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Abstract. This work consists of the study of fourth-order compact method
for solving the well-known Fishers equation. The Fishers equation is a second-

order nonlinear partial differential equation. Numerical calculations can be

furnished in the formation of accurate results [5]. The proposed problems
that seem to be very difficult at a first sight can be solved by supposing the

unknown functions as x(t) and y(t). The proposed problems considered may

be turned into the more complex form, the standard second-order methods
become less suitable for use due to increase in the number of grid points

necessary for accuracy. The compact method procedure requires only three

nodes to yield a fourth-order accuracy as compared to the five nodes that
are required to get the similar precision. Mainly two different schemes or

approximations methods are used naming forward difference approximation
and backward difference approximation. Fourth-order compact method is

a useful system as it provides us a higher order approximation consuming

fewer mesh points than the five mesh points that a standard fourth-order
approximation requires. These are constructed by difference techniques that

consider the function and all necessary derivatives as unknowns. The relation

of these functions and derivative leads to simple tri-diagonal equations that
can easily be solved.

1. Introduction

To recognize the existence of PDEs in a mathematical study of real life, we must
be familiar with many of the real word problems that are explained by choosing
a function having two or more two variables which are independent. Therefore,
in this way, we can construct a function leading its ordinary derivatives to partial
derivatives in the formation of PDE. In mathematical physics, PDEs are mostly
used to classify the equations [1, 2]. PDEs play a vital role in many other subjects
like electrical engineering, mechanical engineering, computer science, modeling of
biological and chemical structures, and many more. They are also very useful in
diffusion equation, heat conduction, and viscous fluid flow. We can generalize the
DE having ordinary as well as partial derivatives. The solutions obtained from
these equations will have one or more than one variable. These obtained equations
are natural, for example, if someone is dealing with the situation having position
in space over time and he wants to model this situation, he will be in need of a
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function of several variables for spatial dimensions with respect to time. Some
useful partial differential equations are given below:

1-D wave equation is given by

(1.1)
∂2f

∂t2
= c2

∂2f

∂x2

1-D heat equation is given by

(1.2)
∂f

∂t
= c2

∂2f

∂x2

2-D Laplace equation is given by

(1.3)
∂2f

∂x2
+
∂2f

∂y2
= 0

2-D Poisson’s equation is shown below

(1.4)
∂2f

∂x2
+
∂2f

∂y2
= g(x, y)

2. Materials and methods

In partial differential equations, we use the letter f instead of y, which is com-
monly used in multivariable functions. The same methodology can be applied to
explain partial differential equations as for ordinary differential equations. We
introduce any equation that involves one or more than one partial derivative of a
function having multivariable [1]. In equation (4), g(x, y) is just a function consists
of variables x and y and has no effect on f(x, y). All partial differential equations
used in (1), (2), (3), and (4) are linear and of second order. The equations (1), (2),
and (3) are homogenous but (4) is non-homogenous as g(x, y) does not involve f or
any of its derivatives. Homogeneity and linearity of the partial differential equa-
tions mentioned above are discussed because of the principle of superposition. In
this principle, we consider the solution of linear homogenous partial differential
equations. Consider f1 and f2 be two functions satisfying a linear homogenous
DE. We know that the derivative of the sum of two functions will be equal to the
sum of their derivatives. And the sum of f1 and f2 will also be the solution of a
particular DE. Lets consider an example, in which f1 = Cos(xy) & f2 = Sin(xy)
are the solutions of any partial differential equations (5) and (6), respectively. The
PDEs defined by (5) and (6) are of first order, linear, and homogenous.

(2.1) xf1x − yf1y = 0

(2.2) xf2x − yf2y = 0

This principle is very important and essential, because it supports us to con-
struct a particular solution out of infinite solutions with the help of Fourier series.
We can categorize the partial differential equations as parabolic, elliptic or hyper-
bolic [4]. This classification depends upon the sign of b2 4ac, which is mentioned
as follows:
i) If b2 4ac is greater than zero, then the given equation will be hyperbolic.

16
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ii) If b2 4ac is smaller than zero, then the given equation will be elliptic.
iii) If b2 4ac is equal to zero, then the given equation will be parabolic.
Such systems have various distinctive behaviors and can be categorized as follows:
Name of Equation Wave Diffusion Poisson’s
Symbolization fx = a2fxx ft = a2fxx fxx + fyy = g (x, y)
Coefficients of a, b, c 1, 0, -a2 0, 0, -a2 1, 0, 1
Sign of discriminant +Ve 0 -Ve
PDE Class Name Hyperbolic Parabolic Elliptic

Partial differential equations can be solved by different methods and can be ex-
plained by examples.

3. Fourth-order compact method for Fishers equation

The fourth-order compact method [9, 10] has been constructed for the one-
dimensional gas dynamics equations. The compact method is mainly used to give
the accuracy of fourth-order with the help of only three nodes, but in other meth-
ods, we need at least five nodes to get the same accurate results. It is treated
by adopting a differencing technique that studies the function of its all essential
derivatives as unknowns. Simple tridiagonal system of equations can be correlated
with the relations of above mentioned derivatives and then can easily be solved.
The results accomplished by fourth-order compact method [3] are more accurate
using fewer calculations. We see that the precision attained by fourth-order com-
pact method is considerably better than the others.

4. Introduction to Fishers equation

Fisher’s equation is a 2nd order nonlinear PDE [8]. It is very useful in many
other subjects such as problems created in physics. Ut = Uxx + U − U2

It admits traveling wave solutions followed as:

f (x, y) =
1

[1 + c
−5t
6 ± x√

6 ]
2

Where c is an arbitrary constant.

5. Numerical scheme of fourth-order compact method for Fishers
equation

Consider the second-order nonlinear Fisher’s equation

(5.1) Ut = Uxx + U (1− U)

With the following boundary and initial conditions
Left boundary condition is

(5.2) U (−0.2, t) = 1

Right boundary condition is

(5.3) U (0.8, t) = 0
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Initial condition is

(5.4) U (x, 0) = U0 (x) =
1

[1 + e
x√
6 ]

2

We now discuss a fourth-order approximation consisting of three grid points
only. It is a very useful scheme as it provides us a higher order approximation
involving fewer grid points than the five grid points that a standard fourth-order
approximation involves. This method estimates (7) by two difference equations
of fourth-order using only three grid points xi−1,xi and xi+1. To develop the
suitable finite difference equations [6, 7], firstly, new variables for the derivatives
are introduced. Suppose the first and second derivatives of U with respect to x
are F and S, respectively.

That is,

(5.5) Ux = F &Uxx = S

Integrating both sides of equation (5.5) from “ −1 to i+ 1 “ we get

Un
i+1 − Un

i−1 =

∫ xi+1

xi−1

F (ξ, 1) dξ

(5.6) Un
i+1 = Un

i−1 +

∫ xi+1

xi−1

F (ξ, 1) dξ

Approximating the integral by Simpson’s Rule:

Un
i+1 = Un

i−1 +
h

3

[
Fn
i−1 + 4Fn

i + Fn
i+1

]
+

1

90
[h5F (4)(ξ, 1)]

Fn
i−1 + 4Fn

i + Fn
i+1 +

3

h

[
Un
i−1 − Un

i+1

]
=
−1

30
[h4F (4)(ξ, 1)]

Thus to the fourth-order we have

(5.7) Fn
i−1 + 4Fn

i + Fn
i+1 +

3

h

[
Un
i−1 − Un

i+1

]
= 0

To get the second equation, we evaluate (5.1) at the midpoint i.

(5.8) Ut|
n
i

= Sn
i + Un

i (1− Un
i )

We need an expression for Sn
i .If we express Un

i+1,Un
i−1 in the Taylor’s expansion

about the point i. We get
(5.9)

Un
i+1 = Un

i +h Ux|
n
i

+
h2

2!
Uxx|

n
i

+
h3

3!
Uxxx|

n
i

+
h4

4!
Uxxxx|

n
i

+
h5

5!
Uxxxxx|

n
i

+. . .

(5.10)

Un
i−1 = Un

i −h Ux|
n
i

+
h2

2!
Uxx|

n
i
−h

3

3!
Uxxx|

n
i

+
h4

4!
Uxxxx|

n
i
−h

5

5!
Uxxxxx|

n
i

+. . .

Now adding (5.9) and (5.10).

Un
i+1 + Un

i−1 = 2Un
i + h2 Uxx|

n
i

+
h4

12
U

n(4)
i +

h6

360
U

n(6)
i (ξ, 1)
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Because Uxx = S

(5.11) Un
i+1 + Un

i−1 = 2Un
i + h2Sn

i +
h4

12
U

n(4)
i +

h6

360
U

n(6)
i (ξ, 1)

(5.12)

Fn
i+1 = Fn

i +h Fx|
n
i

+
h2

2!
Fxx|

n
i

+
h3

3!
Fxxx|

n
i

+
h4

4!
Fxxxx|

n
i

+
h5

5!
Fxxxxx|

n
i

+. . .

(5.13)

Fn
i−1 = Fn

i −h Fx|
n
i

+
h2

2!
Fxx|

n
i
−h

3

3!
Fxxx|

n
i

+
h4

4!
Fxxxx|

n
i
−h

5

5!
Fxxxxx|

n
i

+. . .

Subtracting (5.12) and (5.13), we get

Fn
i+1 − Fn

i−1 = 2h Fx|
n
i

+
2h3

3!
Fxxx|

n
i

+
2h5

5!
F

n(5)
i (ξ, 1)

Fx = S , Fxxx|
n
i

= U
n(1.4)
i , F

n(2.1)
i = U

n(2.2)
i

(5.14) Fn
i+1 − Fn

i−1 = 2hSn
i +

h3

3
U

n(4)
i +

h5

60
U

n(6)
i (ξ, 1)

Now we eliminate U
n(4)
i from equations (5.11) and (5.14).

Multiplying the equation (5.14) by h
4 , we get

(5.15)
h

4

[
Fn
i+1 − Fn

i−1

]
=
h2

2
Sn
i +

h4

12
U

n(4)
i +

h6

240
U

n(6)
i (ξ, 1)

Subtracting equation (5.15) from equation (5.11), we get

Un
i+1 + Un

i−1 −
h

4

[
Fn
i+1 − Fn

i−1

]
= 2Un

i +
h2

2
Sn
i −

h6

720
U

n(6)
i (ξ, 1)

h2

2
Sn
i = Un

i+1 + Un
i−1 −

h

4

[
Fn
i+1 − Fn

i−1

]
− 2Un

i +
h6

720
U

n(6)
i (ξ, 1)

Sn
i =

2

h2
[Un

i+1 + Un
i−1 −

h

4

[
Fn
i+1 − Fn

i−1

]
− 2Un

i +
h6

720
U

n(6)
i (ξ, 1)]

(5.16) Sn
i =

2

h2
[Un

i+1 − 2Un
i + Un

i−1]− 1

2h

[
Fn
i+1 − Fn

i−1

]
+

h4

360
U

n(6)
i (ξ, 1)

Therefore, the equation (5.1) becomes

dUn
i

dt
= Sn

i + Un
i (1− Un

i )

From the equation (5.16), putting the value of Sn
i in equation (5.8), we get

dUn
i

dt
=

2

h2
[Un

i+1 − 2Un
i + Un

i−1]− 1

2h

[
Fn
i+1 − Fn

i−1

]
+ Un

i [1− Un
i ]

(5.17) Ut|
n
i

=
2

h2
[Un

i+1 − 2Un
i + Un

i−1]− 1

2h

[
Fn
i+1 − Fn

i−1

]
+ Un

i [1− Un
i ]

Equation (5.1) is replaced by two equations (5.7) and (5.17).
For i = 1
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F0 + 4F1 + F2+ 3
h [U0 − U2] = 0 and

dU1

dt
=

2

h2
[U2 − 2U1 + U0]− 1

2h
[F2 − F0] + U1[1− U1]

By letting q = 2
h2 , r2 = 1

2h & r1 = 1
h

The above two equations become

(5.18) F0 + 4F1 + F2 + 3r1 [U0 − U2] = 0

(5.19)
dU1

dt
= q[U2 − 2U1 + U0]− r2 [F2 − F0] + U1[1− U1]

By using forward difference approximation

Fi =
Ui+1 − Ui

h
& U0 = 1

And For i = 0, the above expression becomes

F0 =
U1 − U0

h
= r1(U1 − 1)

Therefore, equation (5.18) & equation (5.19) become
r1 [U1 − 1] + 4F1 + b2 (2, 1)+ 3r1 [1− U2] = 0, where F2 = b2(2, 1)
r1[U1 − 3U2 + 2] + 4F1 + b2(2, 1) = 0 and

dU1

dt
= q[U2 − 2U1 + 1]− r2 [b2 (2, 1)− r1 (U1 − 1)] + U1[1− U1]

Similarly, we will have the expressions
for i = 2 , 3 , . . . , n – 2 from the equations (5.7) & (5.17) .
For i = n – 1
By using backward difference approximation

Fi =
Ui − Ui−1

h
& Un = 0

And for i = n, the above expression becomes

Fn =
Un − Un−1

h
=

0− Un−1

h
= −r1Un−1

Therefore, equation (5.7) & equation (5.17) become

Fn−2 + 4Fn−1 + Fn + 3r1[Un−2 − Un] = 0

(5.20) Fn−2 + 4Fn−1 + Fn + 3r1Un−2 = 0

dUn−1

dt
= q[Un − 2Un−1 + Un−2]− r2 [Fn − Fn−2] + Un−1[1− Un−1],

where Fn−2 = bn−2(n− 2, 1)

dUn−1

dt
= q[0− 2Un−1 +Un−2]− r2 [−r1Un−1 − bn−2(n− 2, 1)] +Un−1[1−Un−1]

(5.21)
dUn−1

dt
= q[Un−2 − 2Un−1]∓ [r1Un−1 + bn−2(n− 2, 1)] +Un−1[1−Un−1]
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By equation (5.7)

Fn
i−1 + 4Fn

i + Fn
i+1 +

3

h

[
Un
i−1 − Un

i+1

]
= 0

This equation shows a set of linear algebraic equations.
Equation (5.7) becomes

dUn
i

dt
=

2

h2
[Un

i+1 − 2Un
i + Un

i−1]− 1

2h

[
Fn
i+1 − Fn

i−1

]
+ Un

i [1− Un
i ].

This equation shows a system of differential equations and the superscript n is
utilized to show the grid line of time. We have this compact scheme for the Fishers
equation. We solve this system of differential equations using ODEs solver LSODE.
Therefore, for each time we call LSODE to solve ODEs, we have to solve a set of
linear algebraic equations for F. Now there is a comparison between the numerical
solutions and the exact solutions of the Fishers equation using the fourth-order
compact method by taking the points n = 70 and for different times t, i.e.

6. Results and discussion

In the figures 1, 2, 3, and 4, blue line shows the numerical solution of Fishers
equation and the green line shows the exact solution using fourth-order compact
method by taking n = 70 points at time t = 108 , t = 107 , t = 106 , and t = 105

, respectively. Therefore, it is very clear from the diagrams that the fourth-order
compact method yields equally accurate results.

Figure 1. t=10−8
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Figure 2. t=10−7

Figure 3. t=10−6
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Figure 4. t=10−5

7. Conclusion

In this study, we have discussed fourth-order compact method for solving the
Fishers equation. The results that are obtained numerically can be compared with
the exact solution. We observe that the results obtained from this method, using
three nodes only are more accurate and precise.

Acknowledgment. All authors are grateful to those who encouraged and helped
in producing such research work.
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