversely, we set the open-loop action of the first player, say ū1k,
k ∈ [1,K], and minimize Jγ (ū1k, u2k) in (2.11) with respect to u2k, k ∈ [1,K].
Commensurate with the explanation above, this issue mathematically may be de-
scribed as finding a unique solution for the following linear quadratic optimization
problem

max
u2k

Jγ (ū1k, u2k) . (3.1)
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To assure the above optimization problem has a unique solution, we require that
Jγ (ū1k, u2k) is strictly concave in u2k for every fixed u1k, k ∈ [1,K]. The following
lemma translates the above requirement.

Lemma 3.2. Consider the dynamic game (2.7,2.11). For every open-loop strategy
u1k of the first player, its cost function is strictly concave in u2k if and only if

γI + B̄TSk+1B̄ > 0, k ∈ [1,K] (3.2)

where the sequence of matrices SK+1, k ∈ [1,K], is constructed by the Riccati
equation

Ā12Sk = Q̃12 −AT1 Sk+1Ã12 −AT1 Sk+1B̄
(
γI + B̄TSk+1B̄

)
B̄TSk+1Ã12;

SK+1 = Q2K ,
(3.3)

where Ā12 = I+Y1B2R
−1
22γW

T , Ã12 = A1−Y1B2R
−1
22γW

T , Q̃12 = Q̄−WR−122γW
T ,

B̄B̄T = Y1B2R
−1
22γB

T
2 Y

T
1 .

Proof. Since the game (2.7,2.11) is zero-sum game and the cost function Jγ (ū1k, u2k)
is a function in quadratic form of u2k, then the condition that (3.1) must be strictly
concave is equivalent to finding the unique solution of the optimal control problem

min
u2k

[−Jγ (ū1k, u2k)] (3.4)

subject to (2.7) and for each ū1k, k ∈ [1,K]. Without any loss of generality, we
can take ū1k = 0 and then the optimal control problem (3.4) is in the form of
standard dynamic one-person optimization problem

min
u2k

K∑
k=1

(
uT2kΘ1u2k − ξTk Θ2ξk

)
subject to the dynamical system

ξk+1 = A1ξk + Y1B2u2k

for some matrices Θ1,Θ2, and state ξk. From this, the result follows from the
dynamic programming procedure for discrete-time systems (see e.g. [30], sec 5.5.1)
which admits the unique solution if and only if (3.2) and (3.3) hold. �

So, Lemma 1 assures the strict convexity and concavity of the open-loop soft-
constrained game (2.7,2.11). From Theorem 1, than the game has a unique OLSP
solution. Before we present the solution of the game (2.7,2.11), here we recall from
[30] about some conditions when the game has a saddle-point solution.

Theorem 3.3. Consider the discrete-time two-person zero-sum dynamic game

xk+1 = fk (xk, u1k, u2k) k ∈ [1,K]

with the cost function

Ji (u1, u2) =

K∑
k=1

gik (xk+1, u1k, u2k) ,

let

(1) fk (·, u1k, u2k) be continuously differentiable on Rn, k ∈ [1,K],

15



SHORT TITLE FOR RUNNING HEADING 7

(2) gik (·, u1k, u2k) be continuously differentiable on Rn × Rn, k ∈ [1,K],
(3) fk (·, ·, ·) be convex on Rn × U1s × U2s, k ∈ [1,K].

Then, if the open-loop saddle-point solution of the game is {u∗ik, i = 1, 2} with the
corresponding state trajectory is

{
x∗k+1; k ∈ [1,K]

}
, then a finite sequence of n di-

mensional (costate) vectors {λ2, ..., λk+1} exists such that it satisfies the following
relations:

x∗k+1 = fk (x∗k, u
∗
1k, u

∗
2k) , x∗1 = x1, (3.5)

Hik (λik+1, u
∗
1k, u2k, x

∗
1k) ≤ Hik (λik+1, u

∗
1k, u

∗
2k, x

∗
1k) ≤ (λik+1, u1k, u

∗
2k, x

∗
1k) ,

∀uik ∈ Usi
(3.6)

λk = ∂
∂xk

fk (x∗k, u
∗
1k, u

∗
2k)

T

[
λk+1 +

(
∂

∂xk+1
gik (xk+1, u1k, u2k, xk)

)T]
+
[
∂
∂xk

gik (xk+1, u1k, u2k, xk)
] (3.7)

where

Hik (λik+1, u1k, u2k, x1k) = gik (fk (xk, u1k, u2k) , u1k, u2k, xk)
+λTik+1fk (xk, u1k, u2k) , k ∈ [1,K] .

Now, we ready to state the solution of the soft-constrained game (2.7,2.11) as
the main result in this paper. The following notation is used in the next theorem

G =

[
R11 N
NT R22γ

]
:= ĪḠ, where Ḡ =

[
R11 N
−NT −R22γ

]
, Ī =

[
I 0
0 −I

]
, Z =[

V W
]
, Z̄ =

[
V −W

]
, B =

[
Y1B1 Y2B2

]
, B̃ =

[
Y1B1 −Y2B2

]
,

Q̂ = Q̄− ZG−1ZT , and Â1 = A1 −BG−1ZT .

Theorem 3.4. Consider the open-loop zero-sum soft-constrained linear quadratic
discrete-time dynamic game described by (2.7), with the quadratic cost function for
the first player is (2.11) and the second player has the opposite objective function
−Jγ (u1k, u2k). Assume Ri, i = 1, 2 are positive definite and R22γ is negative
definite, and Mk, k ∈ 1,K, is a sequence of matrices generated by

Mk = Q̂+ ÂT1Mk+1∆−1k Â1 (3.8)

where

∆k = I +BG−1BTMk+1.

Then,

(1) The matrices ∆k, k ∈ [1,K] are invertible.
(2) The dynamic game (2.7,2.11) has a unique OLSP solution, given by[

u∗1k
u∗2k

]
= −ĪḠ−1

(
Z̄Tx∗1k + B̃TMk+1x

∗
1k+1

)
, k ∈ [1,K] (3.9)

where
{
x∗1k+1, k ∈ [1,K]

}
is the corresponding state trajectory, generated

by dynamical system

x∗1k+1 = ∆−1k Â1x
∗
1k. (3.10)
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(3) The saddle-point value of the game is

J∗γ (u∗1k, u
∗
2k) =

([
I 0

]
X−1x1,1

)T
M1

([
I 0

]
X−1x1,1

)
.

(4) The upper value of the dynamic game (2.7,2.11) becomes unbounded if the
matrix in (3.2) has at least one negative eigenvalue.

Proof. Firstly, let us notice that under condition (3.2) and with the open-loop
information structure, the linear quadratic zero-sum game (2.7,2.11) is strictly
convex-concave which admits a unique OLSP solution by Theorem 3.1. Second,
from Theorem 3.1 we infer that this unique saddle-point solution should meet
equations (3.5) - (3.7), which for the game (2.7,2.11) it can be rewritten as follows:

x1(k+1) = A1x1k + Y1B1u1k + Y1B2u2k, x
∗
1(k=1) = x1(k=1),

Hik (λik+1, u
∗
1k, u2k, x

∗
1k) ≤ Hik (λik+1, u

∗
1k, u

∗
2k, x

∗
1k) ≤ (λik+1, u1k, u

∗
2k, x

∗
1k) ,

∀uik ∈ Usi,
and

λik = Q̄x1k + V u1k +Wu2k +AT1 λik+1,

where

Hik (λik+1, u1k, u2k, x1k) = zTkMzk + λik+1 (A1x1k + Y1B1u1k + Y1B2u2k) ,
k ∈ [1,K] .

An inductive argument indicates that the above relations have the solution[
u∗1k
u∗2k

]
= −ĪḠ−1

(
Z̄Tx∗1k + B̃TMk+1x

∗
1k+1

)
which verifies (3.9). The corresponding value of the state vector, x∗1k+1, in the
equation above satisfies

∆kx
∗
1k+1 = Â1x

∗
1k.

Since the game has a unique saddle-point solution, it causes a one-to-one corre-
spondence between x∗1k and x∗1k+1 that implies the matrix ∆k should be invertible
for each k ∈ [1,K]. Hence

x∗1k+1 = ∆−1k Â1x
∗
1k

which verifies (3.10). �

4. Concluding Remark

In this paper we have constructed the theorem regarding the existence of an
open-loop saddle point (OLSP) equilibrium for open-loop discrete-time zero-sum
linear quadratic soft-constrained dynamic games. We have shown how the Riccati
equation (15) plays an important role for the games. Nevertheless, we only con-
sider an open-loop information structure in this paper. So, another information
structure such as feedback and delayed information is an open problem left for
further research.
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Appendix

The following are shorthand notation used in this paper:
Q̃ := XT

1 QX1, V := −XT
1 QX2Y2B1,

W := −XT
1 QX2Y2B2, N := BT1 Y

T
2 X

T
2 QX2Y2B2,

R11 := BT1 Y
T
2 X

T
2 QX2Y2B1 +R1, R22γ := BT2 Y

T
2 X

T
2 QX2Y2B2 − γR2.
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