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Periodic Oscillation for Cohen-Grossberg-type Neural Networks with
Neutral Time-varying Delays
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Abstract: In this paper, a Cohen-Grossberg-type model of neural networks with neutral time-varying delays is
investigated by using the continuation theorem of Mawhin’s coincidence degree theory and some analysis
techniques. Without assuming the continuous differentiability of time-varying delays, sufficient conditions for
the existence of the periodic solutions are given. The result of this paper is new and extent previously known
result.
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1. INTRODUCTION

In recent years, the cellular neural networks have been extensively studied and applied in many different fields
such as signal and image processing, pattern recognition and optimization. In implementation of networks, time
delays are inevitably encountered because of the finite switching speed of amplifiers. Thus, it is very important
to investigate the dynamics of delay neural networks. In theory and application, the existence of periodic solutions
of neural networks model is of great interest [1-9]. Very recently, Gui, Ge and Yang [10] investigated the
existence of periodic solutions of Hopfield networks model with neutral delay by means of an abstract continuous
theorem of k-set contractive operator and some analysis techniques. But they do require the time-varying delays
�ij(t) and �ij(t) are continuously differentiable. Furthermore, the criterion for the existence of periodic solutions
of Hopfield neural networks model in [10] depends on the ��ij and ��ij.

In this paper, we consider the following Cohen-Grossberg type neural networks with neutral time-varying
delays:
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where i = 1, 2, ..., n, xi(t) denotes the potential (or voltage) of cell i at time t; ai(xi(t))) represent an amplification
function; bi(xi(t)) be include a constant term indicating a fixed input the network; aij(t) and bij(t) represent the
delayed strengths of connectivity and neutral delayed strengths of connectivity between cell i and j at time t,
respectively; fj and gj are the activation functions in system (1); Ji(t) is an external input on the ith unit at time t,
in which Ji : R � R, i = 1, ..., n, are continuous periodic functions with period �; �ij(t), �ij(t) � 0 correspond to
the transmission delays.

Obviously, system (1) is a generalization of the following model for an Hopfield neural networks system
with neutral delays in [10]:
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In this paper, by using the continuation theorem of coincidence degree theory and some analysis technique,
we obtain some new sufficient conditions for the existence of the periodic solutions of system (1). The conditions
imposed on the time-varying delays �ij(t) and �ij(t) do not need the assumptions of continuously differentiable.
Our works in this paper are new and extend previous result in [10].

2. PRELIMINARIES

In this section, we state some notations, definitions and some Lemmas.

Let A = (aij)n×n be a real n × n matrix, A > 0 (A � 0) denotes each element aij is positive (nonnegative,
respectively). Let x = (x1, x2, ..., xn)

T � Rn be a vector, x > 0 (x � 0) denotes each element xi is positive (nonnegative,
respectively). For matrices or vectors A and B, A � B (A > B) means that A – B � (A – B > 0).

Definition 2.1 [11]: Matrix A = (aij)n×n is said to be a nonsingular M-matrix, if

(i) aii > 0, i = 1, 2, ..., n;

(ii) aij � 0, for i �, j, i, j = 1, 2, ..., n;

(iii) A–1 � 0.

Let X and Y be normed vector spaces, Let L : domL � X � Y be a linear mapping, L will be called a Fredholm
mapping of index zero if dimKerL = codimImL < + � and ImL is closed in Y. If L is a Fredholm mapping of
index zero, there exist continuous projectors P : X � X and Q : Y � Y such that ImP = KerL, KerQ = ImL = Im(I
– Q). It follows that mapping L|domL�KerP : (I – P)X � ImL is invertible. We denote the inverse of the mapping by
KP. If � is an open bounded subset of X, the mapping N will be called L-compact on �

–
  if QN(�

–
 ) is bounded and

KP(I– Q)N : �
–

 � X is compact. Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ � KerL.

Now, we introduce Mawhin’s continuation theorem [12, p.40] as follows.

Lemma 2.1: Let X and Y be two Banach spaces, L : domL � Y be a Fredholm operator with index zero.
Assume that � is a open bounded set in X, and N is L-compact on �

–
 . If all the following conditions hold:

(a) for each ��� (0, 1), x ������ DomL, Lx � Nx;

(b) QNx � 0 for each x ������ KerL, and deg(JNQ, ���  KerL, 0) � 0,

where J is an isomorphism J : ImQ � KerL. Then equation Lx = Nx has at least one solution in �
–

  � DomL.

The following lemmas will be useful to prove our main result in Section 3.

Lemma 2.2 [11]: Assume that A is a nonsingular M-matrix and Aw � d, then w � A–1d.

Lemma 2.3 [13]: Let A = (aij) with aij � 0, i, j = 1, 2, ..., n, i � j. Then the following statements are equivalent.

(1) A is an M-matrix.

(2) There exists a row vector ��= (�1, �2, ..., �n) > (0, 0, ..., 0) such that �A > 0.

(3) There exists a column vector ��= (�1, �2, ..., �n)
T > (0, 0, ..., 0)T such that A��> 0.

Throughout this paper, we assume that

(H1) aij, bij, Jj � C(�,��), �ij, �ij � C(�,��+) (�+ = [0, �)) are periodic functions with a common period �(> 0),
i, j = 1, ..., n.
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(H2) ai � C(�,��). Furthermore, there exist positive constants ai* and ai
* such that

ai* ��ai(u) ��ai
*, �u � �, i = 1, ..., n.

(H3) bi � C(�,��). Moreover, there exist positive constants bi* and b*
i such that

bi*u
2 ��ubi(u) ��b*

i u
2, �u � �, i = 1, ..., n.

(H4) fj, gj � C(�,��) are Lipschitzian with Lipschitz constants Lj and li respectively, i.e.,

�fj(x) – fj(y)� ��Lj�x – y�, �gj(x) – gj(y)� � lj �x – y�, �x, y � �, j = 1, ..., n.

3. EXISTENCE OF PERIODIC SOLUTION

In this section, we will use the continuation theorem of coincidence degree theory to obtain the existence of an
�-periodic solution to system (1).

For convenience, we introduce the following notations:
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Theorem 3.1: Let (H1)-(H4) hold. Suppose that C and A – B(C–1D) are two nonsingular M-matrix, then
system (1) has at least one �-periodic solution, where

A = (āij)n×n, ā ij = bi*�ij – a+
ij L, B = ( b̄ij)n×n, b̄ij = b+

ij lj,

C = ( c̄ij)n×n, c̄ij = �ij – a*
i b

+
ijlj, D = ( d̄ij)n×n, d̄ij = ai

* (b*
i �ij + a+

ijLj), �ij = 
1 for

0 for

i j

i j

� � ��
�

� � ��
Proof: Take

C� = {x(t) = (x1(t), ..., xn(t))
T � C(R, Rn) : xi(t + �) � xi(t), i = 1, ..., n},

C1
� = {x(t) = (x1(t), ..., xn(t)) � C1(R, Rn) : xi(t + �) � xi(t), i = 1, ..., n}.

Then C� is a Banach space with the norm �x�0 = max1�i�n{�xi�0}, �xi�0 = maxt�[0,�] �xi(t)�, C
1
� is also a Banach space

with the norm �x� = max{�x�0, �x��0}.

For each x = (x1, ..., xn) � C1
�, L : C1

� � C� and N : C1
� � C� defined by

(Lx)(t) = dx
dt

= ( �x1(t), ..., �xn(t))
T, and

� �

� �
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It is easy to see that KerL = �n, ImL = {(x1(t), ..., xn(t))
T � C� : �

�
� xi(s)ds = 0, i = 1, ..., n} is closed in C�, and L

is a Fredholm mapping of index zero. Define two projectors

Px = 1
1 10 0 0

1 1 1
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1 10 0 0

1 1 1
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Obviously, P, Q are continuous and satisfy

ImP = KerL, KerQ = ImL.

Similar to [4], we can define the generalized inverse Kp : ImL � KerP � domL of L and show that N is L-
compact on 

–
� for any open bounded set � � C1

�.

Now we are in a position to show that there exists an appropriate open, bounded subset �, which satisfies
all the requirements given in the continuation theorem. According to the operator equation Lx = �Nx, ���(0, 1),
we have
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where i = 1, ..., n. Suppose that x(t) = (x1(t), ..., xn(t))
T � C1

� is a solution of system (3) for some � (0, 1). Hence,
there exist �i � [0, �] (i = 1, ..., n) such that �xi(�i)� = maxt�[0,��] �xi(t)� = �xi�0. Thus, x�i (�i) = 0 for i = 1, ..., n. By (3),
we have
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In view of (H3), (H4) and (4), we have
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which implies that

0 0
1 1 1
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n n n
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The formulas (5) may be rewritten in the form

AX � BY + h, (6)
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where X = (�x1�0, ..., �xn�0)
T, Y = (��x1�0, ..., ��xn�0)

T, h = (hi)n×1, 
1

( (0) (0) )
n

i ij j ij j i
j

h a f b g J� � �

�

� � �� .

Let �i � [0, �] (i = 1, ..., n) such that � �xi�i� = maxt�[0,�] ���xi(t)� = � �xi�0. From (3), (H2), (H3) and (H4), we get
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where i = 1, ..., n. It is easy to know that (7) may be rewritten as

CY � DX + k. (8)

where k = (ki)n×1, 
1
( (0) (0) )

n

i i ij j ij j i i
j

k a a f b g a J� � � � �

�
� � � � . Since C is a nonsingular M-matrix, we have by (8)

and Lemma 2.2 that

Y � C–1DX + C–1k. (9)

Substituting (9) into (6), we get

(A – B(C–1D))X � BC–1k + h := w = (w1,w2, ...,wn)
T . (10)

Since A – B(C–1D) is a nonsingular M-matrix, we have by (10) and Lemma 2.2 that

X ��(A – B(C–1D))–1w := (R1, R2, ..., Rn)
T . (11)

Substituting (11) into (9), we obtain

Y � C–1D(R1, ..., Rn)
T + C–1k := (r1, r2, ..., rn)

T. (12)

Since A – B(C–1D) is an M-matrix, we have from Lemma 2.3 that there exists a vector � = (�1, �2, ..., �n)
T >

(0, 0, ..., 0)T such that
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(A – B(C–1D))� > (0, 0, ..., 0)T,

which implies that we can choose a constant p > 1 such that

p(A – B(C–1D))� > w, and p�i > Ri, i = 1, 2, ..., n. (13)

Combine (11) with (8), we get

CY ��D(R1, ..., Rn)
T + k := v = (v1, v2, ..., vn)

T . (14)

Noticing that C is an M-matrix, we have from Lemma 2.3 that there exists a vector ��= (�1, ..., �n)
T > (0, 0, ..., 0)T

such that

C� > (0, 0, ..., 0)T,

which implies that we can choose a constant q > 1 such that

qC� > v, and q�i > ri, i = 1, 2, ..., n. (15)

Set

�̄ = ( �̄1, �̄2, ..., �̄n)
T := p�,  �̄ = ( �̄1, 

 �̄2, ..., �̄n)
T := q�.

Then, by (13) and (15), we have

�̄i > Ri, (A – B(C–1D)) �̄ > w, �̄i > ri, and C �̄ > v, i = 1, 2, ... n. (16)

Now we take

��= {x(t) = (x1(t), x2(t), ..., xn(t))
T � C1

� : �xi � 0 < �̄i, ��xi�0 < �̄i, i = 1, 2, ..., n}.

Obviously, the condition (a) of Lemma 2.1 is satisfied. If x ������� KerL = ���� �n, then x(t) is a constant
vector in �n, and there exists some i � {1, 2, ..., n} such that �xi� = �̄i. It follows that
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�(QNx)i� > 0. (18)
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Then, there exists some t* � [0, �] such that
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� �
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This means that

(A �̄)i � hi. (19)

It is easy to know that D �̄ (0, 0, ..., 0)T . Since C is a nonsingular M-matrix, we have from C–1 � 0 (Lemma
2.2) that C–1D �̄ � (0, 0, ..., 0)T. Thus, we obtain

B(C–1D) �̄ � (0, ..., 0)T . (20)

Similarly, we have

BC–1k ��(0, ..., 0)T . (21)

From (19), (20) and (21), we get

(A�̄)i ��hi + (BC–1k)i + (B(C–1D) �̄)i = wi + (B(C–1D) �̄)i.

This implies that

(A – B(C–1D) �̄)i ��wi.

which contradicts (16). Hence, (18) holds. Consequently, QNx, ��0 for each x � �� � KerL.

Furthermore, let �(x, µ) = µ(–x)+(1–µ)JQNx (µ � [0, 1]), then for any x = (x1, x2, ..., xn)
T ��� � KerL, (x1,

x2, ..., xn)
T is a constant vector in �n with �xi� = �̄i for some i � {1, ..., n}. It follows that
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Therefore, there exists some t* � [0, �] such that

1 1

( )
(1 ) ( ) ( ) ( ) (0) ( ) ( ) 0

n n
i i

i i i j j ij j ij i
j j

a x
x b x f x a t g b t J t� � �

� �

� �
� � � � � � � � �� �

� � �� �
� � (24)

which implies that

1 1

( ) ( ) ( ) (0) ( ) ( ) 0
n n

i i i j j ij j ij i
j j

x b x f x a t g b t J t� � �

� �

� �
� � � � �� �

� �� �
� �



24 Journal of Mathematical Control Science and Applications (JMCSA)

Thus, we get
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this means that (A �̄)i ��hi. By (20) and (21) we obtain

((A – BC–1D) �̄)i ��wi.

which contradicts (16). Hence, (23) holds. By the homotopy invariance theorem, we get

deg{JQN, � � KerL, 0} = deg{–x, � � KerL, 0} � 0.

So, condition (b) of Lemma 2.1 is also satisfied. Therefore, from Lemma 2.1 we conclude that system (1) has at
least one �-periodic solution. The proof is complete.

Remark 3.1: If ai(t) � bi(xi) = bixi and f = g, then the system (1) reduces to system (2) in [10]. In Theorem
3.1, we remove the continuously differentiable assumptions of the time-varying delays �ij(t) and �ij(t).

4. AN ILLUSTRATIVE EXAMPLE

In this section, we give an example to illustrate the effectiveness of our result.

Example 4.1: Consider the following Cohen-Grossberg type neural networks with neutral time-varying
delays

�
�
�

�x1(t) = –a1(x1(t)) [5x1(t) – 0.5 f2(x2(t – �12(t))) – 0.4 sin t · g1( �x1(t – �11(t))) – J1(t),

�x2(t) = –a2(x2(t)) [4x2(t) – 0.3 sin t · f1(x1(t – �21(t))) – 0.2g1( �x1(t – �21(t))) – J2(t),
(25)

where

1 2 1 2 1
1 1 1 2

( ) 1 sin ( ) 1 sin ( ) ( ) sin ( )
10 5 2 3

a u u a u u f u f u u g u u� � � � � � � � � � �

a11(t) = 0, a12(t) = 0.5, a21(t) = 0.3 sin t, a22(t) = 0, b11(t) = 0.4 sin t,

b12(t) = b22(t) = 0, b21(t) = 0.2, J1(t) = 3 sin t, J2(t) = 0.75 sin t,

�12(t), �21(t), �11(t) and �21(t) can be any positive continuous bounded 2�-periodic functions. Obviously, f1(u)

(i = 1, 2) and g1(u) satisfy the Lipschitz condition (H4) with constants Li = 1
2  and l1 = 2

3 , respectively. By the
direct calculation, we have

5 0 25 0 2667 0 0 7067 0

0 15 4 0 1334 0 0 16 1
A B C

� � � �� � � � � �
� � � � � �� � � � � �� � � � �� � � � � �
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1 15 5 0 275 1 415 0 2 9244 0 3538
( )

0 18 4 8 0 2264 1 1 1882 3 9481
D C A B C D� �� � � � � �� � � � � �

� � � � � � �� � � � � �� � � � � �� � � � � �

and

1 1 0 3549 0 0318
( ( ))

0 1068 0 2629
A B C D� � � �� �

� � �� �� �� �

which implies that C and A – B(C–1D) are two nonsingular M-matrix. Hence, all the conditions of Theorem 3.1
are satisfied. So, by Theorem 3.1, system (25) has at least one 2�-periodic solution.

Figure 1: Numerical Solution x
1
(t), x

2
(t) of system (25), where 

12
(t) = 1, 

21
(t) = 0.8, 

11
(t) = 0.6 and 

21
(t) = 0.7,

x
1
(s) = x

2
(s) = 0 for s  [–1, 0]
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