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Abstract. Two-variable interpolation by polynomials is investigated for the
given f : R2 → R. The new idea is to compute for the points on the two
sides of a rectangle. In this paper, we present a generalization of the Newton
divided interpolation polynomials in two dimension. The only bet is that in
(2n + 1) distinct points of function have similar quantities.

1. Introduction

Interpolation for one variable functions has been investigate extensively in the
literature [1-15], but for two-variable functions less have been said because of the
existence of the problems. So we suggest a special interpolation points which
guarantee the existence of polynomial as sum of two polynomials corresponding
to each variable. The existence and uniqueness of the method are inherent by one
variable polynomial counterpart. It is worth to no to the interpolation is obtained
by divided differences. The idea of this article can be extended for several variable
functions. There is no need to mention its application, since wherever we need to
compute double integration or even more, the integrand is not accessible or the
antiderivative couldn’t be found or the computations are very complicated. In
section 2 the main idea is explained and finally numerical experiments are quoted.

Various kinds of interpolation formulas of one variable have long since been
proposed, such as Round interpolation [21], Newton’s, Stirling’s, Bessel’s, Gaus’s,
Everett’s, etc [16-35]. They have served to the practical numerical analysis, that
is, to the interpolation itself, to the mechanical quadrature, to the difference equa-
tion for ordinary differential equation, etc. But little has been worked out, with
regard to the interpolation of the function of two or more independent variables.
Though a few interpolation formulas of two variables were given by Shekhtman
[20], Uchimura [33], Vasil’ev [34], Wulbert [35] and etc., the methods of their
derivation, from the practical stand-point, is very tedious and troublesome and
almost no further developments of the work have been made.

Interpolation of the function of two variables is important in nonlinear equa-
tions, geophysics, process of numeral image and drawing with computer, at this
application, we must make a formula than can solve them simplicity. In other
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words, the important role of polynomials is that, the work with them is very
simple.

2. Definition And Preliminaries

Convention 2.1. For simplicity in double variable functions, we write fij instead
of f(xi, yj).

Convention 2.2. The points (xi, yj , fij) and (xm, yn, fmn) are distinct if

∀i 6= m, ∀j 6= n : xi 6= xm & yj 6= yn.

Definition 2.3. Two changing polynomial P (x, y) is (m,n)-degree if its largest
degree of x in this polynomial is m and it’s largest degree of y is n.

Lemma 2.4. The determinant of an lower (upper) triangular matrix is the product
of its diagonal entries, i.e.

| L |=
n∏

i=1

lii, | U |=
n∏

i=1

uii.

Lemma 2.5. Let A be an n × n matrix. Then A is invertible if and only if its
determinant is nonzero.

3. Structure of interpol polynomial

Suppose we have (2n + 1) distinct points (x0, yj , f0j), j = 0, 1, 2, . . . , n and
(xi, y0, fi0), i = 1, 2, . . . , n from continuous function f(x, y). Now, we are going
to calculate the value of f(x, y) in other points. We should remind that f(x, y)
might not be accessible or f(x, y) is so complicated so we would interpolate the
function, using a polynomial with two variables. Like

f(x, y) =
∫ ∞

−∞
e−y2x2−z−xe−z

dz,

that its value is f(0.5, 0.03) is needful. So for replying this, we can interpolat-
ing f(x, y) continuous function by two changing polynomial P (x, y) and accept
P (0.5, 0.03) as a approximate of this example. We consider two-variable polyno-
mial P (x, y) as follows:

P (x, y) = a0 +
n∑

i=1

ai

i−1∏

j=0

(x− xj) + b0 +
n∑

i=1

bi

i−1∏

j=0

(y − yj). (3.1)

To find a unique interpolation polynomial P (x, y), we assume (a0+b0) is a constant.
So, we have (2n + 1) unknown coefficients (a0 + b0), ai and bi, i = 1, 2, . . . , n that
should be calculated. Therefore, we define

P (x, y) = (a0 + b0) +
n∑

i=1


ai

i−1∏

j=0

(x− xj) + bi

i−1∏

j=0

(y − yj)


 . (3.2)
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Now, P (x, y) and f(x, y) have the same values at 2n + 1 distinct interpolation
points, i.e.

p(x0, yj) = f(x0, yj) = f0j , j = 0, 1, 2, · · · , n,

P (xi, y0) = f(xi, y0) = fi0, i = 1, 2, · · · , n. (3.3)

To find the interpolation polynomial P (x, y), two steps are necessary. In the first
step, we will show ak and bk, (k = 1, 2, . . . , n) are uniquely exist. So, P (x, y) exist
and it is unique. In the second step, we have to calculate the unknown coefficients.

Theorem 3.1. If (x0, yj), j = 0, 1, 2, · · · , n and (xi, y0), i = 1, 2, · · · , n are (2n+
1) distinct points and f : R2 → R is a function whose values are given at this
points, then there exists a unique polynomial P : R2 → R of degree at most (n, n)
with the property of (3.3), and this polynomial is given by (3.2).

Proof. By substituting interpolation conditions (3.3) into the (3.2), we have

P (x0, y0) = a0 + b0 = f00,

P (x1, y0) = (a0 + b0) + a1(x1 − x0) = f10,

P (x2, y0) = (a0 + b0) + a1(x2 − x0) + a2(x2 − x0)(x2 − x1) = f20,

...

P (xn, y0) = (a0 + b0) + a1(xn − x0) + a2(xn − x0)(xn − x1) + · · ·
+ an(xn − x0)(xn − x1) . . . (xn − xn−1) = fn0,

P (x0, y1) = (a0 + b0) + b1(y1 − y0) = f01,

P (x0, y2) = (a0 + b0) + b1(y2 − y0) + b2(y2 − y0)(y2 − y1) = f02,

...

P (x0, yn) = (a0 + b0) + b1(yn − y0) + · · ·+ bn(yn − y0) . . . (yn − yn−1) = f0n.

Now, it is easy to see that the above system is a system of (2n+1) linear equations
in (2n + 1) unknowns. Hence, we can solve it. Then for simplicity, we write the
matrix form of this system. So, we define

b =




f00

f10

...
fn0

f01

f02

...
f0n




(2n+1)×1

, X =




a0 + b0

a1

...
an

b1

...
bn




(2n+1)×1

, (3.4)

and

A =
[

A11 A12

A21 A22

]
, (3.5)
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where A11, A12, A21 and A22 are of orders of (n+1)×(n+1), (n+1)×n, n×(n+1)
and n× n, respectively, such that

A11 =




1 0 . . . 0
1 (x1 − x0) 0
...

...
. . .

...
1 (xn − x0) . . . (xn − x0) · · · (xn − xn−1)




(n+1)×(n+1)

A12 =




0 · · · 0
...

...
0 · · · 0




(n+1)×n

, A21 =




1 0 · · · 0
...

...
...

1 0 · · · 0




n×(n+1)

,

and

A22 =




(y1 − y0) . . . 0
...

. . .
...

(yn − y0) . . . (yn − y0) · · · (yn − yn−1)




n×n

.

Now, we known that if A is an invertible matrix, then the system of linear equations
given by Ax = b has the unique solution X = A−1b. Since A is a lower triangular
matrix, using Lemma 2.5 we have

det(A) = det [A11] det [A22] =
∏

1≤i≤n
0≤j≤n−1

i 6=j

(xi − xj)(yi − yj).

Because all of our points are distinct then by the convention 2.2, det(A) 6= 0 and
by use the lemma 2.5, A is an invertible matrix and so our system has a unique
solution, i.e. tthe coefficients (a0 + b0), a1, . . . , an, b1, . . . , bn and then also P (x, y)
are uniquely exist. ¤

Lemma 3.2. In the interpolation polynomial P (x, y), the coefficients (a0 + b0),
ak and bk, i = 1, 2, · · · , n are giving as

(a0 + b0) = f00,

bk = (−1)k




k∑

i=0

f0i∏k
j=0
j 6=i

(yi − yj)


 , k = 1, 2, . . . , n,

ak =
k∑

i=0

fi0∏k
j=0
j 6=i

(xi − xj)
, k = 1, 2, . . . , n.

Proof. By using (3.2), we have

P (x, y) =(a0 + b0) + a1(x− x0) + · · ·+ an(x− x0) · · · (x− xn−1)

+ b1(y − y0) + · · ·+ bn(y − y0)(y − yn).

Then by substituting the point (x0, y0) in P (x, y), we have

P (x0, y0) = a0 + b0 = f00.
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Now, by use (x0, y1) we have

P (x0, y1) = a0 + b0 + b1(y1 − y0) = f01 ⇒ f00 + b1(y1 − y0) = f01.

Then

b1 = (−1)
[

f00

y1 − y0
+

f01

y0 − y1

]
, (3.6)

and also for (x0, y2), we can write

b2 =
f00

(y1 − y0)(y2 − y0)
+

f01

(y0 − y1)(y2 − y1)
+

f02

(y0 − y2)(y1 − y2)
. (3.7)

Similarly, by repeating this procedure we have

bk = (−1)k




k∑

i=0

f0i∏k
j=0
j 6=i

(yi − yj)


 , k = 1, 2, . . . , n.

Now, we are going to calculate ak. For this purpose by use (x1, y0), we have

P (x1, y0) = (a0 + b0) + a1(x1 − x0) = f10.

Hence, a1(x1 − x0) = f10 − f00. Then, we have

a1 =
f00

(x0 − x1)
+

f10

(x1 − x0)
.

Similarly for (x2, y0), we can write

P (x2, y0) = (a0 + b0) + a1(x2 − x0) + a2(x2 − x0)(x2 − x1) = f20.

Then

a2 =
f00

(x0 − x1)(x0 − x2)
+

f10

(x1 − x0)(x1 − x2)
+

f20

(x2 − x0)(x2 − x1)
,

and so, we can write

ak =
k∑

i=0

fi0∏k
j=0,j 6=i(xi − xj)

.

So, to calculate the coefficients (a0 + b0), a1, . . . , an, b1, . . . , bn, we must use formu-
lae (3.6), (3.7) and (3.8) and make the interpolation polynomial (3.2). ¤

4. Numerical Examples

Example 4.1. Let f(x, y) = x2 + y2 and we have seven distinct points of f(x, y)
in the table 1. We want to interpolate f(x, y) by one polynomial like P (x, y) and
then approximate f(0.5, 0.79).

y\x 0 1 1.15 1.8
0.25 0.0625 1.0625 1.385 3.3025
0.27 0.0729
1.4 1.96
2 4

table 1
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Solution: By Lemma 3.2:
a0 + b0 = f00 = 0.0625 then (a0 + b0) = 0.0625 and now by use (6) and (9) for
k = 1, 2, 3 we can write

a1 = 1, a2 = 1, a3 = 0.

Similarly
b1 = .52, b2 = 1, b3 = 0.

Then P (x, y) = x2 + y2, so f(x, y) = P (x, y) then f(.5, .79) = P (.5, .79) = .8125.

Lemma 4.2. We have exact methods for polynomial functions from degree (m,n)
that have not ”xy” sentences.

Example 4.3. Let f(x, y) =
∫∞
−∞ e−y2x2−z−xe−z

dz. We want to approximate
f(0.5, 0.03). (attenuation to the below table).

y\x 0.4 0.7 1
0 2.500 1.429 1

0.05 2.487
0.1 2.456

table 2

Solution: By Lemma 3.2:
a0 + a1 = 2.5 and similarly we can write

a1 = −3.57, a2 = 3.566666667

And also
b1 = −.26 , b2 = −3.6

Then

P (x, y) = 2.5− 3.57(x− 0.4) + 3.566666667(x− 0.4)(x− 0.7)
− .26y − 3.6y(y − 0.05)

Then the approximate value of f(0.5, 0.03) is P (0.5, 0.03) = 2.04802.
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